A Reasoning System for a First-Order Logic of Limited Belief

Christoph Schwering

UNSW Sydney
What is limited belief? And why?

Task: Robot has a KB and a query:

Does the KB *logically entail* the query?
What is limited belief? And why?

Task: Robot has a KB and a query:

Does the KB \textit{logically entail} the query?

Which logic?
What is limited belief? And why?

Task: Robot has a KB and a query:

Does the KB *logically entail* the query?

Which logic?

Classical logic:

- Unrealistic: omniscient agent
- Undecidable (first-order) / intractable (propositional)
What is limited belief? And why?

Task: Robot has a KB and a query:

Does the KB *logically entail* the query?
Which logic?

Limited belief:
- **Belief level 0**: explicitly written down in the KB
- **Belief level \(k > 0 \)**: derivable from KB with effort \(k \)

Hope: good results at *small* belief level

Builds on Lakemeyer & Levesque, KR-2016
Language

FOL with equality + functions + sorts +

- **Knowledge:** \(K_0 \alpha \) \(K_1 \alpha \) \(K_2 \alpha \) ... \(K_i \alpha \) ...
- **Possibility:** \(M_0 \alpha \) \(M_1 \alpha \) \(M_2 \alpha \) ... \(M_i \alpha \) ...

Example:

- \(K_1 (\text{Rich}(\text{Frank}) \lor \text{Rich}(\text{Fred})) \)
 know that Frank or Fred is rich
- \(\forall x \ M_1 \text{fatherOf}(\text{Sally}) \neq x \)
 don’t know who Sally’s father is
- \(K_1 \exists x (\text{fatherOf}(\text{Sally}) = x \land \text{Rich}(x) \land \ M_1 \text{fatherOf}(\text{Sally}) \neq x) \)
 know that Sally’s father is rich, but don’t know who he is
Semantics

Model: set of clauses closed under unit propagation

- Belief level 0: subsumption
- Belief level $k > 0$: k case splits

Example:
If all we know is (a) fatherOf(Sally) = Frank ∨ fatherOf(Sally) = Fred and (b) $\forall x (\text{fatherOf}(Sally) \neq x \lor \text{Rich}(x))$
then $K_1 (\text{Rich}(Frank) \lor \text{Rich}(Fred))$?

Yes! Branch on fatherOf(Sally):

- $\{ (a), (b), \text{fatherOf}(Sally) = \text{Frank} \} \ni \text{Rich}(\text{Frank})$ by UP with (b)
- $\{ (a), (b), \text{fatherOf}(Sally) = \text{Fred} \} \ni \text{Rich}(\text{Fred})$ by UP with (b)
- $\{ (a), (b), \text{fatherOf}(Sally) = n \} \ni \bot$ by UP with (a) for $n \neq \text{Frank, Fred}$
Soundness Completeness Decidability Tractability

KB entails query at some belief level \implies KB classically entails query
if no \negK, \negM
KB entails query at some belief level ⇔ KB classically entails query
if no ¬K, ¬M and no ∃, ∀
KB entails query at some belief level is \textit{decidable}
KB entails query at some belief level is tractable
if no \(\exists, \forall \) and belief level fixed
Experiments:

Sudoku

Minesweeper

Hypothesis: good results at small belief level
Hypothesis: good results at *small* belief level ✓

Average # of cells solved at...
Hypothesis: good results at small belief level ✓ ✓

Experiments: Sudoku Minesweeper

- Small
- Medium
- Large
- Huge

Winning % of games at...

- level 0
- level 1
- level 2
- level 3
- loss
Limbo = **Limited Belief**

Demos: www.cse.unsw.edu.au/~cschwering/limbo
Fri 10:00–12:00

Code: www.github.com/schwering/limbo

Next: 1. actions 2. multi-agent 3. belief change 4. complexity
Appendix
Language in detail

Terms:
- First-order variables
- Functions $f(t_1, \ldots, t_m)$ where each t_i is a name or variable
- Standard names infinitely many and sorted

Formulas:
- FOL: $t_1 = t_2 \quad \neg \alpha \quad \alpha \lor \beta \quad \exists x \alpha$
- Knowledge: $K_0 \alpha \quad K_1 \alpha \quad K_2 \alpha \quad \ldots$
- Possibility: $M_0 \alpha \quad M_1 \alpha \quad M_2 \alpha \quad \ldots$
- Knowledge base: $O \alpha$ where α is in universal CNF

- $\alpha \land \beta \quad \alpha \supset \beta \quad \alpha \equiv \beta \quad \forall x \alpha$ are abbreviations
- Predicates are simulated with functions
- Existentials in KBs are simulated with Skolem functions
- Functions on the right-hand side and within functions are flattened:
 \[
 f(\cdot) = g(\cdot) \quad \mapsto \quad \forall x (g(\cdot) = x \supset f(\cdot) = x)
 \]
 \[
 f(g(\cdot)) = t \quad \mapsto \quad \forall x (g(\cdot) = x \supset f(x) = t)
 \]
Literal encoding

- Functions cannot appear on rhs
 \[f(\cdot) = g(\cdot) \iff \forall x (g(x) = x \supset f(x) = x) \]
- Functions cannot be nested
 \[f(g(\cdot)) = t \iff \forall x (g(x) = x \supset f(x) = t) \]

- Term is 30-bit number
 - points to full representation
 - this pointer is unique (interning)
- Literal is 64-bit number
 - 30 + 30 bits for lhs + rhs
 - 1 + 1 bits to indicate if lhs + rhs is name
 - 1 bit to indicate whether = or ≠

- Conditions for literal subsumption and complementarity:
 - \(\ell \) subsumes \(\ell' \)
 - \(t = n_1 \) subsumes \(t \neq n_2 \)
 - \(t = t' \) and \(t \neq t' \) are complementary
 - \(t = n_1 \) and \(t = n_2 \) are complementary

- Sound and complete
- Bitwise op’s on 64-bit numbers suffice
 - no term dereferencing
- Fast clause subsumption and unit propagation
“I don’t know Sally’s father, but I know he’s rich”

\[
\begin{align*}
&c_1 = f(S) = \text{Frank} \lor f(S) = \text{Fred} \\
&c_2 = \forall x (f(S) \neq x \lor r(x) = \top) \\
&O(c_1 \land c_2) \models K\exists x (f(S) = x \land r(x) = \top \land Mf(S) \neq x)
\end{align*}
\]
"I don’t know Sally’s father, but I know he’s rich"

\[e = \{ w \mid w \models f(S) = \text{Frank} \lor f(S) = \text{Fred} \land \forall x (f(S) \neq x \lor r(x) = \top) \} \]

\[e \models K\exists x (f(S) = x \land r(x) = \top \land Mf(S) \neq x) \]
“I don’t know Sally’s father, but I know he’s rich”

- $e = \{ w \mid w \models f(S) = \text{Frank} \lor f(S) = \text{Fred} \land \forall x (f(S) \neq x \lor r(x) = \top) \}$
- $e \models \text{K}\exists x (f(S) = x \land r(x) = \top \land Mf(S) \neq x)$
- For every $w \in e$, for some n, $w \models f(S) = n \land R(n)$
- For some $w' \in e$, $w \models f(S) \neq n$
“I don’t know Sally’s father, but I know he’s rich”

\[c_1 = f(S) = \text{Frank} \lor f(S) = \text{Fred} \]
\[c_2 = \forall x \ (f(S) \neq x \lor r(x) = \top) \]

\[\text{O}(c_1 \land c_2) \models \text{K}_1 \exists x \ (f(S) = x \land r(x) = \top \land M_1 f(S) \neq x) \]
“I don’t know Sally’s father, but I know he’s rich”

\[s = \{ f(S) = \text{Frank} \lor f(S) = \text{Fred}, \]
\[f(S) \neq n \lor r(n) = \top \mid n \text{ is a name} \}

\[s \models K_1 \exists x (f(S) = x \land r(x) = \top \land M_1 f(S) \neq x) \]
"I don’t know Sally’s father, but I know he’s rich"

\[s = \{ f(S) = \text{Frank} \lor f(S) = \text{Fred}, \]
\[f(S) \neq n \lor r(n) = \top \mid n \text{ is a name} \}

\[s \models K_1 \exists x (f(S) = x \land r(x) = \top \land M_1 f(S) \neq x) \]

\[\iff \]

for some \(t_1 \), for all \(n_1 \), for some \(n \),

\[s \cup \{ t_1 = n_1 \} \models f(S) = n \land r(n) = \top \land M_1 f(S) \neq n \]
“I don’t know Sally’s father, but I know he’s rich”

\[s = \{ f(S) = \text{Frank} \lor f(S) = \text{Fred}, \]
\[f(S) \neq n \lor r(n) = \top \mid n \text{ is a name} \}

\[s \models K_1 \exists x (f(S) = x \land r(x) = \top \land M_1 f(S) \neq x) \]

\[\iff \]

for some \(t_1 \), for all \(n_1 \), for some \(n \),
\[s \cup \{ t_1 = n_1 \} \models f(S) = n \land r(n) = \top \land M_1 f(S) \neq n \]

\[\iff \]

for some \(t_1 \), for all \(n_1 \), for some \(n \), for some \(t_2 \) and \(n_2 \),
\[s \cup \{ t_1 = n_1 \} \models f(S) = n \land r(n) = \top \]
\[\text{for some } t_2 \text{ and } n_2, \; s \cup \{ t_2 = n_2 \} \models f(S) \neq n \]
“I don’t know Sally’s father, but I know he’s rich”

\[s = \{ f(S) = \text{Frank} \lor f(S) = \text{Fred}, \]
\[f(S) \neq n \lor r(n) = \top \mid n \text{ is a name} \]

\[s \models K_1 \exists x (f(S) = x \land r(x) = \top \land M_1 f(S) \neq x) \]

\[\iff \]

(a) for some \(t_1 \), for all \(n_1 \), for some \(n \), \(s \cup \{ t_1 = n_1 \} \models f(S) = n \land r(n) = \top \)

(b) for some \(t_2 \) and \(n_2 \), \(s \cup \{ t_2 = n_2 \} \models f(S) \neq n \)

\[\iff \]

(a) choose \(t_1 = f(S) \):

if \(n_1 = \text{Frank} \), choose \(n = \text{Frank} \):

\[s \cup \{ f(S) = \text{Frank} \} \text{ contains } f(S) = \text{Frank}, \quad r(\text{Frank}) = \top \]

(b) choose \(t_2 = f(S) \) and \(n_2 = \text{Fred} \):

\[s \cup \{ f(S) = \text{Fred} \} \text{ contains } f(S) \neq \text{Frank} \]

if \(n_1 = \text{Fred} \): analogous

if \(n_1 \neq \text{Frank}, \text{Fred} \): \(s \cup \{ f(S) = n_1 \} \) is obv. inconsistent
Theorems in detail

- \(\models \) is classical entailment
- \(\models \approx \) is limited entailment
- \(\sigma \) contains no \(O, \neg K_k, \neg M_k \)
- \(\sigma^* \) removes belief levels
- \(\sigma_k \) sets belief levels to \(k \)

<table>
<thead>
<tr>
<th>Soundness & Eventual Completeness</th>
</tr>
</thead>
<tbody>
<tr>
<td>(O\alpha \models \sigma)</td>
</tr>
<tr>
<td>(O\alpha \models \sigma_k) for some (k)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>(O\alpha \models \sigma) is decidable</td>
</tr>
<tr>
<td>(O\alpha \models \sigma_k) is tractable in (O(2^k(</td>
</tr>
</tbody>
</table>
Semantics in detail

- $(\neg)t = n$
- $(\alpha \lor \beta)$
- $\neg(\alpha \lor \beta)$
- $\exists x \alpha$
- $\neg\exists x \alpha$
- $\neg\neg\alpha$

- $K_0 \alpha$
- $K_{k+1} \alpha$
- $M_0 \alpha$
- $M_{k+1} \alpha$
- $O \alpha$
Semantics in detail

- $s \models (\neg)t = n$ iff $(\neg)t = n \in s$
- $s \models (\alpha \lor \beta)$ iff $(\alpha \lor \beta) \in s$ or $s \models \alpha$ or $s \models \beta$
- $s \models \neg(\alpha \lor \beta)$ iff $s \models \neg\alpha$ and $s \models \neg\beta$
- $s \models \exists x \alpha$ iff $s \models \alpha^x_n$ for some name n
- $s \models \neg\exists x \alpha$ iff $s \models \neg\alpha^x_n$ for every name n
- $s \models \neg\neg \alpha$ iff $s \models \alpha$

- $K_0\alpha$
- $K_{k+1}\alpha$
- $M_0\alpha$
- $M_{k+1}\alpha$
- $O\alpha$
Semantics in detail

- **s** |≈ (¬)t = n iff (¬)t = n ∈ s
- **s** |≈ (α ∨ β) iff (α ∨ β) ∈ s or s |≈ α or s |≈ β
- **s** |≈ ¬(α ∨ β) iff s |≈ ¬α and s |≈ ¬β
- **s** |≈ ∃x α iff s |≈ αₓ for some name n
- **s** |≈ ¬∃x α iff s |≈ ¬αₓ for every name n
- **s** |≈ ¬¬α iff s |≈ α

- **s** |≈ K₀α iff s is obviously inconsistent or s |≈ α
- **s** |≈ Kₖ₊₁α iff for some t and all n, s ∪ {t = n} |≈ Kₖα
- **s** |≈ M₀α iff s is obviously consistent and s |≈ α
- **s** |≈ Mₖ₊₁α iff for some t and n, s ∪ {t = n} |≈ Mₖα
- **s** |≈ Oα iff s is minimal s.t. s |≈ α
Semantics in detail

- $s \models (\neg)t = n$ iff $(\neg)t = n \in s$
- $s \models (\alpha \lor \beta)$ iff $(\alpha \lor \beta) \in s$ or $s \models \alpha$ or $s \models \beta$
- $s \models \neg(\alpha \lor \beta)$ iff $s \models \neg\alpha$ and $s \models \neg\beta$
- $s \models \exists x \alpha$ iff $s \models \alpha^x_n$ for some name n
- $s \models \neg\exists x \alpha$ iff $s \models \neg\alpha^x_n$ for every name n
- $s \models \neg\neg\alpha$ iff $s \models \alpha$

- $s \models K_0\alpha$ iff s is obviously inconsistent or $s \models \alpha$
- $s \models K_{k+1}\alpha$ iff for some t and all n, $s \cup \{t = n\} \models K_k\alpha$
- $s \models M_0\alpha$ iff s is obviously consistent and $s \models \alpha$
- $s \models M_{k+1}\alpha$ iff for some t and n, $s \cup \{t = n\} \models M_k\alpha$
- $s \models O\alpha$ iff s is minimal s.t. $s \models \alpha$

obviously inconsistent \Downarrow contains the empty clause
obviously consistent \Downarrow not potentially inconsistent
potentially inconsistent \Downarrow

(a) obviously consistent
(b) two unsubsumed clauses mention two complementary literals
(c) for every name n, $t \neq n$ occurs in an unsubsumed clause
Semantics in detail

- \(s_0, s, \nu \models \neg (\neg) t = n \) iff \((\neg) t = n \in s \)
- \(s_0, s, \nu \models (\alpha \lor \beta) \) iff \((\alpha \lor \beta) \in s \) or \(s_0, s, \nu \models \alpha \) or \(s_0, s, \nu \models \beta \)
- \(s_0, s, \nu \models \neg (\alpha \lor \beta) \) iff \(s_0, s, \nu \models \neg \alpha \) and \(s_0, s, \nu \models \neg \beta \)
- \(s_0, s, \nu \models \exists x \alpha \) iff \(s_0, s, \nu \models \alpha^x_n \) for some name \(n \)
- \(s_0, s, \nu \models \neg \exists x \alpha \) iff \(s_0, s, \nu \models \neg \alpha^x_n \) for every name \(n \)
- \(s_0, s, \nu \models \neg \neg \alpha \) iff \(s_0, s, \nu \models \alpha \)

- \(s_0, s, \nu \models K_0 \alpha \) iff \(s_0 \cup \nu \) is obv. inconsistent or \(s_0, s_0 \cup \nu, \emptyset \models \alpha \)
- \(s_0, s, \nu \models K_{k+1} \alpha \) iff for some \(t \) and all \(n \), \(s_0, s, \nu \cup \{t = n\} \models K_k \alpha \)
- \(s_0, s, \nu \models M_0 \alpha \) iff \(s_0 \cup \nu \) is obv. consistent and \(s_0, s_0 \cup \nu, \emptyset \models \alpha \)
- \(s_0, s, \nu \models M_{k+1} \alpha \) iff for some \(t \) and \(n \), \(s_0, s, \nu \cup \{t = n\} \models M_k \alpha \)
- \(s_0, s, \nu \models O \alpha \) iff \(s_0 \) is minimal s.t. \(s_0, s_0, \emptyset \models \alpha \)

obviously inconsistent \(\hat{=} \) contains the empty clause
obviously consistent \(\hat{=} \) not potentially inconsistent
potentially inconsistent \(\hat{=} \)

(a) obviously consistent
(b) two unsubsumed clauses mention two complementary literals
(c) for every name \(n \), \(t \neq n \) occurs in an unsubsumed clause