
A Reasoning System for a First-Order Logic of Limited Belief

Christoph Schwering
School of Computer Science and Engineering

The University of New South Wales
Sydney NSW 2052, Australia

c.schwering@unsw.edu.au

Abstract
Logics of limited belief aim at enabling computa-
tionally feasible reasoning in highly expressive rep-
resentation languages. These languages are often
dialects of first-order logic with a weaker form of
logical entailment that keeps reasoning decidable
or even tractable. While a number of such logics
have been proposed in the past, they tend to remain
for theoretical analysis only and their practical rel-
evance is very limited. In this paper, we aim to go
beyond the theory. Building on earlier work by Liu,
Lakemeyer, and Levesque, we develop a logic of
limited belief that is highly expressive while remain-
ing decidable in the first-order and tractable in the
propositional case and exhibits some characteristics
that make it attractive for an implementation. We
introduce a reasoning system that employs this logic
as representation language and present experimental
results that showcase the benefit of limited belief.

1 Introduction
Dealing with incomplete knowledge is one of the longstanding
aims of research in Knowledge Representation and Reasoning.
Incompleteness often demands highly expressive languages to
be represented accurately. For instance, the statement

“I don’t know who Sally’s father is, but I know he’s rich”

involves an individual (Sally’s father) and both knowns (he’s
rich) and unknowns (his identity) about him. From the rep-
resentational point of view, first-order and modal logics are
excellent tools to formalise such statements. However, reason-
ing in classical first-order logic very quickly gets undecidable:
an existential quantifier and two unary functions with equal-
ity can be enough to make validity an undecidable problem
[Börger et al., 1997].

One way to get around undecidability of first-order reason-
ing is through models of limited belief.1 Inspired by natural
agents, the idea behind limited belief is to give up the property
of logical omniscience [Hintikka, 1975]. This separates lim-
ited belief from other approaches to decidable reasoning like
the classical prefix-vocabulary classes [Börger et al., 1997] or

1We use the terms knowledge and belief interchangeably.

description logics [Baader, 2003], but is similar to approaches
of approximate reasoning like [D’Agostino, 2015]. While a
number of models of limited belief have been proposed in the
past [Konolige, 1986; Vardi, 1986; Fagin and Halpern, 1987;
Levesque, 1984b; Patel-Schneider, 1990; Lakemeyer, 1994;
Delgrande, 1995], these approaches can be criticised for either
being too fine-grained or overly weakening the entailment re-
lation and thus even ruling out the most basic cases of modus
ponens.

A more recent proposal for limited belief is due to Liu,
Lakemeyer, and Levesque [2004]. Their logic is equipped with
a perspicuous semantics based on clause subsumption, unit
propagation, and case splitting,2 and keeps the computational
complexity under control by stratifying beliefs in levels: level
0 comprises only the explicit beliefs; every following level
draws additional inferences by doing another case split. Every
query specifies at which belief level it shall be evaluated, and
thus controls how much effort should be spent on proving it.
The rationale behind this technique of limiting belief by case
splits is the hypothesis that in many practical reasoning tasks
few case splits – perhaps no more than one or two – suffice.

Let us consider a brief example to illustrate the idea. Sup-
pose we have the following knowledge base (KB):

(fatherOf(Sally) = Frank ∨ fatherOf(Sally) = Fred) ∧
∀x(fatherOf(Sally) 6= x ∨ Rich(x)).

At level 0 the agent believes these clauses, but does not
draw any meaningful inferences from them yet. For instance,
Rich(Frank)∨Rich(Fred), while entailed in classical logic, is
not believed at level 0. It can however be inferred by splitting
the cases for Sally’s potential fathers:

• if fatherOf(Sally) = Frank, then we obtain Rich(Frank)
by unit propagation with the second clause from the KB;

• if fatherOf(Sally) = Fred, then analogously Rich(Fred);
• if fatherOf(Sally) is anyone else, then unit propagation

with the first clause in the KB yields the empty clause.
Either of the three cases subsumes Rich(Frank) ∨ Rich(Fred).
Hence, Rich(Frank) ∨ Rich(Fred) is believed at level 1.

2A clause is a disjunction of literals. Subsumption refers to infer-
ring a clause c2 from a clause c1 when every literal in c1 subsumes a
literal in c2. Unit propagation of a clause c with a literal ` means to
remove all literals from c that are complementary to `. A case split
means to branch on all possible values a literal or term can take.

Several variants of Liu, Lakemeyer, and Levesque’s original
theory have been developed [Lakemeyer and Levesque, 2013;
2014; 2016; Klassen et al., 2015; Schwering and Lakemeyer,
2016]; they include concepts like introspection, actions, func-
tions, or conditional beliefs. Despite this progress, the frame-
work has remained a purely theoretical one without practical
applications.

In this paper, we want to bring their approach to limited
belief to practice. We make two contributions to this end:

• Firstly, we devise a logic of limited belief that unifies
some concepts from the earlier proposals and adds sev-
eral features to make it more attractive for practical use.
The result is a sorted first-order logic with functions
and equality and two introspective belief operators, one
for knowledge and one for what is considered possible.
While closely related to the earlier proposals, many tech-
nical details in this new language have been changed with
practical considerations in mind.

• Secondly, we present a reasoning system that uses
this logic as representation language. Our evaluation is
twofold. Besides modelling toy domains to showcase the
language’s expressivity, we have also tested the system’s
performance with two popular puzzle games, Sudoku and
Minesweeper. The results confirm the hypothesis that
small belief levels often suffice to achieve good results.

The paper is organised as follows. In Section 2 we introduce
an (omniscient) logic of knowledge. Based on this logic, we
then develop a logic of limited belief in Section 3. In Section 4
we sketch a decision procedure for limited belief, discuss an
implementation of this system, and present experiment results.
Proofs of the results presented in this paper can be found in
[Schwering, 2017].

2 A Logic of Knowledge
The logic we present in this section is a variant of Levesque’s
logic of only-knowing [Levesque, 1990] and will serve as a
reference for the logic of limited belief in the next section. We
refer to the logic from this section as L.

2.1 The Language
The language of L is a sorted first-order dialect with functions,
equality, standard names, and three epistemic modalities. With
minor modifications, this language will also be the language
used for the logic of limited belief LL.

We assume an infinite supply of sorts, and for each sort we
assume an infinite number of variables, function symbols of ev-
ery arity j ≥ 0, and standard names (or names for short). Stan-
dard names serve as special constants that satisfy the unique
name assumption and an infinitary version of domain closure.
The set of terms (of a sort s) contains all variables (of sort
s) and names (of sort s) as well as all functions f(t1, . . . , tj)
where f is a j-ary function symbol (of sort s) and every ti is
a variable or a name (not necessarily of sort s). A literal is
an expression of the form t1 = t2 or ¬t1 = t2 where t1 is a
variable, name, or function, and t2 is a variable or a name. The
set of formulas is the least set that contains all literals and all
expressions ¬α, (α ∨ β), ∃xα, Kα, Mα, and Oα where α
and β are formulas and x is a variable.

Intuitively, Kα reads as “α is known,” Mα as “α is consid-
ered possible,” and Oα as “α is all that is known.” We say a
formula is objective when it mentions no belief operator, and
subjective when it mentions no function outside of a belief
operator. Only-knowing is particularly useful to capture the
meaning of a knowledge base. As we only consider objective
knowledge bases in this paper, we restrict ourselves from now
on to objective φ in Oφ.

For convenience, we use the usual abbreviations 6=, ∧, ∀, ⊃,
and ≡, and we sometimes omit brackets to ease readability.

Some differences between our language and traditional first-
order languages are apparent: our language features no predi-
cates; functions cannot be nested; only the left-hand side of a
literal may be a function. These restrictions will prove help-
ful for the implementation of a reasoning system. We remark
that none of these restrictions means a limitation of expres-
sivity: a predicate P (t1, . . . , tj) can be simulated by a literal
p(t1, . . . , tj) => where > is some standard name chosen to
represent truth, and nested functions and literals with a func-
tion on the right-hand side can be flattened by introducing a
new variable – these transformations preserve equivalence.

As an example, we formalise the introductory statement
about Sally’s father, who is rich but unknown to the agent:

K∃x
(
fatherOf(Sally) = x ∧ rich(x) => ∧
M fatherOf(Sally) 6= x

)
,

where Sally is a standard name of the same sort (say, ‘hu-
man’) as x and fatherOf, and > is a name of the same sort
(say, ‘Boolean’) as rich. Quantifying x into the modal context
M expresses that the father’s identity is unknown. The next
subsection gives a semantic justification to this interpretation.

2.2 The Semantics
The semantics is based on possible worlds. We call a term
f(t1, . . . , tj) primitive when all ti are standard names. Let N
and T be the sets of all names and primitive terms, respectively.
To denote the names or primitive terms that occur in a formula
α, we write N (α) and T (α), respectively, and analogously
for sets of formulas. To include only terms of the same sort
as t, we write Nt and Tt. A world w : T → N is a sort-
preserving mapping from primitive terms to standard names,
that is, w(t) ∈ Nt for every primitive term t. A sentence is a
formula without free variables. We denote by αxt the result of
substituting t for all free occurrences of the variable x in α.

Truth of a sentence α is defined w.r.t. a world w and a set
of possible worlds e as follows:

1. e, w |= t= n iff
• t and n are identical names if t is a name;
• w(t) and n are identical names otherwise;

2. e, w |= ¬α iff e, w 6|= α;

3. e, w |= (α ∨ β) iff e, w |= α or e, w |= β;

4. e, w |= ∃xα iff e, w |= αxn for some n ∈ Nx;

5. e, w |= Kα iff e, w′ |= α for all w′ ∈ e;
6. e, w |= Mα iff e, w′ |= α for some w′ ∈ e;
7. e, w |= Oφ iff e = {w′ | e, w′ |= φ}.

Unlike classical first-order logic, this semantics handles
quantification by substitution of names. Standard names thus
effectively serve as a fixed, countably infinite universe of
discourse. See [Levesque, 1984a] for a discussion why this is
no effective limitation for our purposes.

Oφ maximises the set of possible worlds e such that Kφ
still holds. Hence the agent knows φ, but considers possible
everything else provided it is consistent with φ. In other words,
everything that is not a consequence of φ is unknown, for its
negation is consistent with φ and hence considered possible.
Thus Oφ captures only φ and its consequences are known.

As usual, a sentence α entails another sentence β, written
α |= β, when e, w |= α implies e, w |= β for all e, w. A
sentence α is valid, written |= α, when e, w |= α for all e, w.

We omit a deeper analysis except to note that K is a K45
operator [Fagin et al., 1995] and the following equivalences:
Proposition 1

(i) |= Kα ≡ ¬M¬α;
(ii) |= ∀xKα ≡ K∀xα and |= Kα ∧Kβ ≡ K(α ∧ β);

(iii) |= ∃xMα ≡M∃xα and |= Mα∨Mβ ≡M(α∨β);
(iv) |= Oφ ⊃ Kφ.
To familiarise ourselves with the logic, we show that the

query formalised at the end of Section 2.1 is entailed by

O
(
(fatherOf(Sally) = Frank ∨ fatherOf(Sally) = Fred) ∧
∀x(fatherOf(Sally) 6= x ∨ rich(x) =>)

)
where Frank and Fred are names of sort ‘human.’ Let φ denote
the sentence within O. By Rule 7, e = {w | e, w |= φ} is
the only set of worlds that satisfies Oφ, so proving the en-
tailment reduces to model checking for e. By assumption, for
every w ∈ e, w(fatherOf(Sally)) ∈ {Frank,Fred}. Suppose
w(fatherOf(Sally)) = Frank; the case for Fred is analogous.
By assumption, w(rich(Frank)) = >, so it only remains to be
shown that e, w |= M fatherOf(Sally) 6= Frank, which holds
because there are w′ ∈ e with w′(fatherOf(Sally)) = Fred.

3 A Logic of Limited Belief
We now introduce the logic LL, the limited counterpart of L.

3.1 The Language
The language of LL follows the rules from L with the follow-
ing modifications: the expressions Kα and Mα are replaced
with Kkα and Mkα where k ≥ 0 is a natural number, and
the expression Gα is added to the language. We read Kkα
and Mkα as “α is believed at level k” and “α is considered
possible at level k,” respectively, and the new expression Gα
intuitively means “assuming the knowledge base is consistent,
α is true.” Guaranteeing consistency is motivated by practical
applications where it often may reduce the computational cost
of reasoning.

3.2 The Semantics
In LL, sets of clauses take over from sets of possible worlds
as the semantic primitive that models belief. Intuitively,
these clauses will represent the agent’s explicit knowledge,
like fatherOf(Sally) = Frank ∨ fatherOf(Sally) = Fred and

∀x(fatherOf(Sally) 6= x ∨ rich(x) = >) in our running ex-
ample. By means of case splitting and unit propagation then
further inferences can be drawn from these clauses. Before we
can formalise this, we need to introduce some terminology.

We call a literal ground when it contains no variables. Recall
that a primitive term is one of the form f(n1, . . . , nj) where
the ni are names. Therefore every ground literal is of form
n= n′ or n 6= n′ or f(n1, . . . , nj) = n or f(n1, . . . , nj) 6= n
for names ni, n, n′.

A literal is valid when it is of the form t= t, or n 6= n′ for
distinct names n, n′, or t 6= t′ for terms t, t′ of distinct sorts.
A literal `1 subsumes a literal `2 when `1, `2 are identical or
`1, `2 are of the form t = n1 and t 6= n2 for distinct names
n1, n2. Two literals `1, `2 are complementary when `1, `2 are
of the form t= t′ and t 6= t′ (or vice versa), or `1, `2 are of the
form t= n1 and t= n2 for distinct names n1, n2.

A clause is a finite set of literals. A clause with a single
literal is a unit clause. We abuse notation and identify non-
empty clauses {`1, . . . , `j} with formulas (`1 ∨ . . .∨ `j). The
above terminology for literals carries over to clauses as follows.
A clause is valid when it contains a valid literal, or a literal
t= t′ and its negation t 6= t′, or two literals t 6= n1 and t 6= n2
for distinct names n1, n2. A clause c1 subsumes a clause c2
if every literal `1 ∈ c1 subsumes a literal `2 ∈ c2. The unit
propagation of a clause c with a literal ` is the clause obtained
by removing from c all literals that are complementary to `.

A setup is a set of ground clauses. We write UP(s) to denote
the closure of s with all valid literals under unit propagation:

• if c ∈ s, then c ∈ UP(s);
• if ` is a valid literal, then ` ∈ UP(s);
• if c, ` ∈ UP(s) and c′ is the unit propagation of c with `,

then c′ ∈ UP(s).
We write UP+(s) to denote the result of adding to UP(s) all
valid clauses and all clauses that are subsumed by some clause
in UP(s). Similarly, UP−(s) shall denote the setup obtained
by removing from UP(s) all valid clauses and all clauses
subsumed by some other clause in UP(s).

Truth of a sentence α in LL, written s0, s, v |≈ α, is defined
w.r.t. two setups s0, s and a set of unit clauses v. The purpose
of having these three parameters is to deal with nested beliefs.
For the objective part of the semantics, only s is relevant:

1. s0, s, v |≈ ` iff ` ∈ UP+(s) if ` is a literal;
2. s0, s, v |≈ (α ∨ β) iff

• (α ∨ β) ∈ UP+(s) if (α ∨ β) is a clause;
• s0, s, v |≈ α or s0, s, v |≈ β otherwise;

3. s0, s, v |≈ ¬(α∨β) iff s0, s, v |≈ ¬α and s0, s, v |≈ ¬β;
4. s0, s, v |≈ ∃xα iff s0, s, v |≈ αxn for some n ∈ Nx;
5. s0, s, v |≈ ¬∃xα iff s0, s, v |≈ ¬αxn for every n ∈ Nx;
6. s0, s, v |≈ ¬¬α iff s0, s, v |≈ α.

Note how negation is handled by rules for (t1 6= t2), ¬(α∨β),
¬∃xα, ¬¬α. A rule s0, s, v |≈ ¬α iff s0, s, v 6|≈ α would be
unsound, as LL is incomplete w.r.t. L (as we shall see).

We proceed with the semantics of Kkα. The idea is that
k case splits can be made first, before α is evaluated. A case
split means to select some term (say, fatherOf(Sally)) and

branch (conjunctively) on the values it could take (namely all
standard names of the right sort, such as Frank and Fred). To
preserve soundness of introspection, the effect of case splits
must not spread into nested beliefs. This is why we need to
carefully manage three parameters s0, s, v. Intuitively, s0 is
the “original” setup without split literals, and v “stores” the
split literals. Once the number of case splits is exhausted, s0∪v
takes the place of s, so that the objective subformulas of α are
interpreted by s0 ∪ v, whereas the subjective subformulas of α
are interpreted by s0 (plus future splits from the nested belief
operators). We say a setup s is obviously inconsistent when
UP(s) contains the empty clause. In this special case, which
corresponds to the empty set of worlds in the possible-worlds
semantics, everything is known. The semantics of knowledge
formalises this idea as follows:

7. s0, s, v |≈ K0α iff
• s0 ∪ v is obviously inconsistent, or
• s0, s0 ∪ v, ∅ |≈ α;

8. s0, s, v |≈ Kk+1α iff
for some t ∈ T and every n ∈ Nt,
s0, s, v ∪ {t= n} |≈ Kkα;

9. s0, s, v |≈ ¬Kkα iff s0, s, v 6|≈ Kkα.

Similarly, the idea behind Mkα is to fix the value of certain
terms in order to show that the setup is consistent with α.
Intuitively this means that we want to approximate a possible
world, that is, an assignment of terms to names, that satisfies
α. Often we want to fix not just a single term, but a series of
terms with a common pattern, for instance, f(n) = n for all n.
To this end, we say two literals `1, `2 are isomorphic when
there is a bijection ∗ : N → N that swaps standard names in
a sort-preserving way so that `1 and `∗2 are identical, and define
v]s`1=v∪{`2 |`1, `2 are isomorphic and ¬`2 /∈UP+(s∪v)}.
In English: v]s `1 adds to v every literal that is isomorphic
to `1 and not obviously inconsistent with the setup s ∪ v.
Furthermore, we need to take care that after fixing these
values the setup is not potentially inconsistent. We say a setup
s is potentially inconsistent when it is obviously inconsistent
or when the set {` | ` ∈ c ∈ UP−(s)} of all literals in UP−(s)
contains two complementary literals, or a literal t = n for
n /∈ Nt, or all literals t 6= n for n ∈ Nt for some primitive
term t. Note that this consistency test is intentionally naive,
for the complexity of Mkα shall be bounded by k alone. The
semantics of the consistency operator is then:

10. s0, s, v |≈M0α iff
• s0 ∪ v is not potentially inconsistent, and
• s0, s0 ∪ v, ∅ |≈ α;

11. s0, s, v |≈Mk+1α iff
for some t ∈ T and n ∈ Nt,
s0, s, v ∪ {t= n} |≈Mkα or
s0, s, v]s0 (t= n) |≈Mkα;

12. s0, s, v |≈ ¬Mkα iff s0, s, v 6|≈Mkα.

To capture that Oφ means that φ is all the agent knows,
we need to minimise the setup (modulo unit propagation and
subsumption), which corresponds to the maximisation of the
set of possible worlds in L. We hence define:

13. s0, s, v |≈ Oφ iff
• s0, s0, ∅ |≈ φ, and
• s0, ŝ0, ∅ 6|≈ φ for every ŝ0 with UP+(ŝ0) (UP+(s0);

14. s0, s, v |≈ ¬Oφ iff s0, s, v 6|≈ Oφ.

Lastly, we define the semantics of the Gα operator, which
represents a guarantee that s is consistent and therefore can
reduce the size of s to clauses potentially relevant to α. We de-
note the grounding of α by gnd(α) = {βx1...xj

n1...nj
| ni ∈ Nxi

}
where β is the result of rectifying α and removing all quanti-
fiers, and x1, . . . , xj are the free variables in β. Finally, s|T is
the least set such that if c ∈ UP−(s) and c either mentions a
term from T , is empty, or shares a term with another clause in
s|T , then c ∈ s|T . Then Gα works as follows:

15. s0, s, v |≈ Gα iff s0|T (gnd(α)), s, v |≈ α;

16. s0, s, v |≈ ¬Gα iff s0, s, v |≈ G¬α.

This completes the semantics. We write s0, s |≈ α to abbre-
viate s0, s, ∅ |≈ α. Note that for subjective formulas σ, s is
irrelevant, so we may just write s0 |≈ σ. Analogous to |= in
L, we overload |≈ for entailment and validity.

In this paper we are mostly concerned with reasoning tasks
of the form Oφ |≈ σ where σ is a subjective query and φ is a
knowledge base of a special form called proper+: φ is of the
form

∧
i ∀x1 . . . ∀xj ci for clauses ci.

Observe that a proper+ KB directly corresponds to the setup
gnd(φ) =

⋃
i gnd(ci). Also note that while existential quanti-

fiers are disallowed in proper+ KBs, they can be simulated as
usual by way of Skolemisation.

Reasoning in proper+ KBs is sound in LL w.r.t. L, provided
that the query does not mention belief modalities Kk ,Mk in
a negated context. While the first-order case is incomplete, a
restricted completeness result for the propositional case will
be given below. We denote by σL the result of replacing in σ
every Kk ,Mk with K ,M . The soundness theorem follows:
Theorem 2 Let φ be proper+ and σ be subjective, without
O,G, and without negated Kk ,Mk .
Then Oφ |≈ σ implies Oφ |= σL.

Negated beliefs break soundness because of their incom-
pleteness. For example, Kk (t = n ∨ ¬¬t 6= n) in general
only holds for k ≥ 1. Hence ¬K0(t= n ∨ ¬¬t 6= n) comes
out true, which is unsound w.r.t. L. As a consequence of this
incompleteness, Kkα ≡ ¬Mk¬α is not a theorem in LL.

For propositional formulas, that is, formulas without quan-
tifiers, high-enough belief levels are complete:
Theorem 3 Let φ, σ be propositional, φ be proper+, σ be
subjective and without O,G. Let σk be like σ with every
Kl ,Ml replaced with Kk ,Mk .
Then Oφ |= σL implies that there is a k such that Oφ |≈ σk.

To conclude this section, let us revisit our running example.
The KB is the same as in Section 2.2, and the modalities in
the query are now indexed with belief levels:

K1∃x
(
fatherOf(Sally) = x ∧ rich(x) => ∧
M1 fatherOf(Sally) 6= x

)
.

By Rule 13, s0 = {fatherOf(Sally)=Frank∨ fatherOf(Sally)
=Fred, fatherOf(Sally) 6= n ∨ rich(n) = > | n ∈ Nx} is

the unique (modulo UP+) setup that satisfies the KB. To
prove the query, by applying Rule 8 we can split the term
fatherOf(Sally). Consider s0 ∪ {fatherOf(Sally) = Frank}.
By unit propagation we obtain rich(Frank) =>, so we can
choose Frank for x in Rule 4, and all that remains to be
shown is that s0 |≈M1 fatherOf(Sally) 6= Frank. This is done
by assigning fatherOf(Sally) = Fred in Rule 11, and as the
resulting setup s0 ∪ {fatherOf(Sally) = Fred} is not poten-
tially inconsistent and subsumes fatherOf(Sally) 6= Frank, the
query holds. Returning to the splitting in Rule 8, the case
s0 ∪ {fatherOf(Sally) = Fred} is analogous, and for all other
n, the setups s0 ∪ {fatherOf(Sally) = n} are obviously incon-
sistent and therefore satisfy the query by Rule 7.

4 A Reasoning System
We now proceed to describe a decision procedure for reasoning
in proper+ knowledge bases, and then discuss an implementa-
tion as well as experimental results.

4.1 Decidability
Reasoning in proper+ knowledge bases is decidable in LL:
Theorem 4 Let φ be proper+, σ be subjective and without O.
Then Oφ |≈ σ is decidable.

While space precludes a detailed treatment of the proof and
decision procedure, we sketch the idea. For the rest of this
section, we use Lk as a placeholder for Kk and Mk .

Let us first consider the case where σ is of the form Lkψ
for objective ψ; we will turn to nested modalities later. As φ is
proper+, gnd(φ) gives us the unique (modulo UP+) setup that
satisfies Oφ, so the reasoning task reduces to model checking
of gnd(φ). An important characteristic of standard names is
that, intuitively, a formula cannot distinguish the names it does
not mention. As a consequence, we can limit the grounding
gnd(φ) and quantification during the model checking to a finite
number of names. For every variable x in φ or ψ, let px be
the maximal number of variables occurring in any subformula
of φ or ψ of the same sort as x. It is then sufficient for the
grounding and for quantification of x to consider only the
names Nx(φ) ∪ Nx(ψ) plus px + 1 additional new names.
Given the finite grounding and quantification, splitting in Rules
8 and 11 can also be confined to finitely many literals.

That way, the rules of the semantics of LL can be reduced
to only deal with finite structures, which immediately yields a
decision procedure for Oφ |≈ Lkψ.

In the propositional case, this procedure is tractable:
Theorem 5 Let φ, ψ be propositional, φ be proper+, ψ be ob-
jective. Then Oφ |≈ Lkψ is decidable inO(2k(|φ|+|ψ|)k+2).

Now we turn to nested beliefs, which are handled using
Levesque’s representation theorem [Levesque, 1984a]. When
ψ mentions a free variable x, the idea is to replace a nested
belief Lkψ with all instances n for which Lkψ

x
n holds. Given

a proper+ φ, a set of primitive terms T , and a formula Lkψ for
objective ψ, we define RES[φ, T,Lkψ] as

• if ψ mentions a free variable x:∨
n∈Nx(φ)∪Nx(ψ)

(x= n ∧ RES[φ, T,Lkψ
x
n]) ∨(∧

n∈Nx(φ)∪Nx(ψ)
x 6= n ∧ RES[φ, T,Lkψ

x
n̂]
n̂
x

)
where n̂ ∈ Nx \ (Nx(φ) ∪Nx(ψ)) is a some new name;

• if ψ mentions no free variables:
TRUE if gnd(φ)|T |≈ Lkψ, and ¬TRUE otherwise, where
TRUE stands for ∃xx= x.

In our running example, RES[φ, T ,M1 fatherOf(Sally) 6= x]
is (x= Frank ∧ TRUE) ∨ (x= Fred ∧ TRUE) ∨ (x= Sally ∧
TRUE) ∨ (x 6= Frank ∧ x 6= Fred ∧ x 6= Sally ∧ TRUE), which
says that everybody is potentially not Sally’s father.

The RES operator can now be applied recursively to elimi-
nate nested beliefs from the inside to the outside. For proper+

φ, a set of terms T , and α without O, we define

• ‖t= t′‖φ,T as t= t′;

• ‖¬α‖φ,T as ¬‖α‖φ,T ;

• ‖(α ∨ β)‖φ,T as (‖α‖φ,T ∨ ‖β‖φ,T);
• ‖∃xα‖φ,T as ∃x‖α‖φ,T ;

• ‖Lkα‖φ,T as RES[φ, T,Lk‖α‖φ,T];
• ‖Gα‖φ,T as ‖α‖φ,T∩T (gnd(α)).

Note that ‖ · ‖ works from the inside to the outside and always
returns an objective formula. In our example, ‖K1 . . . ‖φ,T
first determines RES[φ, T ,M1 fatherOf(Sally) 6= x], and
then RES[φ, T ,K1∃x(fatherOf(Sally) = x ∧ rich(x) = > ∧
RES[φ, T ,M1 fatherOf(Sally) 6= x)]] evaluates to TRUE.

Levesque’s representation theorem (transferred to LL)
states that this reduction is correct:
Theorem 6 Let φ be proper+, σ be subjective and without O.
Then Oφ |≈ σ iff |≈ ‖σ‖φ,T .

It follows that propositional reasoning is tractable:
Corollary 7 Let φ, σ be propositional, φ be proper+, σ be
subjective, and k ≥ l for every Kl ,Ml in σ. Then Oφ |≈ σ
is decidable in O(2k(|φ|+ |σ|)k+3).

4.2 Implementation
The reasoning system LIMBO implements the decision proce-
dure sketched in the previous subsection. LIMBO is written in
C++ and available as open source.3

Compared to literals in propositional logic, literals in our
first-order language are relatively complex objects. As we
want to adopt SAT solving technology, care was taken to keep
literal objects lightweight and efficient. Firstly, for every term
we create only a single full copy and from then on uniquely
identify the term with a 30-bit pointer to this full copy. With
this compact representation of terms, a literal fits into a 64-bit
integer: 60 bits for the left- and right-hand terms, and one bit
to encode whether the literal is negated. Two of the remaining
bits are used to encode whether the terms are standard names,
which allows us to implement the subsumption and comple-
mentarity tests for literals (as defined in Section 3.2) using just
bitwise operations on the literals’ 64-bit representation, with-
out dereferencing the term pointers. An experiment showed
this representation to be 24 times faster than a naive encoding.

Subsumption and complementarity tests for literals are
mostly used in the context of setups for determining unit propa-
gation and subsumption. To avoid unnecessary blowup, invalid
literals in clauses as well as valid clauses in setups are not

3Source code: www.github.com/schwering/limbo

NYT easy NYT medium NYT hard Top 1465
clues 38.0 24.4 24.0 18.0
level 0 42.8 49.5 44.2 45.1
level 1 0.3 6.6 11.2 9.5
level 2 – 0.5 1.8 4.6
level 3 – – – 3.1
level 4 – – – 0.5
level 5 – – – 0.01
time 0.1 s 0.8 s 4.1 s 49.5 m

Table 1: Sudoku experiments over eight puzzles of each category
from The New York Times website as well as the first 125 of the
“Top 1465” list. The rows show how many cells on average per game
were preset or solved at belief level 1, 2, 3, 4, or 5. The last row
shows the average time per puzzle.

represented explicitly. To facilitate fast unit propagation and
cheap backtracking during splitting, the setup data structure
uses the watched-literals scheme [Gomes et al., 2008]. Other
SAT technologies like backjumping or clause learning are not
used at the current stage. The setup data structure also provides
an operation to query the value of a primitive term, which is
used to optimise subformulas of the form Kk t= x in queries.

When the KB is known to be consistent, the query may
be wrapped in a G operator to allow the reasoner to remove
irrelevant clauses and thus reduce the branching factor for
splitting. With an inconsistent KB, G is not sound, though.

LIMBO also rewrites formulas, exploiting equivalences that
hold in L but not in LL like Proposition 1 (ii–iii), and provides
syntactic sugar for nested functions and the like.

4.3 Evaluation
Three sample applications were developed to evaluate the rea-
soning system.4 For one thing, a textual user interface allows
for specification of reasoning problems and has been used to
model several small-scale examples, including this paper’s
running example, to test the system’s full expressivity. In this
section, however, we focus on the application of limited belief
to the games of Sudoku and Minesweeper.

Sudoku is played on a 9×9 grid which is additionally divided
into nine 3×3 blocks. The goal is to find a valuation of the cells
such that every row, column, and 3×3 block contains every
value [1, 9] exactly once. The difficulty depends on how many
and which numbers are given as clues from the start.

In Minesweeper the goal is to explore a grid by uncovering
all and only those cells that contain no mine. When such a safe
cell is uncovered, the player learns how many adjacent cells
are safe, but when a mined cell is uncovered, the game is lost.
The difficulty depends on the number of mines and grid size.

Both games were played by simple agents that use the rea-
soning system to represent and infer knowledge about the cur-
rent game state. For Sudoku, we use a function value(x, y) ∈
[1, 9] and translate the game rules to constraints such as
y1 = y2 ∨ value(x, y1) 6= value(x, y2). For Minesweeper a
Boolean function isMine(x, y) is used, and when a cell (x, y)
is uncovered, clauses are added to represent the possible val-
uations of isMine(x ± 1, y ± 1). Both agents use iterative
deepening to find their next move: first, they look for a cell

4Demos: www.cse.unsw.edu.au/~cschwering/limbo

level 8×8−10 16×16−40 16×30−99 32×64−320

0 win 62.0% 46.0% 1.4% 28.3%
time 0.01 s 0.06 s 0.24 s 5.08 s

1 win 87.3% 84.9% 37.7% 69.8%
time 0.01 s 0.08 s 0.43 s 5.46 s

2 win 87.8% 85.0% 39.1% 70.0%
time 0.02 s 0.10 s 0.64 s 5.60 s

3 win 87.8% 85.0% 39.1% 70.0%
time 0.07 s 0.25 s 4.94 s 5.90 s

Table 2: Minesweeper experiments over 1000 randomised runs of
different configurations, where W×H−M means M mines on a W×H
grid. The rows contain results for different maximum belief levels
used by the reasoner to figure out whether cells are safe or not.
Numbers are the chance of winning and execution time per game.

(x, y) for which value(x, y) or isMine(x, y) is known at belief
level 0; if none exists, they repeat the same for belief level 1;
and so on, until a specified maximum level is reached. Once a
known cell is found, the corresponding information is added
to the knowledge base. In the case of Minesweeper, it is some-
times necessary to guess; we then use a naive strategy that
prefers cells that are not next to an uncovered field.

While both games do not require much expressivity to be
modelled, they are nevertheless interesting applications of lim-
ited belief because they are known to be computationally hard –
Sudoku on N×N grids is NP-complete [Takayuki and Takahiro,
2003], Minesweeper is co-NP-complete [Scott et al., 2011]
– yet often easily solved by humans. According to the moti-
vating hypothesis behind limited belief, a small belief level
should often suffice to reach human-level performance. Indeed
we find this hypothesis confirmed for both games. The results
for Sudoku in Table 1 show that most ‘easy’ instances are
solved just by unit propagation, and the number of necessary
case splits increases for ‘medium’ and ‘hard.’ Significantly
more effort is needed to solve games from the “Top 1465” list,
a repository of extremely difficult Sudokus. For Minesweeper,
Table 2 shows that strong results are achieved at level 1 al-
ready, and while belief level 2 increases the chance of winning
by 0.5%, there is no improvement at level 3.

The experiments were conducted with custom implementa-
tions of both games, compiled with clang -O3, and run on
an Intel Core i7-4600U CPU at 3.3 GHz.

5 Conclusion
We developed a practical variant of Liu, Lakemeyer, and
Levesque’s [2004] theory of limited belief and introduced
and evaluated LIMBO, a reasoning system that implements our
logic. The system features a sorted first-order language of in-
trospective belief with functions and equality; the complexity
of reasoning is controlled through the number of case splits.
The idea behind limited belief is that often a small number of
case splits suffice to bring about useful reasoning results; this
hypothesis was confirmed in our experimental evaluation.

A natural next step is to incorporate theories of action, belief
change, and multiple agents, which could open up applications
in epistemic planning and high-level robot control. Another
task is to improve the runtime performance, perhaps using
SAT technology like clause learning and backjumping.

References
[Baader, 2003] Franz Baader. The Description Logic Hand-

book: Theory, Implementation, and Applications. 2003.
[Börger et al., 1997] Egon Börger, Erich Grädel, and Yuri

Gurevich. The Classical Decision Problem. 1997.
[Buffet et al., 2012] Olivier Buffet, Chang-Shing Lee, Woan-

Tyng Lin, and Olivier Teytuad. Optimistic heuristics for
minesweeper. In Proc. ICS, 2012.

[D’Agostino, 2015] Marcello D’Agostino. An informational
view of classical logic. Theor. Comput. Sci., 2015.

[Delgrande, 1995] James P. Delgrande. A framework for log-
ics of explicit belief. Comput. Intell., 1995.

[Fagin and Halpern, 1987] Ronald Fagin and Joseph Halpern.
Belief, awareness, and limited reasoning. Artif. Intell.,
1987.

[Fagin et al., 1995] Ronald Fagin, Joseph Y. Halpern, Yoram
Moses, and Moshe Y. Vardi. Reasoning about knowledge.
1995.

[Gomes et al., 2008] Carla P. Gomes, Henry Kautz, Ashish
Sabharwal, and Bart Selman. Satisfiability solvers. In
Handbook of Knowledge Representation. 2008.

[Hintikka, 1975] Jaakko Hintikka. Impossible possible
worlds vindicated. J. Philos. Logic, 1975.

[Klassen et al., 2015] Toryn Q. Klassen, Sheila A. McIlraith,
and Hector J. Levesque. Towards tractable inference for
resource-bounded agents. In Proc. Commonsense, 2015.

[Konolige, 1986] Kurt Konolige. A Deduction Model of Be-
lief. 1986.

[Lakemeyer and Levesque, 2013] Gerhard Lakemeyer and
Hector J. Levesque. Decidable reasoning in a logic of
limited belief with introspection and unknown individuals.
In Proc. IJCAI, 2013.

[Lakemeyer and Levesque, 2014] Gerhard Lakemeyer and
Hector J. Levesque. Decidable reasoning in a fragment
of the epistemic situation calculus. In Proc. KR, 2014.

[Lakemeyer and Levesque, 2016] Gerhard Lakemeyer and
Hector J. Levesque. Decidable reasoning in a logic of
limited belief with function symbols. In Proc. KR, 2016.

[Lakemeyer, 1994] Gerhard Lakemeyer. Limited reasoning
in first-order knowledge bases. Artif. Intell., 1994.

[Levesque, 1984a] Hector J. Levesque. Foundations of a func-
tional approach to knowledge representation. Artif. Intell.,
1984.

[Levesque, 1984b] Hector J. Levesque. A logic of implicit
and explicit belief. In Proc. AAAI, 1984.

[Levesque, 1990] Hector J. Levesque. All I know: a study in
autoepistemic logic. Artif. Intell., 1990.

[Liu et al., 2004] Yongmei Liu, Gerhard Lakemeyer, and Hec-
tor J. Levesque. A logic of limited belief for reasoning with
disjunctive information. In Proc. KR, 2004.

[Patel-Schneider, 1990] Peter F. Patel-Schneider. A decidable
first-order logic for knowledge representation. J. Autom.
Reason., 1990.

[Schwering and Lakemeyer, 2016] Christoph Schwering and
Gerhard Lakemeyer. Decidable reasoning in a first-order
logic of limited conditional belief. In Proc. ECAI, 2016.

[Schwering, 2017] Christoph Schwering. A reasoning system
for a first-order logic of limited belief. arXiv:1705.01817.

[Scott et al., 2011] Allan Scott, Ulrike Stege, and Iris
Van Rooij. Minesweeper may not be NP-complete but
is hard nonetheless. Math. Intell., 2011.

[Takayuki and Takahiro, 2003] Yato Takayuki and Seta
Takahiro. Complexity and completeness of finding another
solution and its application to puzzles. IEICE-Tran. Fund.
Elec., Comm. & Comp. Sci., 2003.

[Vardi, 1986] Moshe Y. Vardi. On epistemic logic and logical
omniscience. In Proc. TARK, 1986.

