

A Reasoning System for a First-Order Logic of Limited Belief

Christoph Schwering

UNSW Sydney

Task: Robot has a KB and a query:

Does the KB logically entail the query?

Task: Robot has a KB and a query: Does the KB *logically entail* the query **?** Which logic?

Task: Robot has a KB and a query: Does the KB *logically entail* the query **?** Which logic?

Classical logic:

- Unrealistic: omniscient agent
- Undecidable (first-order) / intractable (propositional)

Task: Robot has a KB and a query: Does the KB *logically entail* the query? Which logic?

Limited belief:

- Belief level 0: explicitly written down in the KB
- Belief level k > 0: derivable from KB with effort k

Hope: good results at small belief level

Builds on Lakemeyer & Levesque, KR-2016

Language

FOL with equality + functions + sorts +

- Knowledge: $\mathbf{K}_0 \alpha \quad \mathbf{K}_1 \alpha \quad \mathbf{K}_2 \alpha \quad \dots$
- Possibility: $\mathbf{M}_0 \alpha \ \mathbf{M}_1 \alpha \ \mathbf{M}_2 \alpha \ \dots$

Example:

- ▶ $\mathbf{K}_1(\operatorname{Rich}(\operatorname{Frank}) \lor \operatorname{Rich}(\operatorname{Fred}))$
- $\forall x \mathbf{M}_1 \text{ fatherOf}(\text{Sally}) \neq x$
- ► $\mathbf{K}_1 \exists x (fatherOf(Sally) = x \land Rich(x) \land \mathbf{M}_1 fatherOf(Sally) \neq x)$

know that Frank or Fred is rich don't know who Sally's father is know that Sally's father is rich, but don't know who he is

Semantics

Model: set of clauses closed under unit propagation

- Belief level 0: subsumption
- **Belief level** k > 0: k case splits

Example:

If all we know is (a) fatherOf(Sally) = Frank \lor fatherOf(Sally) = Fred and (b) $\forall x (fatherOf(Sally) \neq x \lor Rich(x))$

then $K_1(\text{Rich}(\text{Frank}) \lor \text{Rich}(\text{Fred}))$?

Yes! Branch on fatherOf(Sally):

- ► $\{(a), (b), fatherOf(Sally) = Frank\} \ni Rich(Frank) by UP with (b)$
- ▶ $\{(a), (b), fatherOf(Sally) = Fred \}$ \ni Rich(Fred) by UP with (b)

► {(a), (b), fatherOf(Sally) =
$$n$$
 } \ni \bot by UP with (a) for $n \neq$ Frank, Fred

KB entails query at some belief level \implies KB classically entails query if $\mbox{ no } \neg K, \neg M$

KB entails query at some belief level is <u>decidable</u>

KB entails query at some belief level is tractable

if no \exists , \forall and belief level <u>fixed</u>

Sudoku

Minesweeper

<u>Hypothesis</u>: good results at *small* belief level

Sudoku

Minesweeper

<u>Hypothesis</u>: good results at *small* belief level 🗸

Sudoku Minesweeper

Hypothesis: good results at small belief level 🗸 🗸

Limbo = Limited Belief

Demos: www.cse.unsw.edu.au/~cschwering/limbo Fri 10:00-12:00

Code: www.github.com/schwering/limbo

Next: 1. actions 2. multi-agent 3. belief change 4. complexity

Appendix

Language in detail

Terms:

- First-order variables
- **Functions** $f(t_1, \ldots, t_m)$ where each t_i is a name or variable
- Standard names infinitely many and sorted

Formulas:

- **FOL:** $t_1 = t_2 \neg \alpha \quad \alpha \lor \beta \quad \exists x \alpha$
- Knowledge: $\mathbf{K}_0 \alpha \quad \mathbf{K}_1 \alpha \quad \mathbf{K}_2 \alpha \quad \dots$
- Possibility: $\mathbf{M}_0 \alpha \quad \mathbf{M}_1 \alpha \quad \mathbf{M}_2 \alpha \quad \dots$
- **Knowledge base:** $\mathbf{O}\alpha$ where α is in universal CNF
- $\ \ \, \alpha \wedge \beta \quad \alpha \supset \beta \quad \alpha \equiv \beta \quad \forall x \alpha \quad \text{are abbreviations}$
- Predicates are simulated with functions
- Existentials in KBs are simulated with Skolem functions
- > Functions on the right-hand side and within functions are flattened:

$$\begin{array}{lll} f(\cdot) = g(\cdot) & \mapsto & \forall x \left(g(\cdot) = x \supset f(\cdot) = x \right) \\ f(g(\cdot)) = t & \mapsto & \forall x \left(g(\cdot) = x \supset f(x) = t \right) \end{array}$$

Literal encoding

- Functions cannot appear on rhs $f(\cdot) = g(\cdot) \mapsto \forall x (g(\cdot) = x \supset f(\cdot) = x)$
- Functions cannot be nested
- Term is 30-bit number
 - points to full representation
 - this pointer is unique (interning)
- Literal is 64-bit number
 - 30+30 bits for lhs + rhs
 - 1+1 bits to indicate if lhs + rhs is name
 - ▶ 1 bit to indicate whether = or \neq

Conditions for literal <u>subsumption</u> and <u>complementarity</u>:

- \blacktriangleright ℓ subsumes ℓ
- ► $t = n_1$ subsumes $t \neq n_2$
- t = t' and $t \neq t'$ are complementary

t, *t*′ ground terms

- n_1, n_2 distinct names
- $t = n_1$ and $t = n_2$ are complementary
- Sound and complete
- Bitwise op's on 64-bit numbers suffice no term dereferencing
- Fast clause subsumption and unit propagation

 $f(g(\cdot)) = t \quad \mapsto \quad \forall x (g(\cdot) = x \supset f(x) = t)$

•
$$c_1 = f(S) = \operatorname{Frank} \lor f(S) = \operatorname{Fred}$$

 $c_2 = \forall x (f(S) \neq x \lor r(x) = \top)$
• $\mathbf{O}(c_1 \land c_2) \models \mathbf{K} \exists x (f(S) = x \land r(x) = \top \land \mathbf{M} f(S) \neq x)$

$$e = \{w \mid w \models f(S) = Frank \lor f(S) = Fred \land \\ \forall x (f(S) \neq x \lor r(x) = \top) \}$$
$$e \models K \exists x (f(S) = x \land r(x) = \top \land Mf(S) \neq x)$$

•
$$e = \{w \mid w \models f(S) = Frank \lor f(S) = Fred \land \forall x (f(S) \neq x \lor r(x) = \top)\}$$

• $e \models K \exists x (f(S) = x \land r(x) = \top \land M f(S) \neq x)$
• For every $w \in e$, for some $n, w \models f(S) = n \land R(n)$

For some
$$w' \in e$$
, $w \models f(S) \neq n$

•
$$c_1 = f(S) = \operatorname{Frank} \lor f(S) = \operatorname{Fred}$$

 $c_2 = \forall x (f(S) \neq x \lor r(x) = \top)$
• $\mathbf{O}(c_1 \land c_2) \approx \mathbf{K}_1 \exists x (f(S) = x \land r(x) = \top \land \mathbf{M}_1 f(S) \neq x)$

$$s = \{f(S) = Frank \lor f(S) = Fred, \\ f(S) \neq n \lor r(n) = \top \mid n \text{ is a name} \}$$
$$s \models K_1 \exists x (f(S) = x \land r(x) = \top \land M_1 f(S) \neq x)$$

■
$$s = \{f(S) = Frank \lor f(S) = Fred, f(S) \neq n \lor r(n) = \top | n \text{ is a name} \}$$

■ $s \models K_1 \exists x (f(S) = x \land r(x) = \top \land M_1 f(S) \neq x)$

for some t_1 , for all n_1 , for some n, $s \cup \{t_1 = n_1\} \models f(S) = n \land r(n) = \top \land M_1 f(S) \neq n$

■
$$s = \{f(S) = Frank \lor f(S) = Fred,$$

 $f(S) \neq n \lor r(n) = \top \mid n \text{ is a name} \}$
■ $s \models K_1 \exists x (f(S) = x \land r(x) = \top \land M_1 f(S) \neq x)$
 \iff
for some t_1 , for all n_1 , for some n ,
 $s \cup \{t_1 = n_1\} \models f(S) = n \land r(n) = \top \land M_1 f(S) \neq n$

for some t_1 , for all n_1 , for some n, $s \cup \{t_1 = n_1\} \models f(S) = n \land r(n) = \top$ for some t_2 and n_2 , $s \cup \{t_2 = n_2\} \models f(S) \neq n$

■
$$s = \{f(S) = Frank \lor f(S) = Fred,$$

 $f(S) \neq n \lor r(n) = \top | n \text{ is a name}\}$
■ $s \models K_1 \exists x (f(S) = x \land r(x) = \top \land M_1 f(S) \neq x)$
(a) for some t_1 , for all n_1 , for some n , $s \cup \{t_1 = n_1\} \models f(S) = n \land r(n) = \top$
(b) for some t_2 and n_2 , $s \cup \{t_2 = n_2\} \models f(S) \neq n$
(a) choose $t_1 = f(S)$:
if $n_1 = Frank$, choose $n = Frank$:
 $s \cup \{f(S) = Frank\}$ contains $f(S) = Frank$, $r(Frank) = \top$
(b) choose $t_2 = f(S)$ and $n_2 = Fred$:
 $s \cup \{f(S) = Fred\}$ contains $f(S) \neq Frank$
if $n_1 = Fred$: analogous
if $n_1 \neq Frank$, Fred: $s \cup \{f(S) = n_1\}$ is obv. inconsistent

Theorems in detail

- is classical entailment
- $\blacksquare top is limited entailment$
- σ contains no \mathbf{O} , $\neg \mathbf{K}_k$, $\neg \mathbf{M}_k$
- σ* removes belief levels
- σ_k sets belief levels to k

Soundness & Eventual Completeness

$\mathbf{O} \alpha \approx \sigma$	\implies	$\mathbf{O}\alpha \models \sigma^{\star}$	if σ without $\neg \mathbf{K}_k, \neg \mathbf{M}_k$
$\mathbf{O} \alpha \models \sigma_k$ for some k	\iff	$\mathbf{O}\alpha \models \sigma^{\star}$	if α, σ quantifier-free

Complexity

 $\mathbf{O} \alpha \approx \sigma$ is decidable $\mathbf{O} \alpha \approx \sigma_k$ is tractable in $\mathcal{O}(2^k (|\alpha| + |\sigma|)^{k+3})$

if α,σ quantifier-free

- $(\neg)t = n$
- $\blacksquare (\alpha \lor \beta)$
- $\blacksquare \neg(\alpha \lor \beta)$
- $\exists x \alpha$
- $\neg \exists x \alpha$
- $\neg \neg \alpha$
- **K**₀ α
- **K**_{k+1} α
- $\blacksquare \mathbf{M}_0 \alpha$
- $\blacksquare \mathbf{M}_{k+1} \alpha$
- Οα

s
$$\models (\neg)t = n$$
 iff $(\neg)t = n \in s$
s $\models (\alpha \lor \beta)$ *iff* $(\alpha \lor \beta) \in s$ or $s \models \alpha$ or $s \models \beta$
s $\models \neg(\alpha \lor \beta)$ *iff* $s \models \neg \alpha$ and $s \models \neg \beta$
s $\models \exists x \alpha$ *iff* $s \models \alpha_n^x$ for some name n
s $\models \neg \exists x \alpha$ *iff* $s \models \neg \alpha_n^x$ for every name n
s $\models \neg \neg \alpha$ *iff* $s \models \alpha$

- **K**₀ α
- **K**_{k+1} α
- **M**₀ α
- $\blacksquare \mathbf{M}_{k+1} \alpha$
- Οα

•
$$s \models (\neg)t = n$$
 iff $(\neg)t = n \in s$
• $s \models (\alpha \lor \beta)$ iff $(\alpha \lor \beta) \in s$ or $s \models \alpha$ or $s \models \beta$
• $s \models \neg (\alpha \lor \beta)$ iff $s \models \neg \alpha$ and $s \models \neg \beta$
• $s \models \exists x \alpha$ iff $s \models \alpha_n^x$ for some name n
• $s \models \neg \exists x \alpha$ iff $s \models \neg \alpha_n^x$ for every name n
• $s \models \neg \neg \alpha$ iff $s \models \alpha$
• $s \models \neg \neg \alpha$ iff $s \models \alpha$
• $s \models K_0 \alpha$ iff s is obviously inconsistent or $s \models \alpha$
• $s \models K_{k+1} \alpha$ iff for some t and all $n, s \cup \{t = n\} \models K_k \alpha$
• $s \models M_{k+1} \alpha$ iff for some t and $n, s \cup \{t = n\} \models M_k \alpha$
• $s \models O \alpha$ iff s is minimal s.t. $s \models \alpha$

■
$$s \models (\neg)t = n$$
 iff $(\neg)t = n \in s$
■ $s \models (\alpha \lor \beta)$ iff $(\alpha \lor \beta) \in s$ or $s \models \alpha$ or $s \models \beta$
■ $s \models \neg(\alpha \lor \beta)$ iff $s \models \neg \alpha$ and $s \models \neg \beta$
■ $s \models \exists x \alpha$ iff $s \models \alpha_n^x$ for some name n
■ $s \models \neg \exists x \alpha$ iff $s \models \neg \alpha_n^x$ for every name n
■ $s \models \neg \neg \alpha$ iff $s \models \alpha$
■ $s \models \nabla \neg \alpha$ iff $s \models \alpha$
■ $s \models \nabla \neg \alpha$ iff s is obviously inconsistent or $s \models \alpha$
■ $s \models \mathbf{K}_{k+1}\alpha$ iff for some t and all $n, s \cup \{t = n\} \models \mathbf{K}_k \alpha$
■ $s \models \mathbf{M}_0 \alpha$ iff s is obviously consistent and $s \models \alpha$
■ $s \models \mathbf{M}_{k+1}\alpha$ iff for some t and $n, s \cup \{t = n\} \models \mathbf{M}_k \alpha$
■ $s \models \mathbf{O}\alpha$ iff s is minimal s.t. $s \models \alpha$

obviously inconsistent $\hat{=}$ contains the empty clause obviously consistent $\hat{=}$ not potentially inconsistent potentially inconsistent $\hat{=}$

(a) obviously consistent

(b) two unsubsumed clauses mention two complementary literals

(c) for every name $n, t \neq n$ occurs in an unsubsumed clause

$$s_{0}, s, v \models (\neg)t = n \quad iff \quad (\neg)t = n \in s$$

$$s_{0}, s, v \models (\alpha \lor \beta) \quad iff \quad (\alpha \lor \beta) \in s \text{ or } s_{0}, s, v \models \alpha \text{ or } s_{0}, s, v \models \beta$$

$$s_{0}, s, v \models \neg(\alpha \lor \beta) \quad iff \quad s_{0}, s, v \models \neg \alpha \text{ and } s_{0}, s, v \models \neg \beta$$

$$s_{0}, s, v \models \exists x \alpha \quad iff \quad s_{0}, s, v \models \neg \alpha \text{ and } s_{0}, s, v \models \neg \beta$$

$$s_{0}, s, v \models \neg \exists x \alpha \quad iff \quad s_{0}, s, v \models \neg \alpha_{n}^{x} \text{ for every name } n$$

$$s_{0}, s, v \models \neg \neg \alpha \quad iff \quad s_{0}, s, v \models \alpha_{n}^{x} \text{ for every name } n$$

$$s_{0}, s, v \models \forall \forall a \quad iff \quad s_{0} \cup v \text{ is obv. inconsistent or } s_{0}, s_{0} \cup v, \emptyset \models \alpha$$

$$s_{0}, s, v \models \mathsf{K}_{k+1} \alpha \quad iff \quad \text{for some } t \text{ and all } n, \quad s_{0}, s, v \cup \{t = n\} \models \mathsf{K}_{k} \alpha$$

$$s_{0}, s, v \models \mathsf{M}_{k+1} \alpha \quad iff \quad \text{for some } t \text{ and } n, \quad s_{0}, s, v \cup \{t = n\} \models \mathsf{M}_{k} \alpha$$

$$s_{0}, s, v \models \mathsf{O} \alpha \quad iff \quad s_{0} \text{ is minimal s.t. } s_{0}, s_{0}, \emptyset \models \alpha$$

obviously inconsistent $\hat{=}$ contains the empty clause obviously consistent $\hat{=}$ not potentially inconsistent potentially inconsistent $\hat{=}$

(a) obviously consistent

(b) two unsubsumed clauses mention two complementary literals

(c) for every name $n, t \neq n$ occurs in an unsubsumed clause