The **Complexity** of **Limited Belief Reasoning** The Quantifier-Free Case

Yijia Chen Abdallah Saffidine* Christoph Schwering

Fudan University, Shanghai, China

Australian National University, Canberra, Australia

University of New South Wales, Sydney, Australia

Motivating Limited Belief Reasoning

Problem: Does KB logically entail α ?

Motivating Limited Belief Reasoning

Problem: Does KB logically entail α ?

Classical logic:

- Unrealistic: omniscience!
- Hard: co-NP-hard (propositional) / undecidable (first-order)

Limited belief:

- Reasoning budget \rightarrow No omniscience
- More realistic
- More tractable

Motivating Limited Belief Reasoning

Problem: Does KB logically entail α ?

Classical logic:

- Unrealistic: omniscience!
- Hard: co-NP-hard (propositional) / undecidable (first-order)

Limited belief:

- Reasoning budget \rightarrow No omniscience
 - More realistic (Yes! [IJCAI 2017])
- More tractable (Actually... [this paper])

- Functions and equality
- And, or, not, quantifiers
- Modalities for belief and action, possibly nested

- Functions and equality
- And, or, not, quantifiers
- Modalities for belief and action, possibly nested

uninterpreted constant unique name c = (n)

- Functions and equality
- And, or, not, quantifiers
- Modalities for belief and action, possibly nested

Limited Belief Reasoning: does KB (in CNF) entail $\mathbf{B}_k \alpha$?

- Belief level 0: clause subsumption
- Belief level k + 1: case split + belief level k

uninterpreted constant unique name (c) = (n)

- Functions and equality
- And, or, not, quantifiers
- Modalities for belief and action, possibly nested

Limited Belief Reasoning: does KB (in CNF) entail $\mathbf{B}_k \alpha$?

- **K** $B \models B_0 \alpha$ iff all subclauses of α subsumed after unit propagation
- **KB** \models **B**_{k+1} α iff for some constant *c*, for all names *n*, KB \land *c* = *n* \models **B**_k α

Functions and equality (c) = (a)

- And, or, not, quantifiers
- Modalities for belief and action, possibly nested

Limited Belief Reasoning: does KB (in CNF) entail $\mathbf{B}_k \alpha$?

K $B \models B_0 \alpha$ iff all subclauses of α subsumed after unit propagation

KB \models **B**_{k+1} α iff for some constant *c*, for all names *n*, KB \land *c* = *n* \models **B**_k α

 $KB \not\models \mathbf{B}_0 (mother = Mia \lor mother = Molly) \quad \checkmark$

Functions and equality c = n

- And, or, not, quantifiers
- Modalities for belief and action, possibly nested

Limited Belief Reasoning: does KB (in CNF) entail $\mathbf{B}_k \alpha$?

K $B \models B_0 \alpha$ iff all subclauses of α subsumed after unit propagation

KB \models **B**_{k+1} α iff for some constant *c*, for all names *n*, KB \land *c* = *n* \models **B**_k α

-uninterpreted constant

-unique name

 $KB \wedge father = Frank \models B_0 mother = Mia$

Functions and equality

- And, or, not, quantifiers
- Modalities for belief and action, possibly nested

Limited Belief Reasoning: does KB (in CNF) entail $\mathbf{B}_k \alpha$?

K $B \models B_0 \alpha$ iff all subclauses of α subsumed after unit propagation

KB \models **B**_{k+1} α iff for some constant *c*, for all names *n*, KB \land *c* = *n* \models **B**_k α

Example: KB :=
$$(father = Frank \lor father = Fred) \land$$

 $(father = Frank \rightarrow mother = Mia) \land$
 $(father = Fred \rightarrow mother = Molly)$

 $\begin{array}{ll} \text{KB} \wedge \text{father} = \text{Frank} \models \textbf{B}_0 \text{ mother} = \text{Mia} & \checkmark \\ \text{KB} \wedge \text{father} = \text{Fred} \models \textbf{B}_0 \text{ mother} = \text{Molly} & \checkmark \end{array}$

Functions and equality

- And, or, not, quantifiers
- Modalities for belief and action, possibly nested

Limited Belief Reasoning: does KB (in CNF) entail $\mathbf{B}_k \alpha$?

K $B \models B_0 \alpha$ iff all subclauses of α subsumed after unit propagation

KB \models **B**_{k+1} α iff for some constant *c*, for all names *n*, KB \land *c* = *n* \models **B**_k α

Example: KB :=
$$(father = Frank \lor father = Fred) \land$$

 $(father = Frank \rightarrow mother = Mia) \land$
 $(father = Fred \rightarrow mother = Molly)$

$$\begin{array}{ll} \text{KB} \land \text{father} = \text{Frank} \models \mathbf{B}_0 \text{ mother} = \text{Mia} & \checkmark \\ \text{KB} \land \text{father} = \text{Fred} \models \mathbf{B}_0 \text{ mother} = \text{Molly} & \checkmark \\ \text{KB} \land \text{father} = n & \models \mathbf{B}_0 \bot & \checkmark \end{array}$$

■ Functions and equality (c) =

ty c = n

-uninterpreted constant

- And, or, not, quantifiers
- Modalities for belief and action, possibly nested

Limited Belief Reasoning: does KB (in CNF) entail $\mathbf{B}_k \alpha$?

K $B \models B_0 \alpha$ iff all subclauses of α subsumed after unit propagation

KB \models **B**_{k+1} α iff for some constant *c*, for all names *n*, KB \land *c* = *n* \models **B**_k α

Example: KB :=
$$(father = Frank \lor father = Fred) \land$$

 $(father = Frank \rightarrow mother = Mia) \land$
 $(father = Fred \rightarrow mother = Molly)$

 $\mathsf{KB} \models \mathbf{B}_1(\mathsf{mother} = \mathsf{Mia} \lor \mathsf{mother} = \mathsf{Molly}) \quad \checkmark$

KB \models **B**₀ α iff all subclauses of α subsumed after unit propagation

KB \models **B**_{k+1} α iff for some <u>constant *c*</u>, for all <u>names *n*</u>, KB \land *c* = *n* \models **B**_k α

KB \models **B**₀ α iff all subclauses of α subsumed after unit propagation

KB \models **B**_{k+1} α iff for some <u>constant *c*</u>, for all <u>names *n*</u>, KB \land *c* = *n* \models **B**_k α

Theorem: KB $\models \mathbf{B}_k \alpha$ is in PTIME if k or #Constants is constant

KB \models **B**₀ α iff all subclauses of α subsumed after unit propagation

KB \models **B**_{k+1} α iff for some <u>constant *c*</u>, for all <u>names *n*</u>, KB \land *c* = *n* \models **B**_k α

Theorem: KB $\models \mathbf{B}_k \alpha$ is in PTIME if k or #Constants is constant

 $\overline{\mathbf{c}}$

Theorem: KB $\models \mathbf{B}_k \alpha$ is PSPACE

KB \models **B**₀ α iff all subclauses of α subsumed after unit propagation

KB \models **B**_{*k*+1} α iff for some <u>constant *c*</u>, for all <u>names *n*</u>, KB \land *c* = *n* \models **B**_{*k*} α

Theorem: KB $\models \mathbf{B}_k \alpha$ is in PTIME if k or #Constants is constant

Theorem: KB $\models \mathbf{B}_k \alpha$ is PSPACE-complete

Order of splits matters:

$$c = n \lor d_1 = n \lor \dots$$
$$c = n \lor d_1 \neq n \lor \dots$$

 $c \neq n \lor d_2 = n \lor \dots$ $c \neq n \lor d_2 \neq n \lor \dots$

Parameterized Complexity

FPT: *k*-vertex cover

 $\begin{array}{ccc} \hline & f(k) \cdot p(n) \end{array}$ steps for computable f, polynomial p

W[1], A[1]: weighted 3CNF satisfiability

 $\square f(k) \cdot p(n)$ steps with EXISTS steps at the end

(A)W[P]: (quantified) weighted circuit satisfiability $f(k) \cdot p(n)$ steps + g(k) EXISTS (+ FORALL) steps

Complexity Overview

 $KB \models B_{k+1} \alpha$ iff for some constant *c*, for all <u>names *n*</u>, $KB \land c = n \models B_k \alpha$

#Constants	Belief level	#Names		
	Input	—	PSPACE-complete	8
Input				-

_	Const	_		-
Const	_	—	PIINE	

Complexity Overview

 $\text{KB} \models \mathbf{B}_{k+1} \alpha$ iff for some <u>constant *c*</u>, for all <u>names *n*</u>, $\text{KB} \land c = n \models \mathbf{B}_k \alpha$

#Constants	Belief level	#Names		_
Input	Input	_	PSPACE-complete	8
	Param	Input	AW[P]-complete	8
		Param Const	W[P]-complete	:
Param	lnput Param	Input	co-W[P]-complete	:
	_	Param Const	FPT	
— Const	Const —	_	PTIME	:

Conclusions

Summary

- Only tractable for small k or #Constants.
- Otherwise, harder than classical logic!
- $\blacksquare \rightarrow$ Belief level limits a resource that must be used wisely.

Next Steps

- Change split rule to reduce complexity?
- \in PSPACE \rightarrow use QBF solver?
- PSPACE-h → use as modelling language?
- Complexity with quantification?
- More parameters?