Limbo

A Reasoning System for a First-Order Logic of Limited Belief

Christoph Schwering

UNSW Sydney

What is limited belief? And why?

Task: Robot has a KB and a query:
Does the KB logically entail the query?

What is limited belief? And why?

Task: Robot has a KB and a query:
Does the KB logically entail the query?
Which logic?

What is limited belief? And why?

Task: Robot has a KB and a query:
Does the KB $\underbrace{\text { logically entail }}_{\text {Which logic? }}$ the query?

Classical logic:
■ Unrealistic: omniscient agent
■ Undecidable (first-order) / intractable (propositional)

What is limited belief? And why?

Task: Robot has a KB and a query:
Does the KB $\underbrace{\text { logically entail }}_{\text {Which logic? }}$ the query?

Limited belief:
■ Belief level 0: explicitly written down in the KB
■ Belief level $k>0$: derivable from KB with effort k
Hope: good results at small belief level
Builds on Lakemeyer \& Levesque, KR-2016

Language

FOL with equality + functions + sorts +
■ Knowledge: $\quad \mathbf{K}_{0} \propto \mathbf{K}_{1} \alpha \mathbf{K}_{2} \alpha \ldots$
■ Possibility: $\quad \begin{array}{llll}\mathbf{M}_{0} \alpha & \mathbf{M}_{1} \alpha & \mathbf{M}_{2} \alpha & \ldots\end{array}$

Example:
$>\mathbf{K}_{1}($ Rich (Frank) $\vee \operatorname{Rich}($ Fred $))$

- $\forall x \mathbf{M}_{1}$ fatherOf(Sally) $\neq x$
- $\mathbf{K}_{1} \exists x($ fatherOf $($ Sally $)=x \wedge \operatorname{Rich}(x) \wedge$ \mathbf{M}_{1} fatherOf(Sally) $\neq x$)
know that Frank or Fred is rich don't know who Sally's father is
know that Sally's father is rich, but don't know who he is

Semantics

Model: set of clauses closed under unit propagation
■ Belief level 0: subsumption

- Belief level $k>0$: k case splits

Example:

If all we know is (a) fatherOf(Sally) $=$ Frank \vee fatherOf(Sally) $=$ Fred

$$
\text { and (b) } \forall x \text { (fatherOf(Sally) } \neq x \vee \operatorname{Rich}(x))
$$

then $\mathbf{K}_{1}(\operatorname{Rich}($ Frank $) \vee \operatorname{Rich}($ Fred $))$?
Yes! Branch on fatherOf(Sally):

- $\{(\mathrm{a})$, (b), fatherOf(Sally) $=$ Frank $\} \ni \operatorname{Rich}($ Frank $)$ by UP with (b)
- $\{(\mathrm{a})$, (b), fatherOf(Sally) $=$ Fred $\} \ni \operatorname{Rich}($ Fred $)$ by UP with (b)
$\triangleright\{(a),(b)$, fatherOf(Sally $)=n \quad\} \ni$ by UP with (a) for $n \neq$ Frank, Fred

Soundness Completeness Decidability Tractability

KB entails query at some belief level \Longrightarrow KB classically entails query if no $\neg \mathbf{K}, ~ \neg \mathbf{M}$

Soundness Completeness Decidability Tractability

KB entails query at some belief level $\Longleftrightarrow \mathrm{KB}$ classically entails query if no $\neg \mathbf{K}, \neg \mathbf{M}$ and no \exists, \forall

Soundness Completeness Decidability Tractability

KB entails query at some belief level is decidable

Soundness Completeness Decidability Tractability

KB entails query at some belief level is tractable if no \exists, \forall and belief level fixed

Experiments:

Hypothesis: good results at small belief level

Experiments:
 Sudoku
 Minesweeper

Hypothesis: good results at small belief level \checkmark

\square clues \square level $0 \square$ level $1 \square$ level $2 \square$ level $3 \square$ level $4 \square$ level 5

Experiments:

Hypothesis: good results at small belief level $\checkmark \checkmark$

Limbo = Limited Belief

Demos: www.cse.unsw.edu.au/~cschwering/limbo Fri 10:00-12:00

Code: www.github.com/schwering/limbo

Next: 1. actions 2. multi-agent 3. belief change 4. complexity

Appendix

Language in detail

Terms:

- First-order variables
- Functions $f\left(t_{1}, \ldots, t_{m}\right)$ where each t_{i} is a name or variable
- Standard names infinitely many and sorted

Formulas:

■ FOL: $t_{1}=t_{2} \quad \neg \alpha \quad \alpha \vee \beta \quad \exists x \alpha$
\square Knowledge: $\mathbf{K}_{0} \propto \mathbf{K}_{1} \propto \mathbf{K}_{2} \propto \ldots$
\square Possibility: $\quad \mathbf{M}_{0} \alpha \quad \mathbf{M}_{1} \alpha \quad \mathbf{M}_{2} \alpha \quad \ldots$
■ Knowledge base: $\mathbf{O} \alpha$ where α is in universal CNF

- $\alpha \wedge \beta \quad \alpha \supset \beta \quad \alpha \equiv \beta \quad \forall x \alpha \quad$ are abbreviations
- Predicates are simulated with functions
- Existentials in KBs are simulated with Skolem functions
- Functions on the right-hand side and within functions are flattened:

$$
\begin{array}{lll}
f(\cdot)=g(\cdot) & \mapsto & \forall x(g(\cdot)=x \supset f(\cdot)=x) \\
f(g(\cdot))=t & \mapsto & \forall x(g(\cdot)=x \supset f(x)=t)
\end{array}
$$

Literal encoding

- Functions cannot appear on rhs

$$
f(\cdot)=g(\cdot) \quad \mapsto \quad \forall x(g(\cdot)=x \supset f(\cdot)=x)
$$

■ Functions cannot be nested $\quad f(g(\cdot))=t \mapsto \quad \forall x(g(\cdot)=x \supset f(x)=t)$

- Term is 30 -bit number
- points to full representation
- this pointer is unique (interning)

■ Literal is 64 -bit number

- $30+30$ bits for lhs + rhs
- $1+1$ bits to indicate if lhs + rhs is name
- 1 bit to indicate whether $=$ or \neq
- Conditions for literal subsumption and complementarity:
- ℓ subsumes ℓ
- $t=n_{1}$ subsumes $t \neq n_{2}$
$\left.\begin{array}{l}\text { - } t=t^{\prime} \text { and } t \neq t^{\prime} \text { are complementary } \\ \text { - } t=n_{1} \text { and } t=n_{2} \text { are complementary }\end{array}\right\} n_{1}, n_{2}$ distinct names
- Sound and complete

■ Bitwise op's on 64-bit numbers suffice no term dereferencing
■ Fast clause subsumption and unit propagation
"I don't know Sally's father, but I know he's rich"

- $c_{1}=\mathrm{f}(\mathrm{S})=$ Frank $\vee \mathrm{f}(\mathrm{S})=$ Fred $c_{2}=\forall x(\mathrm{f}(\mathrm{S}) \neq x \vee \mathrm{r}(x)=\top)$
$\square \mathbf{O}\left(c_{1} \wedge c_{2}\right) \models \mathbf{K} \exists x(\mathrm{f}(\mathrm{S})=x \wedge \mathrm{r}(x)=\top \wedge \mathbf{M f}(\mathrm{S}) \neq x)$
"I don't know Sally's father, but I know he's rich"

■ $e=\{w \mid w \models \mathrm{f}(\mathrm{S})=$ Frank $\vee \mathrm{f}(\mathrm{S})=$ Fred \wedge

$$
\forall x(\mathrm{f}(\mathrm{~S}) \neq x \vee \mathrm{r}(x)=\mathrm{T})\}
$$

$■ e \models \operatorname{K} \exists x(\mathrm{f}(\mathrm{S})=x \wedge \mathrm{r}(x)=\top \wedge \mathbf{M f}(\mathrm{S}) \neq x)$
"I don't know Sally's father, but I know he's rich"

■ $e=\{w \mid w \models \mathrm{f}(\mathrm{S})=$ Frank $\vee \mathrm{f}(\mathrm{S})=$ Fred \wedge

$$
\forall x(\mathrm{f}(\mathrm{~S}) \neq x \vee \mathrm{r}(x)=\mathrm{T})\}
$$

■ $e \vDash \mathbf{K} \exists x(\mathrm{f}(\mathrm{S})=x \wedge \mathrm{r}(x)=\top \wedge \mathbf{M} \mathrm{f}(\mathrm{S}) \neq x)$

- For every $w \in e$, for some $n, w \models f(S)=n \wedge R(n)$
- For some $w^{\prime} \in e, w \models f(S) \neq n$
"I don't know Sally's father, but I know he's rich"

■ $c_{1}=\mathrm{f}(\mathrm{S})=$ Frank $\vee \mathrm{f}(\mathrm{S})=$ Fred
$c_{2}=\forall x(\mathrm{f}(\mathrm{S}) \neq x \vee \mathrm{r}(x)=\top)$
$\square \mathbf{O}\left(c_{1} \wedge c_{2}\right) \approx \mathbf{K}_{1} \exists x\left(\mathrm{f}(\mathrm{S})=x \wedge \mathrm{r}(x)=\top \wedge \mathbf{M}_{1} \mathrm{f}(\mathrm{S}) \neq x\right)$
"I don't know Sally's father, but I know he's rich"

■ $s=\{\mathrm{f}(\mathrm{S})=$ Frank $\vee \mathrm{f}(\mathrm{S})=$ Fred, $\mathrm{f}(\mathrm{S}) \neq n \vee \mathrm{r}(n)=\top \mid n$ is a name $\}$
$\square s \approx \mathrm{~K}_{1} \exists x\left(\mathrm{f}(\mathrm{S})=x \wedge \mathrm{r}(x)=\top \wedge \mathbf{M}_{1} \mathrm{f}(\mathrm{S}) \neq x\right)$
"I don't know Sally's father, but I know he's rich"

■ $s=\{\mathrm{f}(\mathrm{S})=$ Frank $\vee \mathrm{f}(\mathrm{S})=$ Fred, $\mathrm{f}(\mathrm{S}) \neq n \vee \mathrm{r}(n)=\top \mid n$ is a name $\}$
■ $s \approx \mathrm{~K}_{1} \exists x\left(\mathrm{f}(\mathrm{S})=x \wedge \mathrm{r}(x)=\top \wedge \mathbf{M}_{1} \mathrm{f}(\mathrm{S}) \neq x\right)$
for some t_{1}, for all n_{1}, for some n, $s \cup\left\{t_{1}=n_{1}\right\} \approx \mathrm{f}(\mathrm{S})=n \wedge \mathrm{r}(n)=\mathrm{T} \wedge \mathbf{M}_{1} \mathrm{f}(\mathrm{S}) \neq n$
"I don't know Sally's father, but I know he's rich"

■ $s=\{\mathrm{f}(\mathrm{S})=$ Frank $\vee \mathrm{f}(\mathrm{S})=$ Fred, $\mathrm{f}(\mathrm{S}) \neq n \vee \mathrm{r}(n)=\mathrm{T} \mid n$ is a name $\}$
■ $s \approx \mathbf{K}_{1} \exists x\left(\mathrm{f}(\mathrm{S})=x \wedge \mathrm{r}(x)=\top \wedge \mathbf{M}_{1} \mathrm{f}(\mathrm{S}) \neq x\right)$
for some t_{1}, for all n_{1}, for some n,

$$
s \cup\left\{t_{1}=n_{1}\right\} \approx \mathrm{f}(\mathrm{~S})=n \wedge \mathrm{r}(n)=\top \wedge \mathbf{M}_{1} \mathrm{f}(\mathrm{~S}) \neq n
$$

for some t_{1}, for all n_{1}, for some $n, s \cup\left\{t_{1}=n_{1}\right\} \approx \mathrm{f}(\mathrm{S})=n \wedge \mathrm{r}(n)=\top$ for some t_{2} and $n_{2}, s \cup\left\{t_{2}=n_{2}\right\} \approx \mathrm{f}(\mathrm{S}) \neq n$
"I don't know Sally's father, but I know he's rich"

■ $s=\{\mathrm{f}(\mathrm{S})=$ Frank $\vee \mathrm{f}(\mathrm{S})=$ Fred, $\mathrm{f}(\mathrm{S}) \neq n \vee \mathrm{r}(n)=\mathrm{T} \mid n$ is a name $\}$
$\square s \approx \mathrm{~K}_{1} \exists x\left(\mathrm{f}(\mathrm{S})=x \wedge \mathrm{r}(x)=\mathrm{T} \wedge \mathrm{M}_{1} \mathrm{f}(\mathrm{S}) \neq x\right)$
(a) for some t_{1}, for all n_{1}, for some $n, s \cup\left\{t_{1}=n_{1}\right\} \approx \mathrm{f}(\mathrm{S})=n \wedge \mathrm{r}(n)=\top$ for some t_{2} and $n_{2}, s \cup\left\{t_{2}=n_{2}\right\} \approx \mathrm{f}(\mathrm{S}) \neq n$
(a) choose $t_{1}=\mathrm{f}(\mathrm{S})$:
if $n_{1}=$ Frank, choose $n=$ Frank:
$s \cup\{\mathrm{f}(\mathrm{S})=$ Frank $\}$ contains $\mathrm{f}(\mathrm{S})=$ Frank, $\mathrm{r}($ Frank $)=\top$ choose $t_{2}=\mathrm{f}(\mathrm{S})$ and $n_{2}=$ Fred: $s \cup\{\mathrm{f}(\mathrm{S})=$ Fred $\}$ contains $\mathrm{f}(\mathrm{S}) \neq$ Frank
if $n_{1}=$ Fred: analogous
if $n_{1} \neq$ Frank, Fred: $s \cup\left\{\mathrm{f}(\mathrm{S})=n_{1}\right\}$ is obv. inconsistent

Theorems in detail

- \models is classical entailment
- \approx is limited entailment
- σ contains no $\mathbf{O}, \neg \mathbf{K}_{k}, \neg \mathbf{M}_{k}$
- σ^{\star} removes belief levels
- σ_{k} sets belief levels to k

Soundness \& Eventual Completeness

$\mathbf{O} \alpha \approx \sigma$	$\Longrightarrow \mathbf{O} \alpha=\sigma^{\star}$	if σ without $\neg \mathbf{K}_{k}, \neg \mathbf{M}_{k}$
$\mathbf{O} \alpha \approx \sigma_{k}$ for some k	$\Longleftrightarrow \mathbf{O} \alpha=\sigma^{\star}$	if α, σ quantifier-free

Complexity

$\mathbf{O} \alpha \approx \sigma$ is decidable
$\mathbf{O} \alpha \approx \sigma_{k}$ is tractable in $\mathcal{O}\left(2^{k}(|\alpha|+|\sigma|)^{k+3}\right) \quad$ if α, σ quantifier-free

Semantics in detail

$\square(\neg) t=n$
■ $(\alpha \vee \beta)$
$\square \neg(\alpha \vee \beta)$

- $\exists x \alpha$
- $\neg \exists x \alpha$

■ $\neg \neg \alpha$

- $\mathrm{K}_{0} \alpha$
- $\mathbf{K}_{k+1} \alpha$
- $\mathrm{M}_{0} \alpha$

■ $\mathbf{M}_{k+1} \alpha$
■ $\mathrm{O} \alpha$

Semantics in detail

■ $s \approx(\neg) t=n$ iff $(\neg) t=n \in s$
$\square s \approx(\alpha \vee \beta) \quad$ iff $(\alpha \vee \beta) \in s$ or $s \approx \alpha$ or $s \approx \beta$
$\square s \approx \neg(\alpha \vee \beta)$ iff $s \approx \neg \alpha$ and $s \approx \neg \beta$
$\square s \approx \exists x \alpha \quad$ iff $s \approx \alpha_{n}^{x}$ for some name n
$\square s \approx \neg \exists x \alpha \quad$ iff $s \approx \neg \alpha_{n}^{x}$ for every name n
■ $s \approx \neg \neg \alpha \quad$ iff $s \approx \alpha$

- $\mathrm{K}_{0} \alpha$
- $\mathbf{K}_{k+1} \alpha$

■ $\mathbf{M}_{0} \alpha$
■ $\mathbf{M}_{k+1} \alpha$
■ $\mathrm{O} \alpha$

Semantics in detail

■ $s \approx(\neg) t=n \quad$ iff $(\neg) t=n \in s$
$\square s \approx(\alpha \vee \beta) \quad$ iff $(\alpha \vee \beta) \in s$ or $s \approx \alpha$ or $s \approx \beta$
$\square s \approx \neg(\alpha \vee \beta)$ iff $s \approx \neg \alpha$ and $s \approx \neg \beta$
$\square s \approx \exists x \alpha \quad$ iff $s \approx \alpha_{n}^{x}$ for some name n
$\square s \approx \neg \exists x \alpha \quad$ iff $s \approx \neg \alpha_{n}^{x}$ for every name n
$\square s \approx \neg \neg \alpha \quad$ iff $s \approx \alpha$
$\square s \approx \mathbf{K}_{0} \alpha \quad$ iff s is obviously inconsistent or $s \approx \alpha$
$\square s \approx \mathbf{K}_{k+1} \alpha \quad$ iff for some t and all $n, s \cup\{t=n\} \approx \mathbf{K}_{k} \alpha$
■ $s \approx \mathbf{M}_{0} \alpha \quad$ iff s is obviously consistent and $s \approx \alpha$
$\square s \approx \mathbf{M}_{k+1} \alpha \quad$ iff for some t and $n, s \cup\{t=n\} \approx \mathbf{M}_{k} \alpha$
$\square s \approx \mathbf{O} \alpha \quad$ iff s is minimal s.t. $s \approx \alpha$

Semantics in detail

■ $s \approx(\neg) t=n \quad$ iff $(\neg) t=n \in s$
■ $s \approx(\alpha \vee \beta) \quad$ iff $(\alpha \vee \beta) \in s$ or $s \approx \alpha$ or $s \approx \beta$
$\square s \approx \neg(\alpha \vee \beta)$ iff $s \approx \neg \alpha$ and $s \approx \neg \beta$

- $s \approx \exists x \alpha \quad$ iff $s \approx \alpha_{n}^{x}$ for some name n
$\square s \approx \neg \exists x \alpha \quad$ iff $s \approx \neg \alpha_{n}^{x}$ for every name n
■ $s \approx \neg \neg \alpha \quad$ iff $s \approx \alpha$
■ $s \approx \mathrm{~K}_{0} \alpha \quad$ iff s is obviously inconsistent or $s \approx \alpha$
$\square s \approx \mathbf{K}_{k+1} \alpha \quad$ iff for some t and all $n, s \cup\{t=n\} \approx \mathbf{K}_{k} \alpha$
$\square s \approx \mathbf{M}_{0} \alpha \quad$ iff s is obviously consistent and $s \approx \alpha$
$\square s \approx \mathbf{M}_{k+1} \alpha$ iff for some t and $n, s \cup\{t=n\} \approx \mathbf{M}_{k} \alpha$
$\square s \approx \mathbf{O} \alpha \quad$ iff s is minimal s.t. $s \approx \alpha$
obviously inconsistent $\hat{=}$ contains the empty clause obviously consistent $\hat{=}$ not potentially inconsistent potentially inconsistent $\hat{=}$
(a) obviously consistent
(b) two unsubsumed clauses mention two complementary literals
(c) for every name $n, t \neq n$ occurs in an unsubsumed clause

Semantics in detail

- $s_{0}, s, v \approx(\neg) t=n$ iff $(\neg) t=n \in s$

■ $s_{0}, s, v \approx(\alpha \vee \beta)$ iff $(\alpha \vee \beta) \in s$ or $s_{0}, s, v \approx \alpha$ or $s_{0}, s, v \approx \beta$
■ $s_{0}, s, v \approx \neg(\alpha \vee \beta)$ iff $s_{0}, s, v \approx \neg \alpha$ and $s_{0}, s, v \approx \neg \beta$

- $s_{0}, s, v \approx \exists x \alpha$ iff $s_{0}, s, v \approx \alpha_{n}^{x}$ for some name n

■ $s_{0}, s, v \approx \neg \exists x \alpha$ iff $s_{0}, s, v \approx \neg \alpha_{n}^{x}$ for every name n

- $s_{0}, s, v \approx \neg \neg \alpha$ iff $s_{0}, s, v \approx \alpha$
$\square s_{0}, s, v \approx \mathbf{K}_{0} \alpha \quad$ iff $s_{0} \cup v$ is obv. inconsistent or $s_{0}, s_{0} \cup v, \emptyset \approx \alpha$
$\square s_{0}, s, v \approx \mathbf{K}_{k+1} \alpha$ iff for some t and all $n, s_{0}, s, v \cup\{t=n\} \approx \mathbf{K}_{k} \alpha$
■ $s_{0}, s, v \approx \mathbf{M}_{0} \alpha \quad$ iff $s_{0} \cup v$ is obv. consistent and $s_{0}, s_{0} \cup v, \emptyset \approx \alpha$
$\square s_{0}, s, v \approx \mathbf{M}_{k+1} \alpha$ iff for some t and $n, s_{0}, s, v \cup\{t=n\} \approx \mathbf{M}_{k} \alpha$
■ $s_{0}, s, v \approx \mathbf{O} \alpha \quad$ iff s_{0} is minimal s.t. $s_{0}, s_{0}, \emptyset \approx \alpha$
obviously inconsistent $\hat{=}$ contains the empty clause obviously consistent $\hat{=}$ not potentially inconsistent potentially inconsistent $\hat{=}$
(a) obviously consistent
(b) two unsubsumed clauses mention two complementary literals
(c) for every name $n, t \neq n$ occurs in an unsubsumed clause

