
Conditional Beliefs in Action

Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der
RWTH Aachen University zur Erlangung des akademischen Grades

eines Doktors der Naturwissenschaften genehmigte Dissertation

vorgelegt von

Diplom-Informatiker

Christoph Schwering

aus Euskirchen

Berichter: Universitätsprofessor Gerhard Lakemeyer, Ph.D.
Universitätsprofessorin Dr. rer. nat. Gabriele Kern-Isberner

Tag der mündlichen Prüfung: 29. Juni 2016

Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar.

Abstract

Humans rarely have sound or even complete knowledge about their environment.
Instead, we usually picture different contingencies what the world could be like. For
example, we might believe that a specific box is presumably empty, and that otherwise
it most plausibly contains a gift. On the grounds of (conditional) beliefs like this we act.
Sometimes we perceive new information that refutes some of these contingencies; then
we revise our beliefs appropriately. To a human, all this is natural and mundane.

For a machine to do the same, it needs a formal representation and understanding of
conditional belief and actions and perception. In this thesis we develop a formalization
and semantics of these concepts in one coherent logical language and investigate their
interaction. The main contributions are as follows.

First we introduce a method to express that a set of conditional beliefs is all that is
believed. This captures the idea that a (conditional) knowledge base covers the agent’s
beliefs to their full extent. We refer to this concept as only-believing, as it generalizes
Levesque’s only-knowing to conditional beliefs. It can also be considered a semantic
version of Pearl’s meta-logical System Z.

Then we investigate the belief projection problem, which refers to determining what is
believed after a number of actions have occurred. Solving the belief projection problem
is essential to reason about beliefs in dynamic systems, like a robot for example. We
propose two solutions in the framework of Reiter’s situation calculus. Namely, we
extend the well-known concepts of query regression and knowledge base progression to
conditional beliefs.

Finally, as a step towards practical reasoning about beliefs and contingencies, we
develop a limited-reasoning system for conditional beliefs. We complement Lakemeyer
and Levesque’s limited first-order inference with a novel sound first-order consistency
test. Together, these techniques enable us to approximate the notions of conditional
belief and only-believing in a way that is sound and decidable for an important class of
problems.

iii

Zusammenfassung

Selten verfügen Menschen über korrektes oder gar vollständiges Wissens über ihre
Umwelt. In der Regel haben wir lediglich Vermutungen, wie die Welt unter bestimmten
Bedingungen aussehen könnte. Zum Beispiel könnten wir glauben, dass ein Paket
vermutlich leer ist, andernfalls aber am ehesten ein Geschenk enthält. Aufgrund solcher
(bedingter) Vermutungen handeln wir. Wenn sich eine Vermutung aufgrund neuer
Information als falsch erweist, passen wir unsere Vorstellungen entsprechend an.

Um ähnliches zu leisten, muss eine Maschine über eine formale Repräsentation und
über ein Verständnis von Konzepten wie bedingte Vermutung, Aktion und Wahrnehmung
verfügen. Die vorliegende Arbeit entwickelt eine Formalisierung und Semantik dieser
Begriffe in einer logischen Sprache. Die wesentlichen Beiträge sind wie folgt.

Zunächst führen wir ein Konzept ein um auszudrücken, dass eine Wissensbasis
bestehend aus bedingten Vermutungen die Vorstellungen eines künstlichen Akteurs
vollständig erfasst. Wir bezeichnen dieses Konzept als Only-Believing, da es Levesques
Only-Knowing auf den Fall der bedingter Vermutungen verallgemeinert. Es kann auch
als semantische Version von Pearls metalogischem System Z aufgefasst werden.

Dann untersuchen wir das Projektionsproblem, bei dem es darum geht zu entschei-
den, was man nach einer Sequenz von Aktionen glaubt. Dieses Problem zu lösen ist
unerlässlich um in dynamischen Systemen – etwa einem Roboter – über Vermutungen
zu schließen. Wir entwickeln zwei Lösungen im Rahmen von Reiters Situationskalkül;
und zwar verallgemeinern wir die bekannten Ansätze von Regression und Progression
für bedingte Vermutungen.

Schließlich entwickeln wir als Beitrag in Richtung praktikablen Schließens über
Vermutungen und Eventualitäten ein System für eingeschränktes Schließen. Dem abge-
schwächten Inferenzmechanismus für Logik erster Stufe von Lakemeyer und Levesque
stellen zu diesem Zweck einen korrekten Konsistenztest zur Seite. Diese beiden Tech-
niken erlauben uns bedingte Vermutungen und Only-Believing zu approximieren und
dabei Korrektheit und Entscheidbarkeit zu erhalten.

v

Acknowledgements

The journey to this doctorate was exciting and enriching, and I am very grateful for
this experience. Above all, I would like to thank Gerhard Lakemeyer for supervising
and mentoring me for the past four years. While he granted me the freedom (and
responsibility) to choose a field of research on my own, his door and his mailbox were
always open to discuss ideas and problems. His views, his comments, and his rigour
have shaped my understanding of science and artificial intelligence, and their influence
on this thesis couldn’t be bigger.

I would also like to extend my particular thanks to Gabriele Kern-Isberner for taking
on the role of the second examiner of this thesis and for her comments on my work
from the belief-revision perspective. Furthermore I want to thank Martin Grohe and
Bastian Leibe for acting as additional examiners at my defence.

Two visits to The University of New South Wales were turning points for my thesis:
the first brought me into contact with my niche of research, and the second led to a
good deal of the results. I am thankful to everybody involved in making these visits
possible, especially to Gerhard Lakemeyer for initiating the first one and supporting
the second, to Gabriele Kern-Isberner for acting as evaluator, and of course to Maurice
Pagnucco for hosting and supervising me in Sydney.

I was very warmly welcomed to Gerhard Lakemeyer’s Knowledge-Based Systems
Group and the Chair for Computer Science 5 at RWTH Aachen as well as to the
Artificial Intelligence group at the UNSW School of Computer Science and Engineering.
I want to thank my coworkers and friends from these groups for making me feel at home
in both Aachen and Sydney and for making the past four years such an enjoyable time.
A special thanks goes to Jens Claßen and to my office mate Stefan Schiffer; I benefited
hugely from their support and their wisdom especially in teaching-related matters. I
would also like to thank the secretarial staff, Daniele Glöckner, Gabriele Hoeppermanns,
and Claudia Puhl, for always helping me with any administrative matters.

Lastly, I want to acknowledge the financial support from the B-IT Research School,
the German Academic Exchange Service (DAAD), the German Science Foundation
(DFG), and the German taxpayer, who most likely eventually payed the bill.

vii

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Contributions . 2
1.3 Outline . 4

2 Relevant Literature 7
2.1 Knowledge and belief . 7

2.1.1 Modal logic for knowledge . 8
2.1.2 Conditionals . 10
2.1.3 A functional view . 12

2.2 Belief revision . 13
2.2.1 Postulates for belief revision 14
2.2.2 Postulates for iterated belief revision 15
2.2.3 Revision operators . 17
2.2.4 Belief update . 18

2.3 Actions and change . 19
2.3.1 Problems . 20
2.3.2 The projection problem . 21
2.3.3 Theories of action . 22
2.3.4 Actions and belief revision . 25

2.4 Decidable first-order reasoning . 26
2.4.1 Restricting the language . 27
2.4.2 Restricting inference . 29

3 Logical Foundations 33
3.1 Standard names . 33
3.2 The language L . 34
3.3 The semantics of L . 36
3.4 Relationship to classical first-order logic 37
3.5 Modelling knowledge . 38

ix

Contents

3.6 The language OL . 39
3.7 The semantics of OL . 39
3.8 Modelling actions . 41
3.9 The language ES . 42
3.10 The semantics of ES . 44
3.11 Discussion . 47

4 Conditional Belief and Only-Believing 49
4.1 Conditional belief versus knowledge 49
4.2 The language BO . 51
4.3 The semantics of BO . 52
4.4 Properties of conditional belief . 53
4.5 Unique-model property of only-believing 57
4.6 Relationship to OL . 60
4.7 Relationship to System Z . 61
4.8 Representation theorem . 63
4.9 Discussion . 66

5 Actions and Belief Revision 71
5.1 Informing versus sensing . 72
5.2 The language ESB . 73
5.3 The semantics of ESB . 74
5.4 The belief projection problem . 80
5.5 Projection by regression . 86
5.6 Forgetting in only-believing . 90
5.7 Revision of only-believing . 92
5.8 Projection by progression . 94
5.9 Representation theorem . 98
5.10 Belief revision postulates . 104
5.11 Sensing in ESB . 107
5.12 Discussion . 109

6 Limited Objective Reasoning 113
6.1 Why incomplete and unsound reasoning matter 113
6.2 The language L− . 115
6.3 Setups, unit propagation, and subsumption 115
6.4 A sound semantics of L− . 117

x

Contents

6.5 Soundness and eventual completeness 120
6.6 A complete semantics of L− . 121
6.7 Completeness and eventual soundness 123
6.8 Decision procedures for proper+knowledge bases 125
6.9 A normal form . 129
6.10 Discussion . 130

7 Limited Conditional Belief 133
7.1 Approximating plausibilities and spheres 134
7.2 The language BOL . 135
7.3 The semantics of BOL . 136
7.4 Soundness for proper+knowledge bases 139
7.5 Decision procedure for proper+knowledge bases 141
7.6 Discussion . 142

8 Conclusion 145
8.1 Summary . 145
8.2 Future Work . 146

A Long Proofs for BO 149
A.1 Proof of the OL embedding theorem 149
A.2 Proof of the Z-ordering theorem . 150

B Long Proofs for ESB 153
B.1 Proof of the BO embedding theorem 153
B.2 Proof of the regression theorems . 155
B.3 Proof of the revision theorems . 164
B.4 Proof of the progression theorems . 171
B.5 Proof of the representation theorems 174

C Long Proofs for L− 179
C.1 Proof of the decidability theorems . 179
C.2 Proof of the normal form . 190

D Long Proofs for BOL 195
D.1 Proof of the unique-model property 195
D.2 Proof of the monotonicity theorem 196
D.3 Proof of the soundness theorem . 198

xi

Contents

D.4 Proof of the decidability theorem . 200

Bibliography 203

Statement of Originality 217

xii

1 Introduction

With the advent of computing hardware, a group of scientists founded a new field of
research called artificial intelligence (McCarthy, Minsky, et al. 1955), which McCarthy
(2007) later described as “the science and engineering of making intelligent machines.”
While there are many different interpretations of the term “intelligence” itself (Neisser
et al. 1996), most research on artificial intelligence, including this thesis, is concerned
with common sense.

Common sense is fundamental for humans to get by in daily life. As we rarely have
sound or even complete knowledge about our environment, we usually employ common
sense to reach assumptions about what the world could be like. On the grounds of these
beliefs we act. We acquire new information when needed, and when such information is
contrary to our previous beliefs, instead of questioning everything we revise our beliefs
appropriately. We do so “with common sense,” and with such a routine in our daily
lives that, unlike, say, a mathematical exercise, it puts no burden on us.

A computer, on the other hand, solves arithmetical problems with ease, but is usually
not endowed with common sense. The machine not only has no commonsense knowl-
edge, such as “when I drop an object and hear a clink, it is presumably broken.” It does
not even know any such concepts as belief, action, or perception. To “understand” these
concepts and to reason about them, a computer needs a formal representation thereof
and computable procedures to draw inferences from that representation. In this thesis,
we develop a logical theory for that purpose.

This theory will allow us to express beliefs and to reason about their consequences:
how do our beliefs change after we perform actions or after we obtain new information?
Of course, there is no singular answer to that. In fact, the jury is still out on each
individual subfield involved: reasoning about knowledge and belief, conditional logic,
action theories, and belief revision. Considering the great many intricate philosophical
issues still under debate, we take a rather pragmatic stand here. We aim for a workable
theory that unifies conditional belief, actions, and belief change. After a thorough
investigation a fully fledged logic without much attention to computational complexity,
we also devise a decidable fragment, which is foundational for practical use.

1

1 Introduction

1.1 Motivation

As a motivating example, consider the following scenario.

Example 1.1.1 It is Christmas, the presents have just been handed out. Now it is time
to put away the rubbish. You are holding a gift box. In the belief that somebody took
out the present already, you drop the box on the rubbish heap. Just when it hits the
ground, a clinking noise rings out. It looks like you were wrong: it seems there is a gift
in the box, and now it is broken. Anxious to know, you open the box and pull out a
shiny, unimpaired object. Apparently you were wrong again: yes, there was a gift in the
box – and now you even know what it is – but it is not broken after all.

What we witnessed here is the interplay of beliefs, actions, and perception as it
happens constantly in our daily lives. An intelligent agent – like a robot for the cleaning
work in our example – needs to deal with belief change, be it because they see (or cause
themselves) physical change, or because they find evidence their beliefs were wrong in
the first place.

While easy for humans, such commonsense behaviour is hard to realize for robots.
The field of cognitive robotics as envisaged by Reiter and his colleagues (Levesque and
Lakemeyer 2008; Levesque and Reiter 1998; Reiter 2001) aims “to develop an under-
standing of the relationship between the knowledge, the perception, and the actions of
[an autonomous] robot” (Levesque and Reiter 1998).

Here, we are concerned with this problem in a setting where the agent’s beliefs are not
only incomplete, but may also turn out wrong in the face of new information. We aim
for a logical language suitable to represent and reason about problems like Example 1.1.1.
While robots only serve motivational purposes in this thesis, our fundamental approach
stands in the tradition of cognitive robotics, and we hope one day it will help to control
robots at a high abstraction level.

1.2 Contributions

This thesis presents a logical framework for representation of and reasoning about defea-
sible beliefs in dynamic domains. The following three questions are a motif throughout
the thesis.

1. How can we capture the meaning of a conditional knowledge base in a semantically
perspicuous way?

2. How do conditional beliefs change in the face of physical actions and new infor-

2

1.2 Contributions

mation?

3. How can reasoning about conditional beliefs be kept decidable and, sometimes,
tractable?

We investigate these questions within the framework of mathematical logic. The key
features of the approach are the following.

First-order modal logic The language is a first-order modal dialect. First-order logic
allows us to express properties of objects and quantify over them. In Example 1.1.1,
quantification is used to say that there is some (unidentified) object x which is broken.
Formally, this can be written as ∃xBroken(x). Quantification is a very powerful tool,
but also the source of first-order logic’s undecidability.

Conditional beliefs The language features a modal operator to express conditional
belief: the formula B(InBox(x) ∧ Fragile(x) ⇒ Broken(x)) denotes the belief that if x
is in the box and fragile, then it is presumably broken. Many other interpretations of
conditionals are possible, including the counterfactual one: we believe that if x was in
the box and fragile, then it would be broken.

Only-believing A second belief modality allows to capture all that is believed. Such a
concept is of great use in knowledge representation, where we are typically interested
in what follows from a knowledge base. Only-believing allows to express that a condi-
tional knowledge base is believed and everything else is not believed (except the logical
consequences of the knowledge base). It is this implicit representation of non-belief that
makes only-believing special.

Actions and informing Another family of modal operators concerns actions. Actions
not only can have physical effects, but also carry information. An example of the former
is the physical action of dropping the box in Example 1.1.1; an example of the latter
is the clink, which conveys the information that something might be broken. Such
information will be incorporated into the agent’s beliefs by means of belief revision.

Belief projection The belief projection problem refers to determining what is believed
after a number of actions have occurred. It can be cast as a logical entailment problem:
given a knowledge base and a query in the form of a logical formula with actions
and beliefs, does the knowledge base logically imply the query? Solving the problem
requires to take the dynamics out of this reasoning task. We offer two approaches: one
by regression, where the query is rewritten to “roll back” the effects of the actions; and

3

1 Introduction

one by progression, where the knowledge base is updated to account for the effects of
actions.

Reduction to non-modal reasoning After applying regression or progression, one is
typically left with a logical entailment problem without actions but that still involves
conditional belief. We show that these conditional beliefs can also be eliminated by re-
ducing them to first-order reasoning tasks. That way, a large class of reasoning problems
in our framework can be reduced to non-modal first-order reasoning.

Limited reasoning First-order reasoning is known to be undecidable. To address this,
we devise a new logic of conditional belief with a weaker inference mechanism which
still retains the expressivity of a first-order language. We show that this logic is sound
with respect to the original language under certain circumstances. While this logic does
not accommodate actions, this is no effective limitation thanks to our solutions of the
projection problem.

1.3 Outline

The thesis is structured as follows. After reviewing related work in the next chapter,
we introduce the logical foundations in Chapter 3. This includes the first-order logical
language L, which serves as basis of all the languages to come. For future reference, we
also present two other logics known from the literature: the logic of knowledge and
only-knowing OL, and a variant thereof called ES that adds actions and sensing.

Chapter 4 introduces a novel logic of conditional belief and only-believing called BO.
Most notably, we prove a unique-model property for only-believing, a very useful result
for the rest of the thesis. We also give a representation theorem, which allows to simplify
many reasoning tasks in BO. Besides these results, we discuss the relation of BO to its
ancestor OL and to another framework of conditional beliefs called System Z.

Chapter 5 extendsBO to accommodate actions. The result is called ESB, for epistemic
situation calculus with beliefs. We extensively investigate the belief projection problem
in ESB and prove regression, revision, and progression theorems. ESB outranks the
other languages developed in this thesis in terms of their expressivity; in this sense, it is
the premier stage of this thesis. We also compare ESB briefly to its ancestor ES.

The next two chapters address the issue of undecidability that tarnishes the languages
up until then. Chapter 6 introduces two non-standard semantics of a non-modal first-
order logic. These so-called limited semantics are sound or complete, respectively, with
regard to a meaningful fragment of unlimited first-order logic. They set the stage for the

4

1.3 Outline

Chapter 3

Sections 3.2, 3.3
The first-

order logic L

Sections 3.6, 3.7
Knowledge and

only-knowing in OL

Sections 3.9, 3.10
Actions, knowledge,
and sensing in ES

Chapter 4
Conditional belief and
only-believing in BO

Chapter 5
Actions, conditional be-
lief, and revision in ESB

Chapter 6
Limited first-order
reasoning in L−

Chapter 7
Limited conditional

belief in BOL

Figure 1.1: The dependency graph of the thesis.

logic of limited conditional belief, BOL, presented in Chapter 7.
Most chapters conclude with a brief discussion and pointers to future work. A

comprehensive conclusion of the thesis is finally drawn in Chapter 8. Numerous long
proofs from Chapters 4, 5, 6, 7 are presented in Appendices A, B, C, D, respectively.

The survey of related work in Chapter 2 is not essential for the understanding of the
rest of the thesis; the chapter can hence be skipped. The subsequent chapters however
largely build on each other. Figure 1.1 gives an overview of these interdependencies.

5

2 Relevant Literature

This chapter surveys relevant literature from the different fields we touch in this thesis.
We begin with related work on formalizations of knowledge and belief, which is the
broad field this thesis belongs to. Following this, we first present belief revision frame-
works and then theories of actions, upon which our epistemic situation calculus with
beliefs is based. Finally we discuss ways to make first-order reasoning decidable, which
is relevant to our work on limited reasoning.

Occasionally we use some logical notation in this chapter without covering the details.
The reader not familiar with logical notation is referred to Sections 3.2 and 3.3 for an
introduction to a first-order logic.

2.1 Knowledge and belief

The nature of knowledge has been the subject of debate among philosophers at least
since Plato’s dialogue Theaetetus in the 4th century BC (Chappell 2013). The importance
of knowledge for artificial intelligence was recognized from its beginning. In a seminal
paper, McCarthy (1959) envisions a program called Advice Taker whose behaviour
improves just through new information it is told – reprogramming the system would be
no longer required. The information is to be represented as declarative sentences, and
the Advice Taker should deduce from this knowledge which action to take next.

Arguably the most popular approach for formal analysis of knowledge is by modal
logic. Modern epistemic logic is in large part due to Hintikka (1962), who employed
modal logic to represent knowledge and belief. Knowing and believing are called modal-
ities (Halpern 1999). In classical modal logic, the main difference between knowledge
and belief is that the former is factually true, while the latter is always consistent (Fa-
gin, Halpern, et al. 1995). This understanding reflects one of the candidate definitions
discussed by Plato: knowledge is justified true belief.

While originally a field of philosophy, modal logic is today also widely used in
knowledge representation. (It is remarkable at this point that McCarthy (1997) opposed
modal logic and preferred classical first-order logic instead. Halpern (1999) counters

7

2 Relevant Literature

these arguments and argues that in many cases, propositional or first-order modal logic
is the right tool to model modalities.)

A more general concept than knowledge or belief is that of conditional belief, which is
the main theme of this thesis. We will employ it to stratify beliefs so as to reason about
more or less likely contingencies. Our use of the concept is related to conditional logics,
which add if-then statements closer to human intuition than classical logic’s material
implication. An overview of modal logic and conditional logic is given below.

Levesque and Lakemeyer (2001) emphasize that a knowledge-based systems needs to
make available its knowledge to the rest of the system. To this end, Levesque (1984b)
proposed a functional view that resembles a database interface and considers a knowledge
representation system as a part of a larger knowledge-based system. As this view is at
least implicitly present throughout this thesis, we detail it in this section as well.

2.1.1 Modal logic for knowledge

Modal logic extends propositional logic with a new unary operator that can be given
many different interpretations. To illustrate the concept, we call the operator K and
understand it as knowledge. The formulas of this language are of the form ¬α, (α ∨ β),
(α ∧ β), (α ⊃ β), and Kα.

The modern semantics of modal logic is due to Kripke (1959). Truth of a formula is
defined with respect to a Kripke structure, which consists of a set of possible worlds
e and an accessibility relation → ⊆ e × e . A possible world is a hypothetical truth
assignments of all propositions. The accessibility relation links these worlds to each
other.1

In modal epistemic logic, the link is interpreted as “considered possible:” if w → w ′,
then the agent considers w ′ a possible world when w is the actual one. A sentence α is
known when all accessible possible worlds satisfy α. More formally,→, e,w |= Kα iff2

1We simplify the traditional definition of Kripke structures in order to be closer to the concept of worlds
used in the rest of the thesis. The classical understanding of a Kripke structure separates the world and
its valuation of propositions. That way, different worlds can have the same valuation, which is not
possible in our definition. In languages with only a finite set of propositions, subtle differences between
both definitions arise. For example, if there is only a single proposition P , then P∧KP∧¬K¬P∧K¬KP
is satisfiable, namely by the classical Kripke structure where e = {w1,w2,w3}, w1 → w2 → w3 (and
wi 9 w j otherwise), and the valuation is such that P in w1 and w2 is true and false in w3. Clearly,
this construction implies w1 , w2. In our definition, there are only two worlds, namely the one that
satisfies P and the one that does not, and therefore the sentence is not satisfiable. When there is an
infinite supply of propositions, however, there are enough worlds available to replicate the same effect
as in classical Kripke structures by using worlds which differ only in propositions that do not occur in
the formula in question. Such issues will not be relevant in this thesis.

2We use “iff” as an abbreviation for “if and only if” throughout the thesis.

8

2.1 Knowledge and belief

→, e,w ′ |= α for all w ′ ∈ e with w → w ′.
Modal logic can also be characterized axiomatically by taking the standard propo-

sitional axioms (Kleene 2002) and adding a selection of the following axioms for the
modal operator K.

• K: Kα ∧ K(α ⊃ β) ⊃ Kβ;

• T: Kα ⊃ α;

• D: Kα ⊃ ¬K¬α;

• 4: Kα ⊃ KKα;

• 5: ¬Kα ⊃ K¬Kα.

An established convention is to name the logics after the axioms. A very frequent
combination is K45, which is also referred to as S5 and asserts positive and negative
introspection. KT45 is the logic of knowledge and KD45 is the logic of belief (Fagin,
Halpern, et al. 1995): T specifies that knowledge is true, and D means that belief is
consistent. Depending on which conditions the accessibility relation→ satisfies, different
modal logics are obtained.

Except for K, these axioms correspond to certain conditions on the semantic accessi-
bility relation→ ⊆ e × e . Namely, the condition for the axioms are as follows.

• T:→ is reflexive, that is, for every w , w → w ;

• D:→ is serial, that is, for every w ∈ e , there is some w ′ ∈ e such that w → w ′;

• 4:→ is transitive, that is, if w1 → w2 and w2 → w3, then w1 → w3;

• 5:→ is Euclidean, that is, if w1 → w2 and w1 → w3, then w2 → w3.

A natural dual to the K operator is to refer to the inaccessible worlds of a Kripke
structure. We denote such an operator by N, and its semantics can be defined as
→, e,w |= Nα iff→, e,w ′ |= α for all w ′ ∈ e with w 9 w ′. Kα can be interpreted as
knowing at least α, and N¬α as knowing at most α. Together, Kα ∧N¬α capture the
intuition that all the agent knows is α, also referred to as only-knowing. Operators that
refer to inaccessible worlds have been studied by Levesque (1990) and independently by
Ben-David and Gafni (1989); the original idea is due to Humberstone (1987). Levesque
(1990) considers a first-order language with infinitely many extra-logical symbols. Unlike
general Kripke structures, models may not limit the set of considered worlds, and the

9

2 Relevant Literature

(implicit) accessibility relation needs to adhere to the K45 constraints. Ben-David and
Gafni (1989) go beyond that by allowing arbitrary modal logics with general Kripke
structures. However, Levesque and Lakemeyer (2001) argue that this generality has
counterintuitive consequences. For example, the sentence KP ∧N¬P ⊃ ¬KQ , which
stipulates the intuitively true statement that if all we know is P , then we do not know
Q , is falsifiable by Kripke structures whose worlds all satisfy P and Q .

It is remarkable that adding such an operator that refers to the inaccessible worlds
makes finding a proof theory much harder. In fact, as Halpern and Lakemeyer (1995)
show, any such proof theory must be non-recursive in the first-order case. The argument
is simple. For any non-modal formula α, validity of Nα ⊃ ¬Kα coincides with α

being falsifiable. Hence, if we had a recursive axiom system, by enumerating all valid
formulas we would implicitly also enumerate all falsifiable non-modal formulas, which
Church (1936a,b) and Turing (1936) showed to be impossible for first-order logic.
Levesque (1990) proposed a non-recursive axiom system for his K45 logic of only-
knowing which includes the axiom schema Nα ⊃ ¬Kα for any non-modal α that is not
valid. However, Halpern and Lakemeyer (1995) proved that Levesque’s proof theory is
actually incomplete for the first-order case, and as of today no complete axiom system is
known (apart from trivial ones such as declaring every valid formula an axiom).

Levesque’s logic of only-knowing will be present throughout this thesis. We shall
introduce a couple of modal logics of knowledge, belief, and action. Following Levesque
(1990), the operators for knowledge and belief will be K45 operators whereas truth of
knowledge (T) or consistency of belief (D) will not be required. Our use of the terms
knowledge and belief is a bit more informal: the term knowledge shall be seen as a hint
that the agent considers this information very certain and indefeasible, whereas with
belief the agent usually takes very well into account that she might be wrong.

2.1.2 Conditionals

Classical logic provides only one connective to make if-then statement, namely the
material implication. The material implication α ⊃ β is equivalent to the disjunction
¬α ∨ β. As a consequence, when the antecedent is false, the implication is vacuously
true.

Often, this is contrary to human intuition. Consider the following two conditionals.

• If polar bears lived in Antarctica, they would eat penguins.

• If penguins lived in the Arctic, they would eat polar bears.

10

2.1 Knowledge and belief

The first one is certainly very plausible. But it is rather unthinkable that a group of
penguins would bring down a polar bear. With material implications, however, both
would come out true, since both antecedents are false. The false antecedent is what
makes them special: they are counterfactual.

A similar example involves belief. In Example 1.1.1, after dropping the box and
hearing a clink, we believe something inside the box broke. But we might also – less
plausibly – believe that if there is something metallic in the box, this caused the clinking
noise and presumably nothing is broken. This is a conditional belief : most plausibly
we believe something else, but keep other possibilities and their consequents in mind.
Often, conditional beliefs are also understood counterfactually, although the reference
point here is not the real world but the most-plausible belief.

Similarly to epistemic logic, conditional logic has its roots in philosophy topic.
Three early logical accounts of conditionals exist: Lewis (1973) and Stalnaker (1968)
devise possible-worlds semantics for conditionals; Adams (1965) adopts probabilities
for conditionals; Gärdenfors (1978) characterizes conditionals with belief revision
techniques.

The approach we consider here is the notion of a system of spheres, due to Lewis (1973)
and Grove (1988). A system of spheres consists of multiple sets of possible worlds. These
spheres are totally ordered by a subset relation, with the rationale that the worlds from
the narrowest sphere are the most plausible ones. A conditional α ⇒ β is evaluated in a
system of spheres by testing if the most-plausible worlds that satisfy α also satisfy β. In
Lewis’ semantics of counterfactuals, spheres are relative to individual possible worlds.

It is easy to see that conditionals, other than material implications, are nonmonotonic:
it is very well possible that α ⇒ β comes out true, but α ∧ γ ⇒ β might not. For
example, if polar bears lived in Antarctica and were herbivores, they would not eat
penguins. Similarly, counterfactual conditionals are also neither transitive nor does
contraposition hold.

Among others, conditionals are helpful to determine causality (Lewis 1979). For
example, dropping a box is a cause of things in the box breaking, because if we had not
dropped the box, nothing would have broken. However, this counterfactual but-for
alone is not sufficient to obtain the intuitively correct causes; more advanced models are
needed (Halpern 2015; Halpern and Pearl 2005).

From the more practical perspective of artificial intelligence, conditionals are espe-
cially relevant due to their nonmonotonic nature (Kern-Isberner 2001). Pearl (1990)
proposed System Z, a reasoning framework where conditionals are ranked in a specific,
unambiguous way and nonmonotonic inferences can be drawn from them. Goldszmidt

11

2 Relevant Literature

and Pearl (1996) extended System Z to account for qualitative probabilities.
Conditionals are central to this thesis – albeit not from a philosophical perspective but

a rather pragmatic view. We will also briefly meet System Z again in Chapter 4, when
we extend Levesque’s logic of knowing and only-knowing to the case of conditional
beliefs.

2.1.3 A functional view

Any knowledge-based system needs an interface to interact with the outside world.
Levesque (1984b) characterizes a knowledge-based system as a service with (at least) two
operations:

• TELL[α, e] = e ′ computes a new state e ′ that incorporates the new knowledge α
into the previous state e ;

• ASK[α, e] ∈ {yes,no} determines whether α is known in the current state e .

The importance of a TELL operation was stressed before already by McCarthy (1959)
for the Advice Taker program.

Levesque (1984b) proposed a first-order K45 logic to perspicuously capture the notion
of the state e and new knowledge α. The state e is taken to be a set of worlds considered
possible by the agent, which serves as semantic primitive of the logic: truth of knowledge
is defined as e,w |= Kα iff e,w ′ |= α for all w ′ ∈ e . An accessibility relation as in Kripke
structures is not needed; the K45 constraints are satisfied implicitly by using the same
set e on the right-hand side of the definition of Kα. The obvious definitions of TELL
and ASK are then

• TELL[α, e] = e ∩ {w | e,w |= α};
• ASK[α, e] = yes iff e |= Kα.

The question arises if and how these semantic operations can be expressed syntactically.
Levesque and Lakemeyer (2001) showed that in practice it is sufficient to restrict oneself
to representable states. A state e is (finitely) representable when there is some (finite)
set Φ of objective sentences, that is, sentences that mention no K operator, such that
e = {w | w |= φ for all φ ∈ Φ}.

A seemingly simple solution for ASK[α, {w | w |= φ}] where φ is an objective
sentence is to check if Kφ ⊃ Kα is valid. However, this does not handle negative
introspection correctly: while ASK[¬KQ, {w | w |= P }] = yes, the sentence KP ⊃
K¬KQ is not valid, because {w | w |= P ∧Q} satisfies KP and KQ .

12

2.2 Belief revision

The problem is that Kφ alone does not capture the lack of knowledge. Only-knowing
(Levesque 1990) addresses this problem: at least for objective sentences, it maximizes the
epistemic state, and thus the agent’s lack of knowledge. Formally, only-knowing α is
defined as e,w |= Oα iff for all w ′, w ′ ∈ e iff e,w ′ |= α. As an equivalent alternative,
we could take Oα as abbreviation for Kα ∧N¬α where the semantics of the new N
operator is e,w |= Nα iff e,w ′ |= α for all w ′ < e ; for this thesis, though, we prefer the
all-in-one definition of Oα.

With only-knowing, ASK and TELL can be characterized syntactically. For objective
φ, ASK[α, {w | w |= φ}] = yes reduces to proving validity of Oφ ⊃ Kα. Moreover,
for objective φ and ψ, TELL[α, {w | w |= φ}] = {w | w |= φ ∧ ψ} reduces to proving
validity of Oφ ⊃ (Kα ≡ Kψ) (Levesque and Lakemeyer 2001).

In this thesis, we have this view of knowledge representation as a service for other
systems in mind. While we will not explicitly use TELL and ASK procedures, the
concept is still present: the idea to represent a knowledge base by way of only-knowing
is a core concept in this thesis, and actions will allow to modify these knowledge bases.
The logical language sketched in the previous paragraphs are introduced formally in
Chapter 3.

2.2 Belief revision

Belief revision theory addresses the question of adequately adjusting beliefs in the face
of new information. Theories of belief change have emerged from philosophy, but have
also drawn considerable interest in artificial intelligence.

Technically, most work on belief revision assumes a (propositional) logical language
with a consequence relation |= (Peppas 2008). Revision then operates on sets of sentences
in that language which are closed under logical consequence. Such a set is called belief
set.

The question of belief revision is then: when the agent’s belief set is Φ, and she is now
told a new piece of information φ, what is the new belief set Φ ∗ φ? (Note the implicit
assumption that the agent fully trusts the new information.)

When φ is consistent with Φ, the answer is simple: the new belief set Φ ∗ φ is the
deductive closure of Φ ∪ {φ}. This is called belief expansion and denoted by Φ + φ.

Often, however, φ contradicts some information in Φ. These contradicting beliefs
need to be given up so that Φ ∗ φ can accommodate φ without being inconsistent. In
general, there is more than one way to do so. For example, when we believe P∧(P ⊃ ¬Q)
and we are then told that Q holds, we could give up P , or P ⊃ Q , or both to make

13

2 Relevant Literature

room for Q .
Informally, it has become evident already that belief revision is related to giving up

beliefs. In belief revision theory, giving up belief in φ is called contraction and denoted
by Φ÷φ. So one way to define revision is in terms of contraction followed by expansion:

Φ ∗ φ = (Φ ÷ ¬φ) + φ.

In English, this equation states that revising Φ by φ is the same as first giving up belief
in ¬φ and then adding φ to it. This is called the Levi identity (Peppas 2008).

2.2.1 Postulates for belief revision

The Levi identity does not get us very far, unless we had a more precise definition of
contraction. In their seminal paper, Alchourrón, Gärdenfors, and Makinson (1985) gave
the answers to both, revision and contraction. They characterized the revision Φ ∗ φ
by means of eight postulates that every operator ∗ should satisfy, and similarly for the
contractionΦ÷φ. The underlying principle of these postulates is that of minimal change,
meaning that the agent shall modify her beliefs as little as possible. These postulates are
typically referred to as AGM postulates by the authors’ initials.

The AGM postulates stipulate that for any belief set Φ and any formulas φ, ψ, υ, the
following conditions are met.

AGM1. If Φ ∗ φ |= ψ and |= (ψ ⊃ υ), then Φ ∗ φ |= υ.
AGM2. Φ ∗ φ |= φ.
AGM3. If Φ ∗ φ |= ψ, then Φ + φ |= ψ.

AGM4. If Φ 6|= ¬φ and Φ + φ |= ψ, then Φ ∗ φ |= ψ.

AGM5. If Φ 6|= false, then Φ ∗ φ 6|= false.

AGM6. If |= (φ ≡ ψ), then Φ ∗ φ |= υ iff Φ ∗ ψ |= υ.
AGM7. If Φ ∗ (φ ∧ ψ) |= υ, then (Φ ∗ φ) + ψ |= υ.
AGM8. If Φ ∗ φ 6|= ¬ψ and (Φ ∗ φ) + ψ |= υ, then Φ ∗ (φ ∧ ψ) |= υ.

Here we slightly differ in presentation from the usual way, where preferably subset
relations are used. For example, the third postulate is typically expressed asΦ∗φ ⊆ Φ+φ.
As the sets Φ, Φ ∗ φ, and Φ + φ are closed under |=, both ways are clearly equivalent.

14

2.2 Belief revision

These postulates are constraints for possible revision operators. Interestingly, there
are multiple ways to constructively define Φ ∗ φ in accordance with the AGM pos-
tulates: selection functions (Alchourrón, Gärdenfors, and Makinson 1985), epistemic
entrenchment (Gärdenfors and Makinson 1988), and systems of spheres (Grove 1988;
Lewis 1973). Here we focus on system of spheres, which we already encountered in
Section 2.1.2.

Roughly, a system of sphere is a collection of sets of possible worlds ~e = 〈e1, e2, . . .〉
such that ep ⊆ ep+1, where a world is a truth assignment of all propositions. The subset
relation ranks these spheres by plausibility: the worlds in the narrowest set are the most
plausible. This plausibility ranking is the extra-logical information needed for revision.

Let Φ be a belief set and let ~e = 〈e1, e2, . . .〉 be a system of spheres centred on Φ, that
is,

e1 = {w | w |= φ for all φ ∈ Φ}.
Then the following Φ ∗ φ satisfies the AGM postulates (Grove 1988):

Φ ∗ φ = {ψ | w |= ψ for all w ∈ ep∗ with w |= φ},

where ep∗ is the narrowest sphere of ~e that is consistent with φ, that is, w |= φ for some
w ∈ ep∗ , but w 6|= φ for all w ∈ ep and p < p∗.

Again, we used slightly different notation and terminology than the belief revision
literature, where deductively closed sets of formulas are preferably used instead of the
semantic concept of worlds. The reader will encounter the concept of worlds and system
of spheres in the upcoming chapters again, where they are introduced more formally.

2.2.2 Postulates for iterated belief revision

The AGM postulates only refer to single revision and leave open the question of how to
characterize repeated revision (Φ ∗ φ) ∗ ψ. In terms of systems of spheres, the trouble
is that after the first revision, the extra-logical plausibility ranking on the worlds,
which determines the result of revision, is lost. Darwiche and Pearl (1997) and Nayak,
Pagnucco, and Peppas (2003) proposed amendments to the AGM postulates to address
this shortcoming.

To retain the extra-logical plausibility ranking, Darwiche and Pearl define revision
as an operation not only on belief sets, but on epistemic states, which augment a belief
set with a plausibility structure. An epistemic states can be represented as a system
of spheres. We write ~e |= ψ to say that the belief set associated with ~e entails ψ:
{φ | w |= φ for all w ∈ e1} |= ψ, or equivalently: w |= ψ for all w ∈ e1.

15

2 Relevant Literature

In this context, revision operators accordingly map epistemic states to epistemic states.
Darwiche and Pearl (1997) demand such operators to satisfy the AGM postulates (with
the belief set Φ substituted by an epistemic state ~e), plus the following postulates, where
~e is an epistemic state and φ, ψ, υ are formulas.

DP1. If φ |= ψ, then (~e ∗ φ) ∗ ψ |= υ iff ~e ∗ ψ |= υ.
DP2. If φ |= ¬ψ, then (~e ∗ φ) ∗ ψ |= υ iff ~e ∗ ψ |= υ.
DP3. If ~e ∗ ψ |= φ, then (~e ∗ φ) ∗ ψ |= φ.
DP4. If ~e ∗ ψ 6|= ¬φ, then (~e ∗ φ) ∗ ψ 6|= ¬φ.

The field of iterated revision is a highly disputed one, and a large variety of postulates
has been proposed. While the above Darwiche–Pearl postulates certainly are the most
prominent framework for iterated revision, it has been criticized for both, being too
permissive and too strong.

An alternative approach has been proposed by Nayak, Pagnucco, and Peppas (2003).
They stipulate a new postulate that says that the order of any two consistent pieces of
evidence is irrelevant, which is not necessarily true from the Darwiche–Pearl postulates.
This is captured by the third postulate of their framework.

NPP1. If ~e |= false, then ~e ∗ φ |= ψ iff |= (φ ⊃ ψ).
NPP2. AGM1–AGM6 hold for ~e .

NPP3. If 6|= ¬(φ ∧ ψ) then (~e ∗ φ) ∗ ψ |= υ iff ~e ∗ (φ ∧ ψ) |= υ.
NPP4. If |= (ψ ⊃ ¬φ) and 6|= ¬φ, then (~e ∗ φ) ∗ ψ |= υ iff ~e ∗ φ |= υ.
Originally, Nayak, Pagnucco, and Peppas (2003) modified the definition of the belief
revision operator: they understand it as a unary function from sentences to belief sets,
which inherently contain the current belief set already, and which are dynamic, that is,
revision not only produces a new belief set but also a new revision function. To ease the
comparison, we phrased their postulates using epistemic states above. Jin and Thielscher
(2007) in turn criticized NPP3 for being overly strong and proposed an alternative
extension of the Darwiche–Pearl framework.

On the other hand, it has been claimed that Darwiche–Pearl postulates are too strong.
In particular, DP2, which says that of two contradictory pieces of evidence the later one
shall prevail over the earlier, is considered to lead to undesirable results and at odds with
the AGM postulates (Peppas 2008). Nayak, Pagnucco, and Peppas addressed this their

16

2.2 Belief revision

fourth postulate. Delgrande and Jin (2012) remedy this by extending revision to take
not only a formula as new evidence but a set of independent formulas.

2.2.3 Revision operators

Along with the large variety of postulate systems, many different operators that adhere
to these postulates have been proposed. We first investigate revision operators that do
not rely on numeric ranking of possible worlds and thus can be represented, for example,
with a system of spheres.

A conceptually very simple revision operator is natural revision (Boutilier 1993, 1996).
Given an epistemic state ~e and a piece of evidence φ, the idea is revise ~e by making the
most-plausible worlds that satisfy φ more plausible than any other world in ~e . Natural
revision places only little trust in φ: in general, a new piece of evidence ψ may already
lead to retraction of φ when none of the most-plausible φ worlds satisfies ψ.

Deeper trust in new information can be modelled by lexicographic revision (Nayak
1994; Nayak, Pagnucco, and Peppas 2003). It leads to a more profound change of the
worlds’ plausibility ranking: lexicographic revision by φ promotes all φ-worlds over all
¬φ-worlds, while their respective relative orders are retained. That way, for the agent
to give up φ, a subsequent evidence ψ must be falsified by all φ-worlds, not just the
most-plausible ones as in natural revision.

The revision operators we consider in this thesis are natural and lexicographic revision.
An extensive analysis of similar operators can be found in (Rott 2009).

An alternative framework for revision operators are the ordinal conditional functions
(Spohn 1988). An ordinal conditional function κ maps a possible worlds to a natural
number, which can be taken as their plausibility. Some worlds need to have plausibility
0, which marks them out as most plausible. The ranking extends to sentences φ by
κ(φ) = min{κ(w) | w |= φ}. Spohn (1988) presents a general scheme to update κ by
some new evidence φ, so that ¬κ is less plausible than m after the revision:

(κ ∗ (φ,m))(w) =



κ(w) − κ(φ) if w |= φ;
κ(w) − κ(¬φ) +m otherwise.

Spohn denotes κ ∗ (φ,m) as (φ,m)-conditionalization. By choosing specific values for
m, different operators are obtained. For example, Darwiche and Pearl (1997) show that
for m = κ(¬φ) + 1, (φ,m)-conditionalization satisfies their postulates. Note that similar
to lexicographic revision, the relative order among the φ-worlds is left unchanged, and
likewise for the ¬φ-worlds. Due to the numeric confidence, conditionalization bears

17

2 Relevant Literature

some similarity to probabilistic conditioning.

2.2.4 Belief update

Belief revision à la AGM is not suited to reflect how beliefs evolve in the face of physical
change. For example, suppose all we believe is InBox(gift) ≡ Broken(gift), and we now
deposit the gift in the box. Not differentiating between revision and update, we would
revise the knowledge base by InBox(gift). According to AGM, this revision shall be
a simple expansion. The resulting revised knowledge base is therefore (InBox(gift) ≡
Broken(gift)) ∧ InBox(gift), which is logically equivalent to InBox(gift) ∧ Broken(gift).
The AGM postulates hence let putting the gift into the box have an awkward side-effect:
it breaks the gift!

Katsuno and Mendelzon (1991) were the first to realize this shortcoming of the
AGM postulates. Instead of modifying the AGM framework, they argue to distinguish
between belief revision and belief update, and propose a new set of postulates for update
operators �. We say a set of sentences Φ is complete when for every φ, either Φ |= φ

or Φ |= ¬φ. Then the postulates for any belief set Φ and any formulas φ, ψ, υ, the
postulates are as follows.

KM1. If Φ � φ |= ψ and |= (ψ ⊃ υ), then Φ � φ |= υ.
KM2. Φ � φ |= φ.
KM3. If Φ |= φ, then Φ � φ |= ψ iff Φ |= ψ.

KM4. If Φ 6|= false and φ 6|= false, then Φ � φ 6|= false.

KM5. If |= (φ ≡ ψ), then Φ � φ |= υ iff Φ � ψ |= υ.
KM6. If Φ � (φ ∧ ψ) |= υ, then (Φ � φ) + ψ |= υ.
KM7. If Φ � φ |= ψ and Φ � ψ |= φ, then Φ � φ |= υ iff Φ � ψ |= υ.
KM8. If Φ is complete and Φ � (φ ∨ ψ) |= υ, then (Φ � φ) ∪ (Φ � ψ) |= υ.
KM9. Φ � φ |= υ iff for all complete Ψ ⊇ Φ, Ψ � φ |= υ.
This presentation is a rewording of the one from (Peppas 2008) in our terminology.

The Katsuno–Mendelzon postulates consider change of a different type than we do in
this thesis. In their framework, some formula φ is made true by some physical action,
but there is no encoded law how this works and which action caused this effect. For

18

2.3 Actions and change

example, there is no explicit way of saying that dropping a box breaks every fragile
object in it.

By contrast, this thesis is concerned with the model of change known from action
theories, whose goal is to explicitly represent how actions affect their environment. In
particular, this allows conditional effects such as dropping the box breaking only fragile
items in the box. On the other hand, in the Katsuno–Mendelzon framework an action
can make a sentence P ∨Q true. In the type of action theory we shall consider in this
thesis, the so-called situation calculus basic action theories (Reiter 1991, 2001), such
nondeterministic change cannot be modelled.

2.3 Actions and change

Commonsense reasoning requires an understanding of actions and change. For example,
it is generally plausible that a fragile object breaks when it is dropped. McCarthy (1963)
was the first to recognize this need. He envisioned a logical theory of actions and change,
which he called situation calculus, to be part of the (fictional) Advice Taker program
(McCarthy 1959).

The situation calculus quickly turned out to be too complex for real-world applica-
tions. As a consequence, the first practical planning system STRIPS (Fikes and Nilsson
1972, 1993) employed a much more restricted but also computationally more efficient
language. Today’s planning systems use a modern and more expressive version of this
language called PDDL (Helmert 2006; Hoffmann and Nebel 2001; McDermott et al.
1998).

In the meantime, research on action theories made progress towards computational
feasibility as well. A milestone was when Reiter (1991) presented a simple solution
for the frame problem, based on earlier work by Haas (1987), Pednault (1989), and
Schubert (1989). Related formalisms are the fluent calculus (Thielscher 1998) and the
event calculus (Kowalski and Sergot 1989). Thanks to the use of first-order logic these
languages are highly expressive. Moreover there is the propositional family of action
languages A (Gelfond and Lifschitz 1993, 1998) based on logic programs.

We are here mostly concerned with Reiter’s situation calculus, in particular with a
modal variant thereof (Lakemeyer and Levesque 2011). Its predominant position among
today’s theories of action is reflected by Reiter’s monograph (Reiter 2001) and a chapter
in the knowledge representation handbook (Lin 2008).

19

2 Relevant Literature

2.3.1 Problems

Since the conception of McCarthy’s situation calculus, three foundational problems
associated with actions and change have been identified, namely the frame, ramification,
and qualification problems. These problems, in one way or another, must be addressed
by any action formalism.

The frame problem

The frame problem is to specify the non-effects of an action. The effect of an action
is typically limited to a small set of properties and can hence be represented with
reasonable effort. Much more trouble is to stipulate what does not change, due to the
sheer number of non-effects.

For example, it is a reasonable assumption that when we drop the box, everything
fragile in the box breaks. But almost everything else would remain the same as before:
the same items as before are in the box, the weather is still the same, kangaroos are still
hopping around in Australia, and so on.

The problem is one of the most famous in artificial intelligence and was first identified
by McCarthy and Hayes (1969). It got its name from the frame axioms which are
supposed to capture the non-effects of an action. The naive approach is to specify frame
axioms for every non-effect. In general, this is not feasible due to the vast number of
non-effects. McCarthy (1986) hence proposed the use of circumscription (McCarthy
1980), a form of nonmonotonic reasoning. A simpler solution in the situation calculus
was found by Reiter (1991), which uses classical logical equivalence to capture an action’s
effects and non-effects at once.

The ramification problem

The ramification problem is about the indirect effects an action may have due to domain
constraints.

As an example of a domain constraint we might say that we have control over things
we have in our hand and everything attached to it. Thus, when we are holding a box, we
also have control over the objects in it. But once we drop the box, we also lose control
over them as an indirect effect.

The ramification problem was first discussed by Finger (1987). In certain cases
ramification constraints can be compiled to direct effects (McIlraith 2000). Lin (1995)
proposes another solution using a variant of the situation calculus where state constraints

20

2.3 Actions and change

as well as ordinary action effects are encoded with a notion of causality. Thielscher
(1997) also uses causal relationships for state constraints in the fluent calculus.

The qualification problem

The qualification problem is to capture the preconditions of an action. Besides a few
major preconditions for an action, there is usually a large number of minor qualifications
that must satisfied so that an action is possible, but usually these minor qualifications
assumed to hold. The problem gets more complicated when state constraints affect the
precondition.

For example, we can drop a box only when we are holding it. But there is a long list
of other (rather improbable) conditions which make it impossible to drop the box, even
if we are holding it: when there is no gravity, when the box is glued to our hands, when
we have turned into stone, and the list goes on.

The qualification problem was first observed by McCarthy (1977). He proposed to
use circumscription to make action preconditions true “unless something prevents it.”

2.3.2 The projection problem

If solving the frame, ramification, and qualification problems ought to be more than
an end in themselves, action theories must serve another purpose than just studying
their own problems. From an artificial intelligence point of view, arguably the most
fundamental task of an action theory is projection. Roughly, the projection problem is
determine what is true and what is not after some actions.

Reiter (2001) defines projection more formally as follows: given a sequence of actions
and a logical formula, the projection problem is to decide if the formula holds after
executing the actions. There are two cardinal, dual approaches to the projection problem:
regression and progression.

Projection by regression

Regression rewrites the original formula, the query, to roll back the effect of actions.
Regression is often a very elegant mechanism to eliminate actions from the reasoning
task. On the downside, the regressed query may grow exponentially in the number
of actions. The procedure is hence not suited for long-lived systems that amass a huge
number of actions.

The idea of regression in the context of artificial intelligence is due to Waldinger
(1981). Reiter (1991) introduced goal regression along with his solution to the frame

21

2 Relevant Literature

problem for the situation calculus. Reiter’s regression operator also carries over to
epistemic extensions of the situation calculus (Lakemeyer and Levesque 2011; Scherl
and Levesque 2003).

Projection by progression

Progression applies the effects of an action to a knowledge base. Surprisingly, progression
is much more complex than regression – in general, progressing a first-order knowledge
base requires second-order logic. Fortunately, for specific problem classes progression is
first-order definable and even computable.

Interpreting STRIPS operators (Fikes and Nilsson 1972) as a mapping from one first-
order theory to another gives rise to the notion of progression. In a seminal paper, Lin
and Reiter (1997) gave a semantic account of progression in the situation calculus. They
proved that this type of progression is not generally first-order definable. Later Vassos
and Levesque (2013) confirmed this negative result for arbitrary models of progression.
Computationally more attractive problem classes have been analysed in (Lin and Reiter
1997; Liu and Lakemeyer 2009; Vassos, Lakemeyer, and Levesque 2008). Lakemeyer
and Levesque (2009) investigated the progression of knowledge in epistemic situation
calculus.

2.3.3 Theories of action

So far we only discussed problems related to action theories. In the following, we give
brief introductions to the most popular action formalisms in use today: Reiter’s situation
calculus, the fluent calculus, the event calculus, and the family of action languages A.

Situation calculus

The situation calculus (McCarthy 1963) was the first action formalism. It introduced
the concept of fluents, predicates or functions whose value may change over the course
of actions. To facilitate this in classical logic, the situation calculus reifies world states,
called situations, which then occur as additional arguments in fluents.

As mentioned above, the original situation calculus was notoriously computationally
infeasible, and it largely remained like that until Reiter’s solution of the frame problem
and his variant of the situation calculus (Reiter 1991). Whereas McCarthy and Hayes
took a situation to be a “complete state of the universe at an instant of time,” Reiter
models them as a sequences of actions that occurred since some initial situation, that

22

2.3 Actions and change

is, as “world histories.” Logically, they are represented as the initial situation S0 and
successor situations do(a, s) resulting from doing action a in situation s .

To solve the frame problem, Reiter assumes a set of positive effect axioms of the form
γ+i (~x, a, s) ⊃ F (~x, do(a, s)) and negative effect axioms γ−j (~x, a, s) ⊃ ¬F (~x, do(a, s)) that
state under which conditions an action a makes F true or false, respectively. A causal
completeness assumption then allows to condense these axioms to a single successor-state
axiom of the form

F (~x, do(a, s)) ≡
∨
i
γ+i (~x, a, s) ∨

�
F (~x, s) ∧ ¬

∨
j
γ−j (~x, a, s)

�
.

Intuitively, this axiom says that F (~x, do(a, s)) is true iff it was made true by a or it was
true before already and was not made false by a. For example, we could have a successor
state axiom

Broken(y, do(a, s)) ≡ Broken(y, s) ∨ InBox(y, s) ∧ Fragile(y, s) ∧ a = dropbox

to say that dropping a box breaks the fragile items contained in it.
Successor-state axioms are a remarkably concise representation. Adding a new fluent

merely requires to add one new successor-state axiom, and adding a new action merely
takes to adjust those fluents’ successor-state axioms which are affected by that action.

Successor-state axioms are also key to Reiter’s regression operator (Reiter 1991, 2001)
for the frame problem. The idea is, roughly, to iteratively replace occurrences of fluents
F (~x, do(a, s)) with the right-hand side of F ’s successor-state axiom. That way, actions
are successively eliminated.

Reiter’s solution is based on earlier work by Haas (1987), Pednault (1989), and
Schubert (1989), and bears some resemblance to Clark’s completion for logic programs
(Clark 1978). Successor state axioms are the key ingredient of Reiter’s basic action
theories and his regression operator.

Reiter’s situation calculus was a starting point of a whole new research agenda. Among
the notable results are the action language Golog (Levesque, Reiter, et al. 1997), intended
as a hybrid between traditional programming and planning, and epistemic extensions
(Lakemeyer and Levesque 2011; Scherl and Levesque 2003). We present the epistemic
situation calculus in detail in Chapter 3.

23

2 Relevant Literature

Fluent calculus

The fluent calculus (Thielscher 1998) is a variant of Reiter’s situation calculus which
has an explicit representation of world states. It inherits Reiter-style situations from
the situation calculus, but associates every situation with a state, which in turn is a
collection of reified fluents.

Other than successor-state axioms, which are fluent-wise, the axioms in the fluent
calculus are action-wise and represent how the state changes when an action is performed.
The binary function ◦ is used to express which fluents are known to be true in a state.
Using the functions State and ◦, state-update axioms characterize how states are affected
by actions in a progression-like fashion. For example,

Holds(Fragile(gift) ∧ InBox(gift), s) ⊃ State(do(dropbox, s)) = State(s) ◦ Broken(gift)

says that when the gift is in the box and fragile, then it is broken after dropping the
box. Note that this example state-update axiom does not capture the intuitive effect of
dropbox, which should be that every fragile item in the box breaks, not just the gift, as
axiomatized in the example successor-state axiom above.

Indeed representing infinitary effects such as dropbox breaking everything fragile in
the box is quite cumbersome in the fluent calculus (Thielscher 1999). Nevertheless it
is noteworthy that in the absence of infinitary effects situation calculus basic action
theories can be translated to the fluent calculus.

Like in the situation calculus, a number of extensions to the fluent calculus have been
developed, including epistemic ones (Jin and Thielscher 2004; Thielscher 2000). With
FLUX (Thielscher 2005) there is a programming system similar to Golog.

Event calculus

The event calculus (Kowalski 1992; Kowalski and Sergot 1989) is a more distant relative
of Reiter’s situation calculus. Unlike the branching structure of situations used in
the situation and fluent calculus, the event calculus is based on a narrative of events
that happen on a linear and continuous time scale. For example, Happens(dropbox, t)
stipulates that the box is dropped at time point t .

Effects of events on this time scale are axiomatized by stipulating which events initiate
or terminate certain fluents. For example, the effect of dropping the box would be

HoldsAt(InBox(y) ∧ Fragile(y), t) ∧ Initiates(dropbox,Broken(y), t).

24

2.3 Actions and change

The frame problem is then solved by circumscribing (McCarthy 1980) the foundational
predicates Initially, Happens and Happens for the narrative of events and the predicates
Initiates and Terminates for the action effects.

A number of different variants of the event calculus exist. The formalism has also
been extended to for epistemic reasoning (Miller, Morgenstern, and Patkos 2013).

Action language A

The family of action languagesA (Gelfond and Lifschitz 1993, 1998) differs considerably
from the approaches described above. They come in two sorts: action description
languages and actions query languages. Unlike the first-order situation, event, and fluent
calculus, these languages are propositional.

Action description languages determine a transition system where actions lead to new
states. Such transition systems are the semantic primitive of A and its descendants. For
example, the action description of our dropbox action would read as

dropbox causes Broken if InBox,Fragile.

Descendants of the action language A also allow more complex action descriptions,
such as state constraints and defaults.

Action query languages then operate on such transition systems. Given a couple of
axioms such as now InBox and now Fragile, we can infer

necessarily Broken after dropbox.

The query is evaluated on the transition system in a straightforward way: the query
holds iff Broken is true in all states reached by dropbox from any state initial state that
satisfies InBox and Fragile.

2.3.4 Actions and belief revision

A number of belief revision extensions of the situation calculus have been proposed
(Delgrande and Levesque 2012; Demolombe and Pozos Parra 2006; Fang and Liu 2013;
Fang, Liu, and Wen 2015; Shapiro et al. 2011). The fundamental differences to our
proposal are the following: firstly, no other approach allows to fully capture the idea of
a knowledge base as we do with only-believing; secondly, with the exception of (Fang,
Liu, and Wen 2015) none of them addresses the belief projection problem; thirdly, only
Delgrande and Levesque (2012) employ a traditional belief revision scheme; and finally,

25

2 Relevant Literature

none of the approaches seems to support quantifying-in.
Despite these differences, the work by Shapiro et al. (2011) is closest to our approach.

They too use conditional beliefs to determine the initial beliefs. Without only-believing,
however, this is quite cumbersome in practice and often neither more concise nor more
intuitive than specifying a plausibility ranking by hand. Another major difference is that
Shapiro et al. assume perfectly accurate sensors and thus cannot handle contradictory
information.

The next-closest relative is by Delgrande and Levesque (2012). In this formalism,
actions can inform the agent that some information is true like in our approach; new
information is then incorporated by a revision scheme based on Spohn’s ranking func-
tions (Spohn 1988). Among the mentioned approaches, this is the only one that follows
a traditional revision scheme like ours. However, the work is focused on modelling
fallible actions; it is not concerned with belief projection.

Fang and Liu (2013) use plausibility rankings on worlds and actions; the plausibility
ranking then changes according to the executed actions. Both rankings are explicitly
specified in the beginning. Fang, Liu, and Wen (2015) also consider progression, however
only in the propositional case.

The proposal by Demolombe and Pozos Parra (2006) avoids any plausibility ranking
by compiling physical and epistemic effects on predetermined beliefs of interest to
special successor-state axioms. As we have shown here, though, ranking the worlds by
plausibility exclusively in the semantics is sufficient; plausibilities need not be part of
the language.

Another framework to deal with faulty sensors is the Bayesian approach by Bacchus,
Halpern, and Levesque (1999). They also use extra action parameters to indicate the real-
world outcome, similar to our mimicking of classical sensing described in Section 5.11.

Belief revision, albeit not with physical actions, has also been addressed in dynamic
epistemic logic (van Ditmarsch, van der Hoek, and Kooi 2007) by several authors
(Aucher 2005; Baltag and Smets 2008; van Benthem 2007; van Ditmarsch 2005). Closest
to our work is the approach by van Benthem (2007), where revised beliefs are reduced
to initial beliefs in a regression-like fashion.

2.4 Decidable first-order reasoning

The problem of deciding whether a formula is valid in first-order logic is undecidable
(Church 1936a,b; Turing 1936). This puts serious bounds on the practical utility of
first-order logic. In particular, determining what follows from a knowledge base is

26

2.4 Decidable first-order reasoning

undecidable. Starting from this negative result, research evolved in several directions to
achieve decidable or even tractable reasoning. There are two possible directions to keep
decidable:

• restrict the language expressiveness;

• restrict the inference capability.

Our approach is hybrid; it arguably chiefly belongs to the latter class but also makes
syntactic restrictions to the knowledge base.

2.4.1 Restricting the language

The syntactic perspective on decidability in first-order logic is to categorize formulas
by syntactic features in classes. Such a class is considered decidable if for every formula
that belongs to that class satisfiability is decidable. The following overview is largely
based on (Börger, Grädel, and Gurevich 1997), the standard reference for decidability
and undecidability of syntactic fragments of first-order logic.

Prefix-vocabulary classes

A classical approach of syntactic restriction is by investigating prefix-vocabulary classes.
Formulas in prenex normal form, that is, formulas where quantifiers occur only at
the outermost level, are categorized by their quantifier string, the number and arity
of function and predicate symbols they mention, and whether they mention equality.
An example of a decidable class is the Bernays–Schönfinkel class of formulas, which
are in prenex normal form with a quantifier prefix of the form ∃∗∀∗, that is, arbitrarily
many existential quantifiers are followed by arbitrarily many universal quantifiers, and
mention no functions but possibly equality.

Adding or taking away equality does make a difference for other classes. The Gödel–
Kalmár–Schütte class contains the formulas with quantifier prefixes of the form ∃∗∀∀∃∗

that mention neither functions nor equality. This class is decidable. But adding equality
makes the class undecidable in the presence of a single binary predicate.

As Grädel, Kolaitis, and Vardi (1997) put it, today “the dividing line between decid-
ability and undecidability for all prefix-vocabulary classes” is identified: there are nine
minimal undecidable classes without functions and equality, seven minimal undecidable
classes with functions or equality, and seven maximal decidable classes (Börger, Grädel,
and Gurevich 1997).

27

2 Relevant Literature

Bounded-variable logics

An alternative way is to restrict the number of variables. These sentences need not be in
prenex normal form; in fact, the same variable may be quantified over and over again.

The fragment of first-order logic restricted to two variables and no functions is
known to be decidable (Mortimer 1975; Scott 1962). However, three variables and
one binary predicate already lead to undecidability. An interesting and still decidable
extension especially for knowledge representation is the two-variable logic with counting
quantifiers ∃≤n, ∃≥n, which require the existence of at least or at most n distinct objects.

The decidability of two-variable logic connects first-order logic with propositional
modal logic (Grädel, Kolaitis, and Vardi 1997) and the prototypical description logic
ALC (Nardi and Brachman 2003). Typical description logics are more expressive than
propositional logic but aim to avoid the complexity of first-order logic. The three main
modelling primitives are concepts, roles, and individuals, which correspond to unary
predicates, binary predicates, and constants in first-order logic.

Interestingly, the problem of satisfiability is simpler in ALC (where it is PSPACE-
complete (Baader and Nutt 2003)) than in the two-variable fragment of first-order logic
(where it is NEXPTIME-complete (Grädel, Kolaitis, and Vardi 1997)). A considerable
zoo of description logics builds on ALC and its decidability and on the two-variable
logic with equality or counting quantifiers (Sattler, Calvanese, and Molitor 2003); these
logics populate a wide area of the efficiency-vs-decidability spectrum.

Bounded-extension logics

The decidability results for most (but not all) prefix-vocabulary classes as well as for the
two-variable fragment are closely connected to finite-model properties (Börger, Grädel,
and Gurevich 1997; Libkin 2013). A class of formulas is said to have the finite-model
property when all satisfiable formulas have a model with a finite universe of discourse.

To exemplify the relevance of finite-model properties, consider a formula from
the Bernays–Schönfinkel class, say ∃x1 . . . ∃xm∀y1 . . .∀ynφ for quantifier-free φ. Any
model of this formula contains objects that witness the existentially quantified x1, . . . , xm .
Limiting the universe of discourse to these ≤ m objects then yields a finite substructure
that satisfies the formula. So a simple decision procedure for the Bernays–Schönfinkel
class is to generate all nonisomorphic structures with ≤ m individuals and check if any
of them satisfies the formula (Libkin 2013).

A finite-model property can of course also be enforced axiomatically by bounding the
extensions of all predicates of interest to contain no more than N different tuples. In

28

2.4 Decidable first-order reasoning

many realistic scenarios such a bound appears reasonable. For example, in our gift-giving
scenario we might say that our box can contain at most one object at a time. Based on
this idea, De Giacomo, Lespérance, and Patrizi (2016) introduce bounded basic action
theories in Reiter’s situation calculus, where in any reachable situation every fluent has
at most N tuples in its extension. It is remarkable that boundedness only concerns the
extensions; the universe of discourse remains potentially infinite.

Boundedness implies that it is sufficient to consider certain finite models in the
individual situations, and hence verifying first-order formulas locally is decidable. De
Giacomo, Lespérance, and Patrizi further prove decidability for an expressive class of
temporal formulas that includes controlled quantification across situations.

They also provide sufficient criteria under which actions preserve the boundedness
condition provided that the initial situation is bounded. One method is to simply
condition action executability on the resulting situation being bounded. For instance,
we could allow the agent to put a new object into the box only when the box is empty.
Other ways to obtain boundedness are to ensure that actions do not enable more fluents
than they disable, or that tuples fade away gradually.

2.4.2 Restricting inference

An alternative way to achieve decidability is to limit the reasoning capabilities. Besides
undecidability, there is a second motivation to do so: the problem of logical omniscience
(Hintikka 1975). In the possible-worlds semantics, when the agent knows α, and α

logically implies β, then the she also knows β. To solve the omniscience problem, this
closure under logical consequence must be suspended, at least to some extent.

Semantic approaches based on tautological entailment

One of the most influential approaches to the problem of omniscience is the logic of
implicit and explicit belief due to Levesque (1984a). Implicit belief follows the usual
possible-worlds semantics and is omniscient. If φ is the agent’s knowledge base, then
implicit belief contains all consequences of φ, for this characterizes what the world
would be like if φ was actually true. This is not to say that the agent actually is aware of
these consequences.

For that purpose, Levesque introduces explicit belief. As more worlds lead to fewer
beliefs, Levesque introduces additional impossible worlds by resorting to a four-valued
semantics, where an atom may be true, or false, or true and false at once, or neither.
Such four-valued semantics first occurred in relevance logic (Anderson and Belnap 1975;

29

2 Relevant Literature

Belnap 1977). In Levesque’s logic, BP ∧ B(P ⊃ Q) ∧ ¬BQ is satisfiable, where B is
the modal operator for explicit belief, that is, belief is not closed under implication.
This is contrary to any classical modal logic that satisfies the K axiom from modal
logic. Moreover, BP ∧ ¬B(P ∧ (Q ∨ ¬Q)) is satisfiable, so belief is not closed under
equivalence.

Based on (Levesque 1984a) and tautological entailment, a number of further semanti-
cally grounded approaches emerged. Lakemeyer (1994, 1996) and Patel-Schneider (1990)
extend the notion of implicit belief to the first-order case with weakened existential
quantifiers. Delgrande (1995) adds belief contexts which can be reasoned about inde-
pendently. Schaerf and Cadoli (1995) also build on Levesque’s ideas for their theory
approximation from below and above, which we describe below.

Semantic approaches based on subsumption, unit propagation, and case splits

Another more recent thread of research by Liu, Lakemeyer, and Levesque investigates
limited belief in a first-order language (Lakemeyer and Levesque 2013, 2014, 2016; Liu
2006; Liu, Lakemeyer, and Levesque 2004). It is based on unit propagation, subsumption,
and case splits as inference mechanism. The fundamental structure of the syntactically
flavoured semantics are sets of ground clauses, so-called setups, which are closed under
unit propagation and subsumption. The semantics is essentially defined inductively,
with ground clauses being the base case. A setup satisfies a ground clause when it is
contained in the setup’s closure under unit propagation and subsumption.

Besides the setup, a natural number k ∈ {0, 1, 2, . . .} is part of the model to indicate
the maximum allowed effort which may be put into proving that the setup satisfies the
formula. Roughly, k specifies the number of allowed case splits. In the earlier approaches
(Lakemeyer and Levesque 2013; Liu 2006; Liu, Lakemeyer, and Levesque 2004), a case
split means to select some clause c from the setup and to verify that the setup augmented
by every literal ` ∈ c satisfies the formula. In a more recent variant (Lakemeyer and
Levesque 2014), a case split means to select an arbitrary literal ` and consider the setup
first augmented by ` and then by `. Lakemeyer and Levesque (2016) extend the latter
notion to equality literals with functions.

For so-called proper+ knowledge bases (Lakemeyer and Levesque 2002) reasoning
about beliefs in these limited logics is sound (but incomplete) with respect to the
traditional possible-worlds semantics. Liu (2006) and Liu, Lakemeyer, and Levesque
(2004) also give a tractability result for the propositional case and fixed k. The major
restriction of proper+ knowledge bases is that existential quantifiers are not allowed.
This restriction leads to a one-to-one correspondence between setups and the knowledge

30

2.4 Decidable first-order reasoning

base and thus reduces logical entailment to model checking. Interestingly, the recent
integration of functions (Lakemeyer and Levesque 2016) allows to represent existentials
by means of Skolemization.

Klassen, McIlraith, and Levesque (2015) recently introduced a logic of limited belief
in a fashion similar to (Lakemeyer and Levesque 2014). They propose a neighbourhood
semantics, which elegantly avoids the syntactic flavour of setups. However, this approach
is restricted to propositional logic.

Our approach to limited reasoning in Chapters 6 and 7 follows the idea of limited
reasoning based on setups, unit propagation, subsumption, and case splits. As we will
see, incomplete reasoning alone is not sufficient for conditional beliefs, and we will
devise a complete semantics in the spirit of (Lakemeyer and Levesque 2014).

Other approaches

Not all approaches to the logical omniscience problem are semantically motivated. In
an early proposal by Konolige (1986), the agent has a set of basic beliefs represented by
logical sentences, and a (typically incomplete) set of deduction rules infers additional
beliefs. The trouble with that is, as Levesque (1984a) argues, that the deduction rules
need to ensure obvious inferences, such as that (α ∨ β) implies (β ∨ α). But even if that
is given, the deduction lacks a semantical justification and it is not clear where to draw
the line between obvious and non-obvious deductions.

Vardi (1986) represents belief as sets of sentences, each of which is modelled by its
satisfying worlds. Fagin and Halpern (1987) introduce concepts of awareness and local
reasoning. Awareness is supposed to capture that an agent can only have beliefs about
something she is aware of. Local reasoning intends to model that people do not consider
all issues at once, similar to (Delgrande 1995). To this end, not just one but multiple
clusters of possible worlds are considered, and a sentence is believed when it is true in
one of them. Both approaches have in common that they suspend closure under logical
consequence. On the other hand, they are not satisfying as belief is still closed under
logical equivalence.

Halpern, Moses, and Vardi (1994) and Kaplan and Schubert (2000) propose compu-
tational approaches, where the deduction of beliefs is captured by some terminating
algorithm. These approaches are clearly very general – for example, Halpern, Moses,
and Vardi (1994) can capture the proposals from Konolige (1986) and Levesque (1984a),
at least under reasonable assumptions. On the downside, algorithmic approaches seem
to be easy to use only as long as the applied algorithms are easy to reason about.

31

2 Relevant Literature

Unsound reasoning

By far the majority of existing approaches on decidable reasoning aim for sound but
incomplete inferences. In some scenarios, however, complete but unsound reasoning is
useful to disprove statements. A particular use-case relevant for this thesis is to soundly
determine whether a formula is consistent with some background knowledge.

In recent years, unsound reasoning has gained some interest in the theorem-proving
community, as is illustrated by a series of “Workshops on Disproving: Non-Theorems,
Non-Validity, Non-Provability” held at CADE and IJCAR conferences 2004–2007.

Among the more generally applicable approaches from these workshops is an unsound
variant of resolution by Lynch (2004). Assuming a theorem prover that incrementally
generates inferences (like resolution), the idea is to add new propositions which are
possibly no logical consequences but ensure that the theorem prover halts.

Above we already mentioned the approach for theory approximation by Schaerf
and Cadoli (1995). It supports both sound or complete reasoning by using tautological
entailment similar to Levesque (1984a). In a propositional language where all formulas
are in negation normal form, that is, negations only occur in front of atoms, their
goal is to approximate, for given Φ, the theory {φ | Φ |= φ} by subsets and supersets.
To this end, for a given set of propositional variables S , they define two consequence
relations, |=3

S and |=1
S , which are sound and complete, respectively, with respect to

classical entailment. Semantically, this is achieved by two kinds of interpretations: while
propositions from S are assigned either true or false as usual, interpretations for |=3

S may
assign propositions not in S both true and false at once, and interpretations for |=1

S may
not assign to these propositions any truth value at all. A (negated) atom is considered to
be true under an interpretation when the interpretation maps it to true (false). Then
|=3

S is sound, |=1
S is complete, and both are monotonic in S . Formally, for every Φ, φ,

and S ⊆ S ′,

Φ |=3
S φ only if Φ |=3

S′ φ only if Φ |= φ only if Φ |=1
S′ φ only if Φ |=1

S φ.

Schaerf and Cadoli (1995) also extended their approach to propositional modal logic
and to fragments of first-order logic that correspond to simple description logics. Finger
and Wassermann (2007) improve the approximation from above of |=1

S for propositional
logic.

In Chapter 6, we introduce two semantics, which are sound, complete, and monotonic
in a sense similar to |=1

S and |=3
S . The complete semantics in a way pursues the same

intuitive idea as Lynch (2004) does.

32

3 Logical Foundations

This chapter presents the logical foundations of this thesis. To begin with, we introduce
the first-order logical language L, which is the basis for every following logic in this
thesis. While very similar to classical predicate logic, L has a distinguishing feature
called standard names. Standard names not only simplify the semantics compared to
classical logic, but will also prove fundamental for later results in this thesis, such as the
representation theorems in Chapters 4 and 5 and the limited semantics in Chapters 6
and 7.

However, like classical logic, L is not well-suited to represent knowledge, especially
the lack thereof. For this purpose we adopt the logic of only-knowing OL, a modal
extension of L due to Levesque (1984b). We present OL in this chapter for future
reference. Later, in Chapter 4, we introduce an extension of OL to the more general case
of conditional belief.
OL is a purely static languages. To prepare for our later work on beliefs in dynamic

systems in Chapter 5, we present the epistemic situation calculus ES (Lakemeyer and
Levesque 2011). It is an extension of OL that accommodates actions similar to Reiter’s
situation calculus but in the spirit of modal logic.

This chapter is based on (Levesque and Lakemeyer 2001) for L and OL, and, with a
little modification, on (Lakemeyer and Levesque 2011) for ES.

3.1 Standard names

First-order logic differs from propositional logic in that it allows to represent objects.
For example, a constant called gift may be used to represent a present, and InBox(gift)
could be used to say that the gift is in the box. Yet, it is not possible in classical first-order
logic to express which object the gift is. L, which we introduce in the next sections,
provides a non-classical feature called (standard) names to do just that. Standard names
are special constants which allow us to syntactically refer to each and every object from
the universe of discourse. Effectively, this means we fix the universe of discourse to be
the countably infinite set of names #1, #2, #3, . . .

33

3 Logical Foundations

What is the benefit of standard names? After all, in Tarskian semantics (Tarski 1935,
1944) of first-order logic the domain is not fixed and may be any non-empty set, including
uncountable ones (Kleene 2002). But standard names also have at least two significant
advantages for our purposes.

Firstly, as we shall see, they allow us to handle quantification by substitution, which
considerably simplifies the semantics. This is not possible in classical first-order logic
because there the objects from the domain are no syntactic elements. It should be pointed
out, though, that quantification by substitution has drawn philosophical criticism
(Kripke 1976).

Secondly, standard names are useful to express belief about things. Namely, they allow
us to distinguish between the following statements.

• We believe there is some x in the box.

• There is an x which we believe to be in the box.

The former expresses believing that, also known as de dicto belief in philosophy: perhaps
we have no idea what x is. The latter, by contrast, represents believing what and is
known as de re belief: here we know (or believe to know) what x is. Clearly, de re belief
is stronger than de dicto belief.

Standard names can be thought of as special constants that satisfy the unique name
assumptions and an infinitary version of domain closure.

3.2 The language L

Definition 3.2.1 (Levesque and Lakemeyer 2001) The symbols of L are taken from
the following vocabulary:

• infinitely many standard names #1, #2, . . ., written schematically as n;

• infinitely many first-order variables, written schematically as x ;

• infinitely many function symbols, written schematically as g ;

• infinitely many predicate symbols, written schematically as P ;

• connectives and other symbols: =, ∨, ¬, ∃, round brackets, comma.

Each function or predicate symbol has an arity, which indicates how many arguments it
takes. Identifiers may be decorated with subscripts or superscripts.

34

3.2 The language L

Examples for predicate symbols are the unary InBox or Broken, and an example for a
function symbol is the constant gift.

Definition 3.2.2 (Levesque and Lakemeyer 2001) The set of terms of L is the least
set which includes all variables, standard names, and g (t1, . . . , tk) where g is a k-ary
function symbol and t1, . . . , tk are terms. A term that contains no variables is called
ground. A ground term that contains only a single function symbol is called primitive.

Definition 3.2.3 (Levesque and Lakemeyer 2001) The set of formulas of L is the least
set such that

• P (t1, . . . , tk) is a formula where P is a predicate symbol and the ti are terms;

• (t1 = t2) is a formula where t1 and t2 are terms;

• ¬α, (α∨ β), and ∃xα are formulas where α and β are formulas and x is a variable.

A formula of the form P (t1, . . . , tk) is called atomic or just an atom. A formula that
contains no variables is called ground. A ground atom whose arguments t1, . . . , tk are
standard names is called primitive. An occurrence of a variable x in α is free if that
occurrence is not in a subformula of α of the form ∃x β. By αx

t we denote the result of
substituting t for all free occurrences of x in α. A formula that contains no free variable
is called a sentence.

A formula (α ∨ β) is called a disjunction, and ∃ is called an existential quantifier. For
convenience, we define abbreviations to express inequality, tautology, contradiction,
conjunctions, universals, material implications, and equivalence:

• (t1 , t2) stands for ¬(t1 = t2);
• true stands for ∃x (x = x);
• false stands for ¬true;

• (α ∧ β) stands for ¬(¬α ∨ ¬β);
• ∀xα stands for ¬∃x¬α;

• (α ⊃ β) stands for (¬α ∨ β);
• (α ≡ β) stands for ((α ⊃ β) ∧ (β ⊃ α)).

Occasionally we use ~t as an abbreviation for t1, . . . , tk . We often omit brackets to ease
readability. Then the convention is that the unary operators ¬, ∃, and ∀ bind strongest;

35

3 Logical Foundations

∧ binds stronger than ∨; ∨ binds stronger than ⊃; ⊃ binds stronger than ≡. Moreover,
unless said otherwise, we assume free variables to be universally quantified with maximal
scope.

3.3 The semantics of L

To define truth of formulas, some semantic primitive is needed. In classical first-order
logic, truth of a formula is defined with respect to a structure, which consists of a
domain of discourse and an interpretation function that maps predicate and function
symbols to relations and functions over that domain, and an assignment function that
maps variables to domain elements. With L, things are much simpler thanks to standard
names.

Definition 3.3.1 (Levesque and Lakemeyer 2001) A world w is a function

• from the primitive terms g (n1, . . . , nk) to standard names;

• from the primitive atoms P (n1, . . . , nk) to truth values {0, 1}.
Hence, a world can be used to determine the value of a term.

Definition 3.3.2 (Levesque and Lakemeyer 2001) The denotation w(t) of a term t is
defined as follows:

• w(n) = n for every standard name n;

• w(g (t1, . . . , tk)) = w[g (n1, . . . , nk)] where ni = w(ti) and g is a function symbol.

Since quantification can be handled by substituting standard names for the variable,
the truth of a formula in a world is easily defined.

Definition 3.3.3 (Levesque and Lakemeyer 2001) The truth relation |= of L is defined
with respect to a world w :

L1. w |= P (t1, . . . , tk) iff w[P (n1, . . . , nk)] = 1 where ni = w(ti);
L2. w |= (t1 = t2) iff n1 and n2 are identical names where ni = w(ti);
L3. w |= ¬α iff w 6|= α;

L4. w |= (α ∨ β) iff w |= α or w |= β;

L5. w |= ∃xα iff w |= αx
n for some name n.

36

3.4 Relationship to classical first-order logic

As usual, we use the symbol |= in the following also to denote logical entailment: we
write Σ |= α iff all worlds w which satisfy all sentences in Σ also satisfy α, that is, w |= β

for all β ∈ Σ implies that w |= α. When Σ is empty, we just write |= α. When Σ is the
singleton containing β, we abbreviate β |= α. We also sometimes identify a finite set of
sentences with their conjunction.

3.4 Relationship to classical first-order logic

An important question is how big the difference of L to classical first-order logic is. The
most notable difference is perhaps that L is not compact. Compactness is a corollary
of of Gödel’s completeness theorem (Gödel 1929; Kleene 2002) and means that a set
of sentences is satisfiable iff every finite subset is satisfiable. In L, there is a simple
counterexample: {∃x¬P (x), P (#1), P (#2), P (#3), . . .} is clearly unsatisfiable, but every
finite subset is satisfiable.

However, for formulas without standard names, L comes very close to classical logic.
The following theorem illustrates this.

Theorem 3.4.1 (Levesque and Lakemeyer 2001) Let α contain no standard names and
no =. Then |= α iff α is a valid sentence in classical first-order logic.

Why do classical logic and L differ on =? The reason again are standard names:
they assert an infinite but countable domain. While classical first-order logic cannot
distinguish between countable and uncountable infinite domains by the Löwenheim-
Skolem theorem (Kleene 2002), a formula may very well require every model to have a
finite domain. For example, ∃x1 . . . ∃xk∀x (x = x1 ∨ . . . ∨ x = xk) ensures the domain
has no more than k elements in classical predicate logic with equality; it is easy to
see that this formula is unsatisfiable in L. Let δk be the negation of that sentence and
∆ = {δk | k ≥ 1} be a theory that asserts an infinite domain. Then any sentence α that
mentions no standard names is valid in L iff ∆ entails α in classical predicate logic with
equality (Levesque and Lakemeyer 2001). (Note that the interpretation of = is fixed in
predicate logic with equality to be the identity relation (Kleene 2002).)

As a corollary of Theorem 3.4.1 and the famous results by Church (1936a,b) and
Turing (1936) it follows that the decision problem for L is undecidable.

Corollary 3.4.2 Satisfiability in L is undecidable.

This of course limits the practical utility of L and any language that subsumes it,
which includes all logics presented in this and the following two chapters. To remedy
this, we investigate limited first-order reasoning in Chapters 6 and 7, which is decidable

37

3 Logical Foundations

for a large class of problems.

3.5 Modelling knowledge

Ordinary first-order logic is a fairly standard knowledge-representation language, so the
question may arise: why not use it also to represent knowledge and belief? Roughly,
the problem with L is that it does not allow fine-grained enough control over what is
known and, more importantly, what is not known. For example, we might know there
is something in a box, but we do not know what it is. The formula ∃x InBox(x) could
only capture the first part. So the question arises whether there is a way in L to capture
the second part as well.

One way to express that the identity of x is unknown would be to use another predi-
cate KnownInBox and to say ∃x (InBox(x) ∧ ¬KnownInBox(x)). Unfortunately, though,
this approach does not scale well. Suppose we know that either #1 or #2 is in the
box. The formula KnownInBox(#1) ∨ KnownInBox(#2) does not represent this appropri-
ately: the formula is true if KnownInBox(#1) or KnownInBox(#2) is true, but neither
should be, since neither #1 or #2 is known to be in the box! Hence another predicate
KnownInBox(#1)∨InBox(#2) would be necessary. In general, we would need such a predicate
for every formula that expresses incomplete knowledge.

Another solution that comes to mind is a three-valued semantics, where a third value
represents “unknown” besides the binary truth values. But the composition of two
unknowns is unclear. In the above example, we would have w[InBox(n)] = unknown
for all names n. But on the other hand, w |= ∃x InBox(x), so the unknowns somehow
should combine to knowledge. It is unclear how such a semantics could look like.

The standard tool to overcome such issues is to consider multiple possible worlds. The
concept is due to Kripke (1959) and Hintikka (1962). The intuition is that since the
agent has only incomplete knowledge, she considers many different worlds possible.
Knowledge is what is true in all these worlds. For example, if we had two possible worlds,
one of which satisfies InBox(#1) and the other InBox(#2), we would know InBox(#1) ∨
InBox(#2), but neither InBox(#1) nor InBox(#2). Syntactically, this is expressed with a
modal operator: K(InBox(#1) ∨ InBox(#2)) ∧ ¬KInBox(#1) ∧ ¬KInBox(#2).
OL uses possible worlds as the semantic model of knowledge, and we will stick with

this for the most part of this thesis. An alternative way would be to reify possible worlds,
thus avoiding a new semantics. For one thing, however, it seems counterintuitive to
represent a clearly semantic concept like worlds syntactically. For another, the additional
indirection would make reasoning in this theory unnecessarily complex.

38

3.6 The language OL

An important case of knowledge frequently encountered in knowledge representation
are knowledge bases. A knowledge base is special in that it intuitively captures the
agent’s knowledge to its full extent. Here, the lack of knowledge we want to express is
even infinite: everything is unknown unless it follows from the knowledge base. Even if
we reified possible worlds as objects in ordinary first-order logic, this would require a
meta-logical knowledge closure to express all these unknowns. In OL, by contrast, it is
captured with a modal operator for only-knowing: O(InBox(#1) ∨ InBox(#2)) stipulates
that all the agent knows is InBox(#1)∨InBox(#2), everything else is not known (including
but not limited to InBox(#1) and InBox(#2)).

3.6 The language OL

Definition 3.6.1 (Levesque and Lakemeyer 2001) The symbols of OL are the same as
for L (Definition 3.2.1) plus K and O. The terms are the same as in L (Definition 3.2.2).
The formulas are formed by the same rules as L (Definition 3.2.3) plus

• Kα and Oα are a formulas if α is a formula.

A formula that mentions noK orO is called objective. A formula that mentions function
and predicate symbols only within K or O is called subjective.

Kα may be read as “α is known.” Using a modal operator for knowledge allows
us to distinguish between de dicto and de re knowledge: knowing that there is some
x in the box is represented as K∃x InBox(x), whereas knowing an object in the box
can be written as ∃xKInBox(x). When a variable is quantified outside of the belief
modality as in de re knowledge, this is also referred to as quantifying-in. It also allows
for introspection: KKα means that we know that we know α.
Oα means “α is all that is known.” This concept is useful in knowledge representation

because when specifying a knowledge base, one typically assumes that it exhaustively
represents the agent’s knowledge. Only-knowing also is related to autoepistemic logic
(Levesque 1990; Moore 1985) and Reiter’s default logic (Lakemeyer and Levesque 2005;
Reiter 1980).

As a notational convention, we will use υ, φ, ψ for objective sentences.

3.7 The semantics of OL

The semantics of OL inherits Definitions 3.3.1 and 3.3.2 for worlds and the denotation
of terms, respectively. We can hence immediately proceed to give the semantics of the

39

3 Logical Foundations

language.

Definition 3.7.1 (Levesque and Lakemeyer 2001) The truth relation |= of OL is defined
with respect to a set of worlds e and a world w :

OL1. e,w |= P (t1, . . . , tk) iff w[P (n1, . . . , nk)] = 1 where ni = w(ti);
OL2. e,w |= (t1 = t2) iff n1 and n2 are identical names where ni = w(ti);
OL3. e,w |= ¬α iff e,w 6|= α;

OL4. e,w |= (α ∨ β) iff e,w |= α or e,w |= β;

OL5. e,w |= ∃xα iff e,w |= αx
n for some name n;

OL6. e,w |= Kα iff for all w ′, if w ′ ∈ e , then e,w ′ |= α;

OL7. e,w |= Oα iff for all w ′, w ′ ∈ e iff e,w ′ |= α.

Except for the addition of Rules OL6 and OL7 and the new parameter e , the semantics
matches the one of L from Definition 3.3.3. Note that the rule for only-knowing is
very similar to the one for ordinary knowledge, but also requires the converse direction.
Thus, Oα implies Kα and additionally maximizes the number of possible worlds in e .

In the following, we allow ourselves to omit e or w sometimes. Then e |= α is to say
e,w |= α for all w . Analogously, w |= α stands for e,w |= α for all e . We often use these
abbreviations for objective and subjective α, respectively.

It is straightforward to show that knowledge is closed under modus ponens and both
positively and negatively introspective.

Theorem 3.7.2 (Levesque and Lakemeyer 2001)

(i) |= Kα ∧ K(α ⊃ β) ⊃ Kβ;

(ii) |= Kα ⊃ KKα;

(iii) |= ¬Kα ⊃ K¬Kα.

In the terminology of modal logic, this makes Kα a K45 operator (Fagin, Halpern,
et al. 1995).

It is immediate that only-knowing is stronger than knowing.

Theorem 3.7.3 |= Oα ⊃ Kα.

The next property says that we can conjoin everything that is known.

Theorem 3.7.4 (Levesque and Lakemeyer 2001) |= Oα ∧ Kβ ⊃ O(α ∧ β).

40

3.8 Modelling actions

Of particular interest are entailments of the form Oα |= Kβ, which corresponds to
querying the knowledge base α whether β is known. The following theorem is of great
importance for such reasoning tasks.

Theorem 3.7.5 (Levesque and Lakemeyer 2001)
Let φ be objective. Then there is a unique e such that e |= Oφ.

Is is also easy to see that Theorem 3.7.3 can be strengthened to the following result.

Theorem 3.7.6 Let φ be objective. Then e |= Oφ iff e is maximal such that e |= Kφ.

Only-knowing is thus useful to uniquely determine an agent’s knowledge. Checking
whether Oφ entails Kα thus boils down to model-checking e |= Kα, where e |= Oφ is
unique.

As an example, let α be ∃x InBox(x). Then e |= Oα iff e = {w | w[InBox(n)] = 1
for some name n}. We therefore have Oα |= K∃x InBox(x) since every w ∈ e satisfies
InBox(n) for some name n. However, Oα |= ¬∃xKInBox(x), since for all names n there
is some w ∈ e such that w |= ¬InBox(n).

This example also illustrates the difference between knowing and only-knowing.
Clearly, Kα |= K∃x InBox(x) as well. This is because for every e ′ |= Kα, e ′ ⊆ e .
However, since e ′ is not necessarily maximal, Kα 6|= ¬∃xKInBox(x). Only-knowing
does maximize e and thus appropriately represents the agent’s unknowns.

The following is an immediate consequence of the unique-model property.

Corollary 3.7.7 (Levesque and Lakemeyer 2001)
Let φ be objective and σ be subjective. ThenOφ |= σ orOφ |= ¬σ.

3.8 Modelling actions

Ordinary first-order logic is static, just like OL. A popular way to bring dynamics to
logic is to endow functions and predicates with an additional argument that reifies the
current world state. In the situation calculus (McCarthy 1963; Reiter 1991, 2001), this
parameter is called situation, and predicates or functions whose value changes depending
on the situation are called fluent.

While there are other interpretations (McCarthy and Hayes 1969), Reiter takes a
situation as sequential history of executed actions a1, . . . , ak , represented as a term of
the form do(ak, do(ak−1, . . . do(a1, s) . . .)). Knowledge and sensing can be modelled in
this theory following the idea of possible worlds: a special fluent predicate serves as
accessibility relation of possible situations (Scherl and Levesque 2003); and when the
agent senses that φ(s) holds in the actual situation s , only those situations s ′ which also

41

3 Logical Foundations

satisfy φ(s ′) are stay accessible.
Reiter’s situation calculus is a dialect of classical first-order logic, which however needs

second-order logic to axiomatize the space of situations appropriately. Especially when
it comes to epistemic reasoning, reification and Tarskian semantics make reasoning quite
tedious at times.

Lakemeyer and Levesque (2004, 2011) propose an amalgamation of the situation
calculus with OL, called ES for epistemic situation calculus. What makes ES special is
that it retains the spirit of OL: situations are not reified but a purely semantic concept,
and actions occur as modal operators [a] and � (unlike in an earlier proposal (Lakemeyer
and Levesque 1998)). For example, in the original situation calculus saying that any
fragile x in the box is broken after dropping the box needs a formula ∀s∀x (InBox(x, s)∧
Fragile(x, s) ⊃ Broken(x, do(dropbox, s)). In ES, the same statement is expressed as
�∀x (InBox(x) ∧ Fragile(x) ⊃ [dropbox]Broken(x)). Actions go very well along with
epistemic features in this language.

The situation calculus itself does not stipulate which (physical or epistemic) effects an
action has. All it says is that executing a specific action in a certain situation always leads
to the same successor situation; actions are deterministic in this sense. An action’s effects
may very well be nondeterministic, though. However, in the most prevalent kind of
theory used in Reiter’s situation calculus and its descendants, the so-called basic action
theories, action effects are indeed deterministic. Uncertainty about the domain hence
needs to be encoded in the agent’s initial knowledge and beliefs.

3.9 The language ES

The language ES, in contrast to OL, is multi-sorted: standard names come in sorts object
and actions. There are also two different types of predicate symbols: fluent ones may
change their truth value as the result of actions, rigid ones do not. We introduce the
symbols and syntax of ES from scratch.

Definition 3.9.1 The symbols of ES are taken from the following vocabulary:

• infinitely many object standard names #1, #2, . . .;

• infinitely many first-order variables, written schematically as x ,

– of sort object, written schematically as y;

– of sort action, written schematically as a;

• infinitely many function symbols

42

3.9 The language ES

– of sort object, written schematically as g ;

– of sort action, written schematically as A;

• infinitely many predicate symbols

– of type fluent, written schematically as F ;

– of type rigid, written schematically as R;

• connectives and other symbols: =, ∨, ¬, ∃, �, K, O, round and square brackets,
comma.

Each function or predicate symbol has an arity which indicates how many arguments it
takes. Identifiers may be decorated with subscripts or superscripts. There shall be two
special unary fluent predicates called Poss and SF.

Intuitively, Poss(t) represents the precondition of the action t , and SF(t) represents
the sensing result of action t . For example, if t is the action of checking if the box is
empty, SF(t) would be true iff the box is empty. Of course, preconditions and sensing
results just like action effects are not fixed in the logic but to be defined axiomatically.

Definition 3.9.2 Standard names, written schematically as n, come in two sorts:

• the object standard names are #1, #2, . . .;

• the action standard names are of the form A(n1, . . . , nk) where A is an action
function symbol and the ni are object standard names.

The set of terms of sort object or action is the least set such that

• every variable and standard name is a term of the corresponding sort;

• g (t1, . . . , tk) is an object term if g is an object function symbol and the ti are
terms;

• A(t1, . . . , tk) is an action term if A is an action function symbol and the ti are
object terms.

A term that contains no variables is called ground. A ground term that contains only a
single function symbol is called primitive.

The differences of the version of ES we present here and the one from (Lakemeyer
and Levesque 2011) are already visible.

• We renamed the modalities Know and OKnow to K and O, respectively, in order
to be consistent with OL.

43

3 Logical Foundations

• We omit fluent functions here. This is merely to ease the presentation; functions
can be simulated in first-order logic with equality anyway, so our restriction
means no loss in expressivity.

• Our variant considers no second-order logic. Again, this eases the presentation.
We will return to this issue later in Section 5.6.

• Finally, in (Lakemeyer and Levesque 2011), action standard names are defined anal-
ogously to object standard names. In contrast, here they are primitive action terms.
While it may seem awkward at first sight, this helps us avoid a counterintuitive
behaviour of the semantics in (Lakemeyer and Levesque 2011).

Definition 3.9.3 The set of formulas of ES is the least set such that

• P (t1, . . . , tk) is a formula where P is a predicate symbol and the ti are terms;

• (t1 = t2) is a formula where t1 and t2 are terms of the same sort;

• ¬α, (α ∨ β), ∃xα are formulas where α and β are formulas and x is a variable;

• [t]α and �α are formulas where α is a formula and t is an action term;

• Kα and Oα are formulas where α is a formula.

A formula of the form P (t1, . . . , tk) is called atomic or just an atom. A formula that
contains no variables is called ground. A ground atom whose arguments t1, . . . , tk are
standard names is called primitive. A formula that contains no free variable is called a
sentence.

The essential addition over OL are the expressions [t]α and �α, both of which
concern actions. The former means “after doing t , α is true,” the latter means “after
any sequence of actions, α holds true.”

3.10 The semantics of ES

To account for actions, we need to extend the concept of worlds from L and OL
(Definition 3.3.1). A world shall not only determine a momentary snapshot but also
determine future states.

Definition 3.10.1 An action sequence is the empty sequence 〈〉 or the concatenation
z · n of an action sequence z and an action standard name n. A world w is a function

• from the primitive object terms g (n1, . . . , nk) to object standard names;

44

3.10 The semantics of ES

• from the primitive rigid atoms R(n1, . . . , nk) to truth values {0, 1};
• from the primitive fluent atoms F (n1, . . . , nk) and action sequences to truth values

{0, 1}.
Following Reiter’s terminology and his concept of situation terms (Reiter 2001), we

occasionally refer to an action sequence as situation, and to the empty sequence as the
initial situation.

Definition 3.10.2 The denotation w(t) of a term t is defined as follows:

• w(n) = n for every standard name n;

• w(g (t1, . . . , tk)) = w[g (n1, . . . , nk)] where ni = w(ti) and g is an object function
symbol;

• w(A(t1, . . . , tk)) = A(n1, . . . , nk) where ni = w(ti) and A is an action function
symbol;

For example, if gift is an object constant and unbox is a unary action symbol, we
could have w(gift) = #5, and then w(unbox(gift)) = unbox(#5).

As mentioned above, actions not only have effects but can also produce new infor-
mation through sensing. The sensing result of an action n is represented by the atom
SF(n). Semantically, the sensing effect of n is reflected by dropping all possible worlds
that disagree with the real world’s value of SF(n).
Definition 3.10.3 We write w ′ 'z w to say that w ′ agrees with w on the sensing
throughout action sequence z , which is defined inductively by

• w ′ '〈〉 w for all w ′ and w ;

• w ′ 'z ·n w iff w ′ 'z w , w ′[Poss(n), z] = 1, and w ′[SF(n), z] = w[SF(n), z].
Intuitively, in w ′ 'z w the first world w ′ is a possible world, and w is the actual

world where the sensing happened. Besides requiring that both worlds agree on SF(n),
the relation also requires n to be a legal action in w ′ (in some variants of ES the latter
requirement is omitted, for example, in (Lakemeyer and Levesque 2004)).

Lakemeyer and Levesque (2011) thirdly require in w ′ 'z w both worlds to agree on
rigid terms and atoms. In their formalization, action terms are interpreted analogously
to object terms and mapped to action standard names, which are atomic entities just like
object standard names. With the additional constraint, they ensure that the standard
names in z refer to the same actions in both the actual and the possible worlds. (Claßen

45

3 Logical Foundations

(2013) hence weakens the requirement to only hold for action terms.) This requirement
brings trouble when we want to extend Levesque’s representation theorem to ES, as
we will do in Section 5.9. We briefly elaborate on the problem in Section 5.12. The
reader familiar with the representation theorem may already verify that the formula
((n = A) ⊃ K(n = A)) for an action standard name n and an action constant A is
valid in ES, but the classical representation theorem would reduce the sentence to
((n = A) ⊃ false).
Definition 3.10.4 The truth relation |= of ES is defined with respect to a set of worlds
e , a world w , and an action sequence z :

ES1. e,w, z |= R(t1, . . . , tk) iff
R is rigid and w[R(n1, . . . , nk)] = 1 where ni = w(ti);

ES2. e,w, z |= F (t1, . . . , tk) iff
F is fluent and w[F (n1, . . . , nk), z] = 1 where ni = w(ti);

ES3. e,w, z |= (t1 = t2) iff n1 and n2 are identical names where ni = w(ti);
ES4. e,w, z |= ¬α iff e,w, z 6|= α;

ES5. e,w, z |= (α ∨ β) iff e,w, z |= α or e,w, z |= β;

ES6. e,w, z |= ∃xα iff e,w, z |= αx
n for some name n of the same sort as x ;

ES7. e,w, z |= [t]α iff e,w, z · n |= α where n = w(t);
ES8. e,w, z |= �α iff e,w, z · z ′ |= α for every action sequence z ′;

ES9. e,w, z |= Kα iff for all w ′ 'z w , if w ′ ∈ e , then e,w ′, z |= α;

ES10. e,w, z |= Oα iff for all w ′ 'z w , w ′ ∈ e iff e,w ′, z |= α.

Lakemeyer and Levesque (2004, 2009, 2011) have proposed several alternative defini-
tions for only-knowing. The trouble with the above Rule ES10, which is taken from (La-
kemeyer and Levesque 2004), is that the unique-model property of only-knowing from
Theorem 3.7.5 does not hold true after actions. For example, consider SF(n)∧[n]Otrue.
Then any model e contains all worlds that satisfy SF(n). But Rule ES10 also allows e to
contain an arbitrary number of additional worlds that falsify SF(n).

Lakemeyer and Levesque (2009) fix this issue by progressing all worlds by z . This
way, they retain the unique-model property, so that they can capture all that is known
after actions. More precisely, their definition is

46

3.11 Discussion

ES9’. e,w, z |= Kα iff for all w ′, if w ′ ∈ ewz , then ewz ,w ′, 〈〉 |= α;

ES10’. e,w, z |= Oα iff for all w ′, w ′ ∈ ewz iff ewz ,w ′, 〈〉 |= α;

where the progression of a set of worlds is ewz = {w ′z | w ′ ∈ e and w ′ 'z w} and for a
single world w ′z [F (~n), z ′] = w ′[F (~n), z · z ′] and w ′z [R(~n)] = w ′[R(~n)].

Alternatively, one could progress e and w already in Rules ES7 and ES8. Then the z
parameter is no longer needed for |=. We devise such a semantics for ESB, our variant
of ES, in Chapter 5.

3.11 Discussion

This chapter introduced the logical foundations of this thesis: the non-modal language
L, the logic of only-knowing OL, and finally the epistemic situation calculus ES,
which are subsumed by each other. L extends classical first-order logic with a feature
called standard names which allow to represent the identity of objects. OL extends this
language with modalities for knowing and only-knowing. ES further adds actions and
sensing in the spirit of Reiter’s situation calculus.

While knowledge needs not necessarily be correct, there are still important limitations
which we address in the upcoming chapters.

For one thing, knowledge is unconditional. For example, we might believe that
someone is Italian, but if not, she presumably is Australian. The only sort of conditional
statement supported by the logics from this chapter is material implication. The sentence
“if she is not Italian, then α” can only be translated to ¬Italian ⊃ α. Since we know she
is Italian, this material implication is vacuously true. To remedy this, the next chapter
introduces BO, an extension of OL to conditional belief that allows to express such
beliefs. We prefer the term “belief” over “knowledge” for such conditionals, as it suggests
that the agent the possibility into account that is beliefs are wrong. We continue to use
“knowledge” in the spirit of OL where the corresponding information is assumed to be
correct.

For another, knowledge is indefeasible. For example, when the agent knows φ and
then senses ¬φ in ES, the agent is in a state of logical inconsistency, in which she knows
everything. Arguably, this is not useful in practical considerations. In Chapter 5 we
introduce ESB, which amalgamates BO with actions like ES does with OL, but deals
more reasonably with contradictory information by giving up beliefs in an appropriate
way.

47

4 Conditional Belief and Only-Believing

This chapter introduces a logic of conditional belief called BO. Conditional beliefs are
ubiquitous in our daily lives when we reason about different contingencies. Often, they
are of the form “if some premise holds, then presumably some consequent is true.”

What makes such conditionals special is that the premise may be (or believed to be)
counterfactual, and still an agent could reasonably consider what would follow if the
premise was true. In OL, such a statement cannot be represented appropriately: the only
form of conditional in OL is the material implication, which is vacuously true for a false
premise.
BO is a descendant of OL and inherits many of its ideas, but extends it with the

notion of conditional belief. In particular, it generalizes the concept of only-knowing to
conditional belief; we refer to this conditional variant of only-knowing as only-believing.
By an embedding theorem we will see that indeed BO soundly extends OL. We also
investigate the close relationship of only-believing to Pearl’s System Z (Pearl 1990).

The presentation of BO is based on (Schwering and Lakemeyer 2014, 2015). Some of
the longer proofs can be found in Appendix A.

4.1 Conditional belief versus knowledge

To see why conditional belief is a more general concept than knowledge, consider the
following example. (We prefer this example over Example 1.1.1 to illustrate the results
in this chapter and later in Chapters 6 and 7, as it involves no actions.)

Example 4.1.1 Suppose we expect a guest for dinner. We don’t know much about her
preferred diet yet, but we do have some (somewhat narrow-minded) beliefs:

• Most Australians are not Italians, and vice-versa.

• Australians usually eat kangaroo meat.

• We believe our guest is Italian or a vegetarian, and
if she is not Italian, she presumably is Australian.

49

4 Conditional Belief and Only-Believing

e3 |¬φ e3 | φ

e2 |¬φ e2 | φ

e1

Figure 4.1: A system of spheres. The hatched area indicates φ-worlds; the most-plausible
ones occur in e2, and e3 contains additional ones; there is none among the
most-plausible worlds e1. The conditional “if φ is true, then presumably ψ is
also true” holds when the worlds in the double-hatched area satisfy ψ.

• We know that kangaroo is meat, and that vegetarians do not eat meat.

Given this conditional knowledge base, do we expect our guest to be a vegetarian in case
she is not Italian?

Monotonic reasoning would suggest so: our belief of her being Italian or a vegetarian
yields that she must be a vegetarian if not Italian. But she also must be Australian, hence
eat kangaroo, and thus be a non-vegetarian – that is, in a monotonic logic everything is
believed if she is not Italian, because the beliefs are inconsistent with that contingency.

Conditional beliefs do not trap into inconsistency that easily. They detect that the
premise “not Italian” is inconsistent with the most-plausible scenarios, and therefore go
on to look for less-plausible scenarios where the premise holds, and check the consequent
in these scenarios. In our example, we hence believe that if the guest is not Italian, she
presumably is an Australian kangaroo-eater, but not a vegetarian.

Perhaps the most popular way to represent conditional beliefs is by a system of
spheres due to Lewis (1973) and Grove (1988). Every sphere is a set of possible worlds,
like the e in the semantics of OL. The idea is that one starts out with a narrow set
of possible worlds, which is contained by larger spheres. Such a system is depicted in
Figure 4.1. A conditional “if α, then presumably β” holds when the material implication
(α ⊃ β) holds at the innermost sphere consistent with α. The logic we present next
follows this model.

50

4.2 The language BO

4.2 The language BO

Definition 4.2.1 The symbols of BO are the same as for L (Definition 3.2.1) plus curly
brackets,⇒, B, and O. The terms are the same as in L (Definition 3.2.2). The formulas
are formed by the same rules as L (Definition 3.2.3) plus

• B(α1 ⇒ β1) and O{α1 ⇒ β1, . . . , αm ⇒ βm} are formulas if αi, βi are formulas.

A formula that mentions no B or O is called objective. A set {φ1 ⇒ ψ1, . . . , φm ⇒ ψm}
is called objective when all φi and ψi are objective. A formula that mentions function
and predicate symbols only within B or O is called subjective.

We read the conditional belief B(α ⇒ β) as “if α is true, then presumably β is also
true,” or alternatively as counterfactual “if α was true, then β would also be true.” We
call O{α1 ⇒ β1, . . . , αm ⇒ βm} the only-believing operator. It generalizes Levesque’s
only-knowing from OL and is read as “the conditionals αi ⇒ βi are all that is believed.”

We define the following abbreviations:

• Bα stands for B(true⇒ α);
• Kα stands for B(¬α ⇒ false).

Bα and Kα are read as “α is believed” and “α is known,” respectively. We also adopt
the other logical abbreviations from L. Like with other unary operators, B and K shall
bind stronger than the logical connectives.

Before we proceed with the semantics, let us see how Example 4.1.1 can be expressed
in BO.

Example 4.2.2 Let the predicates Aussie, Italian, Veggie represent that the guest is
Australian, Italian, a vegetarian, respectively; Eats(x) that x is among her preferred diet;
Meat(x) that x is meat. Let roo be a standard name representing kangaroo meat. Then
all we believe is

• Aussie⇒ ¬Italian and Italian⇒ ¬Aussie;

• Aussie⇒ Eats(roo);
• true⇒ Italian ∨ Veggie and ¬Italian⇒ Aussie;

• ¬Meat(roo)⇒ false and ¬∀x (Veggie ∧Meat(x) ⊃ ¬Eats(x))⇒ false.

The question “if she is not Italian, is she presumably not a vegetarian?” then boils down
to whether OΓ entails B(¬Italian⇒ ¬Veggie), where Γ is the set that contains the above
conditionals.

51

4 Conditional Belief and Only-Believing

4.3 The semantics of BO

The semantics of BO inherits from L Definitions 3.3.1 and 3.3.2 of worlds and of the
denotation of terms, respectively. Before we proceed with the semantics of the language,
we need to formalize the notion of an epistemic state. It follows the concept of system
of spheres mentioned above and depicted in Figure 4.1. To keep matters simple, we
assume only finitely many different spheres, which are consecutively numbered.

Definition 4.3.1 An epistemic state ~e is an infinite sequence of sets of worlds ep , p ∈
P = {1, 2, . . .}, that

• is concentric, that is, ep ⊆ ep+1 for all p ∈ P;

• converges, that is, eq = ep for some q ∈ P and all p ≥ q .

We use 〈e1, . . . , eq〉 as a short notation for ~e when it converges at level q or earlier.

Note that every ~e can be expressed as 〈e1, . . . , eq〉 for some q ∈ P; q does not need to
be minimal, though; for example, 〈e1, e2〉 = 〈e1, e2, e2〉.

An epistemic state induces a ranking of worlds and sentences by their plausibility.
The plausibility of a world is the plausibility of the first sphere that contains said world.
The plausibility of a sentence corresponds to the most-plausible world that satisfies that
sentence; we denote the plausibility of α in an epistemic state ~e by b~e | αc. In case there
is no such world in ~e , b~e | αc cannot be a natural number. For that purpose, we use
∞ < P to represent an “undefined” plausibility, with the understanding that p < ∞ and
∞ + p = p +∞ = ∞ for all p ∈ P and ∞ +∞ = ∞. Thus, b~e | αc = ∞ indicates that all
worlds in ~e satisfy ¬α. To avoid confusion, we always make explicit when an expression
may take the value ∞.

Definition 4.3.2 The truth relation |= of BO is defined with respect to an epistemic
state ~e and a world w :

BO1. ~e,w |= P (t1, . . . , tk) iff w[P (n1, . . . , nk)] = 1 where ni = w(ti);
BO2. ~e,w |= (t1 = t2) iff n1 and n2 are identical names where ni = w(ti);
BO3. ~e,w |= ¬α iff ~e,w 6|= α;

BO4. ~e,w |= (α ∨ β) iff ~e,w |= α or ~e,w |= β;

BO5. ~e,w |= ∃xα iff ~e,w |= αx
n for some name n;

BO6. ~e,w |= B(α ⇒ β) iff
for all p ∈ P, if p ≤ b~e | αc and w ′ ∈ ep , then ~e,w ′ |= (α ⊃ β);

52

4.4 Properties of conditional belief

BO7. ~e,w |= O{α1 ⇒ β1, . . . , αm ⇒ βm} iff
for all p ∈ P, w ′ ∈ ep iff ~e,w ′ |= ∧i:b~e | αi c≥p(αi ⊃ βi);

where b~e | αc = min{p | p = ∞ or ~e,w |= α for some w ∈ ep} denotes the plausibility
of α in ~e .

We allow ourselves to omit ~e or w when writing ~e,w |= α by the same convention as
for OL. In particular, for subjective sentences σ we may just write ~e |= σ.

Moreover, we will subscript the |= symbol with the name of the logic to avoid
ambiguity when necessary. For example, |=OL refers to truth of OL from Definition 3.7.1,
and |=BO refers to truth in BO as defined above.

4.4 Properties of conditional belief

The conditional belief operator B(α ⇒ β) is used to form queries about the agent’s
beliefs. It expresses the agent’s belief that if α was true, then β would be true as well.
Or in terms of possible worlds, the most-plausible α-worlds must satisfy β as well.
This operator turns out to be a quite versatile tool. Besides the general conditional or
counterfactual reading, the following intuitions can be captured with it.

• B(true ⇒ α) represents ordinary belief in α: it holds when all most-plausible
worlds satisfy α. It is therefore abbreviated by Bα.

• B(¬α ⇒ false) captures the usual semantics of indefeasible knowledge of α: all
worlds at all spheres satisfy α. It is therefore abbreviated by Kα.

• B(α ∨ β ⇒ ¬β) asserts that α is strictly more plausible than β: the first (α ∨ β)-
worlds must be ¬β-worlds.

• ¬B(α ⇒ ¬β) says that β would be considered possible if α were true: among the
most-plausible α-worlds at least one is a β-world. In particular, ¬B(α ⇒ false)
and ¬K¬α express that there is at least one α-world.

In this section we examine a few properties of conditional belief. En route, we shall
familiarize ourselves with the formalism.

The following alternative formulation of its semantics is sometimes more convenient
to work with than Rule BO6.

Theorem 4.4.1 ~e |= B(α ⇒ β) iff b~e | αc = ∞ or ~e,w |= (α ⊃ β) for all w ∈ eb~e | αc .
Proof. For the only-if direction let ~e |= B(α ⇒ β). Then by Rule BO6, for all p ∈ P, if
p ≤ b~e | αc and w ∈ ep , then ~e,w |= (α ⊃ β). If b~e | αc = ∞, the right-hand side of the

53

4 Conditional Belief and Only-Believing

theorem trivially holds. Otherwise ~e,w |= (α ⊃ β) for all w ∈ eb~e | αc , and the right-hand
side holds again.

For the if direction first let b~e | αc = ∞. Then ~e,w 6|= α for all w ∈ ep and p ∈ P.
Hence ~e,w |= (α ⊃ β) for all w ∈ ep and p ∈ P, and so ~e |= B(α ⇒ β) by Rule BO6.
Now let b~e | αc , ∞ and ~e,w |= (α ⊃ β) for all w ∈ eb~e | αc . By the concentricity
constraint in Definition 4.3.1, e1 ⊆ . . . ⊆ eb~e | αc . Thus for all p ∈ P, if p ≤ b~e | αc and
w ∈ ep , then ~e,w |= (α ⊃ β), which by Rule BO6 gives ~e |= B(α ⇒ β). �

Another easy exercise is to confirm that Kα indeed expresses knowledge of α as
claimed above.

Theorem 4.4.2 ~e |= Kα iff ~e,w |= α for all w ∈ ep and p ∈ P.

Proof. For the only-if direction, let ~e |= Kα. By Rule BO6, for all p ∈ P, if p ≤ b~e |¬αc
and w ∈ ep , then ~e,w |= (¬α ⊃ false), which simplifies to ~e,w |= α (*). We show
by induction on p that p ≤ b~e |¬αc for all p ∈ P, which immediately gives us the
right-hand side of the theorem. The base case holds trivially. For the induction step,
suppose p ≤ b~e |¬αc. Then ~e,w |= α for all w ∈ ep by (*), and thus b~e |¬αc > p, that
is, p + 1 ≤ b~e |¬αc.

Conversely, let ~e,w |= α for all w ∈ ep and p ∈ P. Then b~e |¬αc = ∞, and by
Rule BO6, ~e |= Kα. �

Next, we prove that B(α ∨ β ⇒ ¬β) says that α is more plausible than β.

Theorem 4.4.3 ~e |= B(α ∨ β ⇒ ¬β) iff b~e | αc < b~e | βc or b~e | αc = b~e | βc = ∞.
Proof. ~e |= B(α ∨ β ⇒ ¬β) iff (by Theorem 4.4.1) b~e | α ∨ βc = ∞ or ~e,w |= (α ∨ β ⊃
¬β) for all w ∈ eb~e | α∨βc . The former is equivalent to b~e | αc = b~e | βc = ∞. The latter
holds iff ~e,w 6|= β for all w ∈ eb~e | α∨βc iff (by concentricity of ~e) b~e | βc > b~e | α ∨ βc =
b~e | αc. �

The following theorem establishes several general properties of the conditional belief
operator. As usual, neither transitivity nor monotonicity nor contraposition hold for
conditional beliefs (Properties (i), (ii), (iii)). Knowledge and belief are closed under
modus ponens from material implications and from counterfactual conditionals (Proper-
ties (iv), (v), (vi)), and what is believed is a subset of what is known (Property (vii)). The
abbreviations Bα and Kα both are positively and negatively introspective (Properties
(vii), (viii), (ix)). Hence, they are K45 operators (Fagin, Halpern, et al. 1995). The
Barcan formula is satisfied as well (Property (x)) and the agent is moreover omniscient
(Property (xi)). Somewhat surprising is perhaps Property (xii): when a conditional is
nested in another conditional’s consequent, then the outer conditional’s antecedent
is irrelevant to the inner conditional. Alternatively one could condition the nested

54

4.4 Properties of conditional belief

belief on the outer conditional’s antecedent as well. However, our simple semantics
is advantageous when it comes to the representation theorem and later, in Chapter 5,
belief regression.

Theorem 4.4.4

(i) 6|= B(α ⇒ β) ∧ B(β ⇒ γ) ⊃ B(α ⇒ γ);
(ii) 6|= B(α ⇒ γ) ⊃ B(α ∧ β ⇒ γ);
(iii) 6|= B(α ⇒ β) ≡ B(¬β ⇒ ¬α);
(iv) |= Bα ∧ B(α ⊃ β) ⊃ Bβ;

(v) |= Kα ∧ K(α ⊃ β) ⊃ Kβ;

(vi) |= Bα ∧ B(α ⇒ β) ⊃ Bβ;

(vii) |= Kα ⊃ Bα;

(viii) |= B(α ⇒ β) ⊃ KB(α ⇒ β);
(ix) |= ¬B(α ⇒ β) ⊃ K¬B(α ⇒ β);
(x) |= ∀xB(α ⇒ β) ⊃ B(α ⇒ ∀x β) where x does not occur freely in α;

(xi) |= Kα if |= α;
(xii) |= B(α ⇒ B(β ⇒ γ)) ∧ ¬K¬α ⊃ B(β ⇒ γ).
Proof. (i) We show that ~e 6|= B(¬R ⇒ true) ∧ B(true ⇒ R) ⊃ B(¬R ⇒ R) for ~e
with e1 = {w | w |= R} and e2 = {w | w |= true}. Firstly, ~e |= B(¬R ⇒ true)
iff (by Theorem 4.4.1) b~e |¬Rc = ∞ or w |= ¬R ⊃ true for all w ∈ eb~e |¬Rc , which
trivially holds. Secondly, ~e |= B(true ⇒ R) iff (by Theorem 4.4.1) b~e | truec = ∞
or w |= true ⊃ R for all w ∈ eb~e | truec , which holds by definition of e1. However,
~e |= B(¬R ⇒ R) iff b~e |¬Rc = ∞ or w |= ¬R ⊃ R for all w ∈ eb~e |¬Rc , which is false
because b~e |¬Rc = 2 and w 6|= R for some w ∈ e2.

(ii) Let R and ~e be as in the previous case. We showed that ~e |= B(true ⇒ R), but
~e 6|= B(¬R ⇒ R), so clearly strengthening the premise in B(true⇒ R) by ¬R renders
it false: ~e 6|= B(true ∧ ¬R ⇒ R).
(iii) Again let R and ~e be as in the first case. We show ~e 6|= B(true ⇒ R) ≡ B(¬R ⇒
¬true), which is just what the abbreviation BR ≡ KR stands for. In the first case we
already showed that ~e |= B(true⇒ R). However, w 6|= R for some w ∈ e2, so ~e 6|= KR
by Theorem 4.4.2.

55

4 Conditional Belief and Only-Believing

(iv) We show that ~e |= Bα∧B(α ⊃ β) ⊃ Bβ for all ~e . Let ~e |= Bα∧B(α ⊃ β). We need
to show that ~e |= Bβ, which by Theorem 4.4.1 holds iff b~e | truec = ∞ or ~e,w |= β for
all w ∈ eb~e | truec . Suppose b~e | truec , ∞, for otherwise ~e |= Bβ follows trivially. From
the antecedent ~e |= Bα∧B(α ⊃ β) we obtain by Theorem 4.4.1 that ~e,w |= α∧ (α ⊃ β)
for all w ∈ eb~e | truec . Thus ~e,w |= β for all w ∈ eb~e | truec , and so ~e |= Bβ.

(v) We show that ~e |= Kα ∧ K(α ⊃ β) ⊃ Kβ for all ~e . Let ~e |= Kα ∧ K(α ⊃ β). By
Theorem 4.4.2, ~e,w |= α and ~e,w |= (α ⊃ β) for all w ∈ ep and p ∈ P. Hence, ~e,w |= β

for all w ∈ ep and p ∈ P, and so ~e,w |= Kβ by Theorem 4.4.2.

(vi) It suffices to show ~e |= B(α ⇒ β) ⊃ B(α ⊃ β) for all ~e ; the property then follows
with Property (iv). According to Rule BO6 we have

• ~e |= B(α ⇒ β) iff
for all p ∈ P, if p ≤ b~e | αc and w ′ ∈ ep , then ~e,w ′ |= (α ⊃ β);

• ~e |= B(α ⊃ β) iff
for all p ∈ P, if p ≤ b~e | truec and w ′ ∈ ep , then ~e,w ′ |= true ⊃ (α ⊃ β).

We show that the right-hand side of the first line subsumes the right-hand side of the
second. Clearly, ~e,w ′ |= true ⊃ (α ⊃ β) iff ~e,w ′ |= (α ⊃ β). So it only remains to be
shown that the second line’s if-condition is at least as strong as the first line’s. It suffices
to show b~e | αc ≥ b~e | truec, which clearly since for any w with w |= α, also w |= true.

(vii) Let ~e |= Kα. Then by Theorem 4.4.2, ~e,w |= α for all w ∈ ep and p ∈ P,
particularly when p ≤ b~e | truec. Thus by Rule BO6, ~e |= Bα.

(viii) Let ~e |= B(α ⇒ β). Then ~e,w |= B(α ⇒ β) for arbitrary w , and particularly for
all w ∈ ep and p ∈ P. Thus by Theorem 4.4.2, ~e |= KB(α ⇒ β).
(ix) Let ~e 6|= B(α ⇒ β). Then similar to the above, ~e,w 6|= B(α ⇒ β) for arbitrary w ,
and particularly for all w ∈ ep and p ∈ P. Thus by Theorem 4.4.2, ~e |= K¬B(α ⇒ β).
(x) Let ~e |= ∀xB(α ⇒ β). By Rules BO3, BO5, and BO6, for all standard names n, for
all p ∈ P, if p ≤ b~e | αc and w ∈ ep , then ~e,w |= α ⊃ βxn . Reintroducing the quantifier
by Rules BO3 and BO5 in front of β yields that for all p ∈ P, if p ≤ b~e | αc and w ∈ ep ,
then ~e,w |= α ⊃ ∀x β. Thus by Rule BO6, ~e |= B(α ⇒ ∀x β).
(xi) Let ~e,w |= α for all ~e,w . Then ~e,w |= ¬α ⊃ false for all w ∈ ep and p ∈ P for all
~e , so by Theorem 4.4.2, ~e |= Kα follows.

(xii) Let ~e |= B(α ⇒ B(β ⇒ γ)) ∧ ¬K¬α. The first assumption implies by Theo-
rem 4.4.1 that b~e | αc , ∞ or ~e,w |= α ⊃ B(β ⇒ γ) for all w ∈ eb~e | αc . The second
assumption implies by Theorem 4.4.2 that b~e | αc , ∞, and thus ~e,w |= α for some
w ∈ eb~e | αc . Hence ~e,w |= α ∧ (α ⊃ B(β ⇒ γ)) for that w , so ~e |= B(β ⇒ γ). �

56

4.5 Unique-model property of only-believing

Before we turn to the unique-model property of only-believing in the next section, we
observe some relations with ordinary conditional belief. To begin with, only-believing
is stronger than ordinary conditional belief.

Theorem 4.4.5 |= O{α1 ⇒ β1, . . . , αm ⇒ βm} ⊃ ∧i B(αi ⇒ βi).
Proof. Suppose ~e |= O{α1 ⇒ β1, . . . , αm ⇒ βm}. By Rule BO7, for every p ∈ P,w ∈ ep
iff ~e,w |= ∧i:b~e | αi c≥p(αi ⊃ βi). Hence for every p ∈ P, if w ∈ ep and p ≤ b~e | αic, then
~e,w |= (αi ⊃ βi). By Rule BO6, ~e |= B(αi ⇒ βi). �

In the case of objective αi , βi there is also a converse relation of conditional belief
and only-believing, as we shall see in Theorem 4.6.2.

Moreover, conditional belief can be conjoined to the only-believing.

Theorem 4.4.6 Let Γ = {α1 ⇒ β1, . . . , αm ⇒ βm}.
Then |= OΓ ∧ B(α ⇒ β) ⊃ OΓ ∪ {α ⇒ β}.
Proof. Let ~e |= OΓ ∧ B(α ⇒ β). Then for all p ∈ P, if p ≤ b~e | αc and w ∈ ep ,
~e,w |= (α ⊃ β). To prove ~e |= OΓ ∪ {α ⇒ β} we show the right-hand side of
Rule BO7. For the only-if direction, for all p ∈ P and w ∈ ep , we have by assumption
~e,w |= ∧i:b~e | αi c≥p(αi ⊃ βi) ∧ ∧b~e | αc≥p(α ⊃ β). Conversely, for every p ∈ P, if
~e,w |= ∧i:b~e | αi c≥p(αi ⊃ βi) ∧ ∧b~e | αc≥p(α ⊃ β), then ~e,w |= ∧i:b~e | αi c≥p(αi ⊃ βi),
which implies w ∈ ep . �

Note that there are analogous results for only-knowing in OL, namely Theorems
3.7.3 and Theorem 3.7.4.

4.5 Unique-model property of only-believing

The idea behind only-believing is to determine all the agent believes – which particularly
includes what she is ignorant of. It is therefore a convenient way to specify what the
agent believes from a (conditional) knowledge base.

Here we show that only-believing always has a uniquemodel provided the conditionals
are objective. The proof proceeds by two lemmas. The first says that there is at most
one model, and the second says that there always is at least one. The proof of the second
lemma also shows how such a model can be determined.

Lemma 4.5.1 Let Γ = {φ1 ⇒ ψ1, . . . , φm ⇒ ψm} be objective.
If ~e |= OΓ and ~e ′ |= OΓ, then ~e = ~e ′.

Proof. Let ~e |= OΓ and ~e ′ |= OΓ. We show by induction on p ∈ P that ep = e ′p and that
b~e | φic > p iff b~e ′ | φic > p for all i. For the base case consider p = 1. By Rule BO7,

57

4 Conditional Belief and Only-Believing

w ∈ e1 iff w |= ∧1≤i≤m(φi ⊃ ψi) iff w ∈ e ′1. Thus e1 = e ′1, and b~e | φic > 1 iff w 6|= φi
for all w ∈ e1 = e ′1 iff b~e ′ | φic > 1.

For the induction step suppose the statement holds for p−1. By induction, b~e | φic ≥ p
iff b~e ′ | φic ≥ p for all i (*). By Rule BO7, w ∈ ep iff w |= ∧i:b~e | φi c≥p(φi ⊃ ψi) iff (by
(*)) w |= ∧i:b~e ′ | φi c≥p(φi ⊃ ψi) iff w ∈ e ′p . Thus ep = e ′p , and b~e | φic > p iff w 6|= φi for
all w ∈ ep = e ′p iff b~e ′ | φic > p. �

Lemma 4.5.2 Let Γ = {φ1 ⇒ ψ1, . . . , φm ⇒ ψm} be objective.
Then there is an ~e = 〈e1, . . . , em+1〉 such that ~e |= OΓ.

Proof. Let ~e = 〈e1, . . . , em+1〉, where ep = {w | w |= ∧i:b〈e1,...,ep−1〉 | φi c≥p(φi ⊃ ψi)} where
〈〉 shall stand for 〈{}〉. This is well-defined as the right-hand side for ep only refers to
e1, . . . , ep−1. Note that b〈e1, . . . , ep−1〉 | αc ≥ p iff b~e | αc ≥ p for any objective α (*). To
see that for all i either b~e | φic ≤ m or b~e | φic = ∞ (**), suppose there is a “hole” in
the plausibility ranking, that is, there is some p and i such that p + 1 = b~e | φic , ∞,
and b~e | φ jc , p and for all j . Then w ∈ ep iff (by (*)) w |= ∧k:b~e | φk c≥p(φk ⊃ ψk) iff
(since p is a hole) w |= ∧k:b~e | φk c≥p+1(φk ⊃ ψk) iff w ∈ ep+1. Then w |= φi for some
w ∈ ep+1 = ep , which contradicts the assumption p + 1 = b~e | φic and thus confirms (**).
By (*) and (**), ~e satisfies Rule BO7. �

Together, Lemmas 4.5.1 and 4.5.2 constitute the unique-model property of only-
believing, a fundamental property of only-believing.

Theorem 4.5.3 Let Γ = {φ1 ⇒ ψ1, . . . , φm ⇒ ψm} be objective.
Then there is a unique ~e = 〈e1, . . . , em+1〉 such that ~e |= OΓ.

Proof. By Lemma 4.5.2, ~e exists, and by Lemma 4.5.1, it unique. �

An immediate corollary is that only-believing determines the truth of subjective
formulas.

Corollary 4.5.4 Let Γ = {φ1 ⇒ ψ1, . . . , φm ⇒ ψm} be objective and σ be subjective.
ThenOΓ |= σ andOΓ |= ¬σ.

To conclude this section, let us illustrate by means of Example 4.1.1 how only-
believing uniquely determines the agent’s beliefs and how the corresponding epistemic
state can be generated.

Example 4.5.5 Let Γ contain the conditionals from the formalization in Example 4.2.2.
The first sphere e1 of ~e |= OΓ contains all worlds that satisfy all materialized conditionals

58

4.5 Unique-model property of only-believing

from Γ:

e1 = {w | w |= (¬Aussie ∨ ¬Italian) ∧ (¬Aussie ∨ Eats(roo)) ∧
(Italian ∨ Veggie) ∧ (Italian ∨Aussie) ∧ µ}

where µ = Meat(roo) ∧ ∀x (Veggie ∧Meat(x) ⊃ ¬Eats(x)) represents our knowledge
about meat and vegetarians.

For the next sphere, we need to figure out the plausibilities b~e | φc for the conditionals
φ ⇒ ψ ∈ Γ. To begin with, we need to answer if b~e |Aussiec ≥ 2, that is, if e1 is
inconsistent with Aussie. To give the answer, we can split on Veggie: from Veggie we
obtain ¬Eats(roo) (by µ) and thus ¬Aussie; on the other hand, from ¬Veggie we infer
Italian and thus ¬Aussie; so indeed e1 is inconsistent with Aussie, that is, b~e |Aussiec ≥ 2.
By the same argument, b~e |¬Italianc ≥ 2. It is moreover easy to see that e1 is consistent
and thus b~e | Italianc = b~e | truec = 1. Hence the conditionals Aussie ⇒ ¬Italian,
Aussie⇒ Eats(roo), ¬Italian⇒ Aussie, plus the knowledge about meat and vegetarians
determine the second sphere:

e2 = {w | w |= (¬Aussie∨¬Italian)∧ (¬Aussie∨Eats(roo))∧ (Italian∨Aussie)∧ µ}.

Again we need to check which premises are consistent with e2, and only the re-
maining conditionals determine the next sphere e3. It is easy to see that b~e |Aussiec =
b~e |¬Italianc = 2, so for the third and last sphere:

e3 = {w | w |= µ}.

Since ~e is the unique model of OΓ in BO, it determines our beliefs. For example,
OΓ |= B(¬Italian ⇒ ¬Veggie) since b~e |¬Italianc = 2 and w |= ¬Italian ⊃ ¬Veggie for
all w ∈ e2.

Finally we remark that the unique-model property does not extend to subjective
formulas. For example, O{true ⇒ ¬Bfalse} has two models, namely 〈{}〉 and 〈W 〉,
whereW denotes the set of all worlds.

Let us first verify 〈{}〉 |= O{true⇒ ¬Bfalse}. It is immediate that b〈{}〉 | truec =
∞, so by Rule BO7 we merely need to prove that w ∈ {} iff 〈{}〉,w |= ¬Bfalse. The
only-if direction is vacuously true. For the converse, observe that 〈{}〉 |= Bfalse, so for
every w < {}, 〈{}〉 6|= ¬Bfalse.

Next we verify 〈W 〉 |= O{true ⇒ ¬Bfalse}. Clearly, b〈W 〉 | truec = 1, so by
Rule BO7 we need to show that w ∈ W iff 〈W 〉,w |= ¬Bfalse. The if direction is

59

4 Conditional Belief and Only-Believing

vacuously true. For the converse, 〈W 〉 |= ¬Bfalse iff w ′ |= true for some w ′ ∈ W ,
which is true.

4.6 Relationship to OL

Many of the above results about BO have counterparts of in OL: only-knowing and
only-believing imply ordinary knowledge and belief, respectively (Theorems 3.7.3 and
4.4.5); knowledge and belief can be conjoined with only-knowing and only-believing,
respectively (Theorems 3.7.4 and 4.4.6); the knowledge and belief operators are K45
operators (Theorems 3.7.2 and 4.4.4); and in the objective case both only-knowing and
only-believing have a unique model (Theorems 3.7.5 and 4.5.3) and thus determine the
truth of subjective sentences (Corollaries 3.7.7 and 4.5.4). This section further examines
the close relationship between OL and BO.

Only-believing expresses all the agent believes, that is, it maximizes the non-beliefs.
Intuitively, this should go along with maximizing the epistemic state, that is, with taking
into consideration as many possible worlds as possible. For only-knowing, this intuition
was already confirmed in Theorem 3.7.6. The next theorem shows that it also holds
true for only-believing objective conditionals.

Definition 4.6.1 We say ~e is maximal with ~e |= σ for a subjective sentence σ when no
worlds can be added to any plausibility sphere without falsifying σ, that is, ~e ′ 6|= σ for
all ~e ′ with e ′p ⊇ ep for all p ∈ P and e ′p′) ep′ for some p ′ ∈ P.

Theorem 4.6.2 Let Γ = {φ1 ⇒ ψ1, . . . , φm ⇒ ψm} be objective.
Then ~e |= OΓ iff ~e is maximal such that ~e |= ∧i B(φi ⇒ ψi).
Proof. For the if direction suppose ~e |= B(φi ⇒ ψi) for all i and ~e is maximal with that
property. Let p ∈ P and w be a world. By Rule BO6, if p ≤ b~e | φic and w ∈ ep , then
w |= φi ⊃ ψi for all i. Since ~e is maximal, if p ≤ b~e | φic and w < ep , then w 6|= φi ⊃ ψi

for some i. Thus w |= ∧i:b~e | φi c≥p(φi ⊃ ψi) iff w ∈ ep . Hence ~e |= OΓ.
For the only-if direction suppose ~e |= OΓ. By Theorem 4.4.5, ~e |= ∧i B(φi ⇒ ψi).

Suppose ~e is not maximal. Then there is some ~e ′ such that ~e ′ |= ∧i B(φi ⇒ ψi) and
e ′p ⊇ ep for all p ∈ P and e ′p′) ep′ for some p ′ ∈ P. By the if direction, ~e ′ |= OΓ, and by
Lemma 4.5.1 ~e = ~e ′. Contradiction. �

For that theorem too there is a counterpart in OL, namely Theorem 3.7.6. Given
that only-believing and only-knowing apparently have a lot in common, the question
arises whether BO subsumes the logic OL. Indeed the answer is affirmative. We make
this precise by embedding OL in BO.

60

4.7 Relationship to System Z

Definition 4.6.3 Let] be the function from OL formulas to BO formulas which is
defined by (Oα)] = O{¬α] ⇒ false}, and (Kα)] = Kα], and inductively for the other
operators: φ] = φ for objective φ; (¬α)] = ¬α]; (α ∨ β)] = (α] ∨ β]); (∃xα)] = ∃xα].
Theorem 4.6.4 Let α be a sentence of OL. Then |=OL α iff |= α].

The proof can be found in Appendix A.1. It is surprisingly tedious because care must
be taken to preserve equivalence when translating a system of spheres to a single set of
worlds.

4.7 Relationship to System Z

Pearl (1990) introduced System Z with the goal of tractable reasoning about conditionals.
It is fundamentally based on a unique ranking of the conditionals, called Z-ordering.
As we shall see in this section, the Z-ordering is essentially equivalent to the ranking
imposed by only-believing. Moreover, Pearl’s notions of 0- and 1-entailment can be
characterized in BO.

System Z is not a logical language but a meta-logical framework. To accord with
System Z, we assume for the rest of this section that φ, ψ are objective and propositional
and Γ contains finitely many conditionals φ ⇒ ψ. We now give a few definitions from
(Pearl 1990); we only adapt them to our syntax.

Definition 4.7.1 (Pearl 1990) Γ tolerates φ ⇒ ψ iff
∧
φ′⇒ψ′∈Γ(φ′ ⊃ ψ ′) ∧ φ ∧ ψ is

satisfiable in classical propositional logic. Γ is consistent iff for every Γ′ ⊆ Γ, there is
some φ ⇒ ψ ∈ Γ′ such that Γ′ \ {φ ⇒ ψ} tolerates φ ⇒ ψ.

Lemma 4.7.2 Γ tolerates φ ⇒ ψ iff w |= φ ∧∧φ′⇒ψ′∈Γ∪{φ⇒ψ}(φ′ ⊃ ψ ′) for some w.

Proof. Since all formulas are assumed to be propositional, they are satisfiable in classical
logic iff they are satisfiable in L by Theorem 3.4.1. The lemma thus follows immediately
from Definition 4.7.1. �

Definition 4.7.3 (Pearl 1990) Let Γi = {φ ⇒ ψ ∈ Γ | Γ \ (Γ0 ∪ . . . Γi−1) tolerates
φ ⇒ ψ} be defined inductively on i.

• For φ ⇒ ψ ∈ Γ, the Z-rank is defined by Z(φ ⇒ ψ) = i iff φ ⇒ ψ ∈ Γi .

• For a world w , Z(w) = min{i | w |= ∧Z(φ⇒ψ)≥i and φ⇒ψ∈Γ(φ ⊃ ψ)}.
• For a formula φ, Z(φ) = min{Z(w) | w |= φ}.

The following theorem relates the Z-ordering with only-believing and plausibilities.

Theorem 4.7.4 Let ~e |= OΓ, which exists and is unique by Theorem 4.5.3.

61

4 Conditional Belief and Only-Believing

(i) Γ is inconsistent iff b~e | φc = ∞ for some φ ⇒ ψ ∈ Γ.

(ii) If Γ is consistent, then b~e | φc = Z(φ ⇒ ψ) + 1 for every φ ⇒ ψ ∈ Γ.

(iii) If Γ is consistent, then min{p | w ∈ ep} = Z(w) + 1.

(iv) If Γ is consistent and φ is satisfiable, then b~e | φc = Z(φ) + 1.

The proof is in Appendix A.2. Next, let us consider Pearl’s notions of 0- and 1-
entailment.

Definition 4.7.5 (Pearl 1990) 0-entailment and 1-entailment in the context of Γ are
defined as follows:

• φ `0 ψ iff Γ ∪ {φ ⇒ ¬ψ} is inconsistent;

• φ `1 ψ iff Z(φ ∧ ψ) < Z(φ ∧ ¬ψ).
Unfortunately, Definition 4.7.3 leaves the value of Z undefined in some cases. Firstly,

it says nothing about the value of Z(φ ⇒ ψ) in case φ ⇒ ψ < Γi . Similarly, Z(w) is
undefined for some w in case Γ is inconsistent. And Z(φ) is hence only defined for
consistent Γ and satisfiable φ.

Requiring Γ to be consistent seems acceptable. But the restriction of Z(φ) to satisfiable
φ also means that, for example, ψ `1 ψ is undefined. To alleviate this, we assume for the
following theorem that Pearl implicitly defined min {} = ∞. Under that assumption,
Z(w) and Z(φ) are well-defined for all w and φ provided that Γ is consistent. Then we
can show that 1-entailment corresponds to conditional belief in BO.

Lemma 4.7.6 Let φ be unsatisfiable. Then b~e | φc = ∞ = Z(φ).
Proof. By assumption, there is no w such that w |= φ. Then clearly b~e | φc = ∞.
Moreover, Z(φ) = min {} = ∞. �

Theorem 4.7.7 Let Γ be consistent. Then φ `1 ψ iffOΓ |= ¬K¬φ ∧ B(φ ⇒ ψ).
Proof. φ `1 ψ iff Z(φ ∧ ψ) < Z(φ ∧ ¬ψ) iff (by Theorem 4.7.4 and Lemma 4.7.6)
b~e | φ ∧ ψc < b~e | φ ∧ ¬ψc iff b~e | φc , ∞ and w |= (φ ⊃ ψ) for all w ∈ eb~e | φc iff w |= φ
for some w ∈ ep and p ∈ P, and w |= (φ ⊃ ψ) for all w ∈ eb~e | φc iff (by Theorems 4.4.2
and 4.4.1) ~e |= ¬K¬φ ∧ B(φ ⇒ ψ). �

There seems to be no equivalent to 0-entailment in BO. Given that Pearl (1990)
himself criticizes 0-entailment for being “extremely conservative” and thus missing out
on many intuitive consequences, this is probably not a big issue. Still, the following
theorem states bounds of 0-entailment in BO.

62

4.8 Representation theorem

Theorem 4.7.8 Let Γ be consistent.
ThenOΓ |= K(φ ⊃ ψ) implies φ `0 ψ impliesOΓ |= ¬K¬φ ∧ B(φ ⇒ ψ).
Proof. For the first implication suppose OΓ |= K(φ ⊃ ψ). By Theorem 4.5.3, ~e |= OΓ
exists and is unique. Then ~e |= K(φ ⊃ ψ). By Theorem 4.4.2, w |= (φ ⊃ ψ) for all w ∈ ep .
Since Γ is consistent, there is some ep which contains all worlds by Theorem 4.7.4. Hence,
φ ⊃ ψ is a tautology, and so φ ∧ (φ ⊃ ¬ψ) is unsatisfiable. Thus by Lemma 4.7.2, there
is no Γ′ ⊆ Γ that tolerates φ ⇒ ¬ψ, so φ `0 ψ.

As for the second claim, φ `0 φ only if (Pearl 1990) φ `1 ψ iff (by Theorem 4.7.7)
OΓ |= ¬K¬φ ∧ B(φ ⇒ ψ). �

4.8 Representation theorem

In this section we investigate if and how entailments involving conditional beliefs can
be reduced to non-modal reasoning. In particular, we want to reduce the problem
OΓ |= B(α ⇒ ψ) to non-modal first-order entailments.

The concept is due to Levesque (1984b), who developed it for OL. The idea is as
follows. Suppose at the first sphere of an epistemic state ~e it is believed that at object #5 is
broken, but everything else is not: e1 = {w | w |= γ1} where γ1 = Broken(x) ≡ x = #5.
Obviously, ~e |= B∃xBroken(x), because #5 is broken: |= γ1 ⊃ ∃xBroken(x) holds. It
gets more tricky when x is quantified outside of B. Then we need to find a standard
name n that we can substitute for x so that |= γ1 ⊃ Broken(x)xn. Obvious choices to try
are the standard names that occur in the knowledge base and in the query. Here this is
just #5, and indeed |= γ1 ⊃ Broken(x)x#5 comes out true. In general, however, this is not
enough, and also objects not occurring in the knowledge base and query must be tested.
For example, to show ~e |= ∃xB¬Broken(x) we could test #7. Luckily, we do not need to
test all (infinitely many) names: Levesque showed that the names from the knowledge
base and query plus a single additional one suffice already. The intuitive reason is that
names that do not occur in the knowledge base or the query cannot be distinguished.

The above sketch only refers to reasoning on a single sphere, but an epistemic state
may have many different spheres. Luckily, their number is bounded by the number of
belief conditionals, provided they are objective, according to Theorem 4.5.3. This allows
us to generate a formula which deals with every sphere in the above fashion, and check
whether this formula is valid. We formalize this idea in the rest of this section.

To begin with, we adopt Levesque’s trick of substituting finitely many standard names
for free variables.

Definition 4.8.1 (Levesque and Lakemeyer 2001) Let φ be an objective sentence and ψ

63

4 Conditional Belief and Only-Believing

be an objective formula. Then RESnψ, φo is defined as follows:

• if ψ has no free variables, then

RESnψ, φo =



true if |= (φ ⊃ ψ);
false otherwise;

• if x is a free variable in ψ and

– N contains the standard names occurring in φ or ψ,

– n′ is a new standard name not in N ,

then

RESnψ, φo =
∨
n∈N

�(x = n) ∧ RESn(ψx
n), φo

�
∨∧

n∈N

�(x , n) ∧ RESn(ψx
n′), φon

′

x
�
.

The case for free variables x tries all names from φ and ψ plus another one, n′. Notice
that n′ is eventually replaced by x again, so that no new standard name is introduced
by RESnψ, φo. Given an OL knowledge base Oφ, Levesque would then replace every
occurrence Kψ in the query (perhaps with free variables) with RESnψ, φo.

For us, it is not that simple because our knowledge base OΓ consists not just of a
single sentence but of usually multiple conditionals, so we cannot simply read off φ

from the knowledge base. Similarly, it is not immediate how one would form the ψ
from a conditional belief in the query. So how could φ and ψ look like in our setting?
Firstly, it is fundamental is that OΓ for objective Γ can be represented with objective
formulas and their number is bounded by Γ as well.

Definition 4.8.2 Let Γ = {α1 ⇒ β1, . . . , αm ⇒ βm}. Let ~e |= OΓ. An objective
representation ~γ of OΓ is an infinite sequence of objective sentences γp , p ∈ P, such that
ep = {w | w |= γp} for all p ∈ P. We write 〈γ1, . . . , γq〉 if γq = γp for all p ≥ q .

So γp represents what is believed at the pth sphere. Luckily, the unique-model prop-
erty for objective Γ from Theorem 4.5.3 essentially carries over to objective representa-
tions. Moreover, as shown in the proof of Lemma 4.5.2, first-order reasoning suffices to
determine an objective representation.

Lemma 4.8.3 Let Γ = {φ1 ⇒ ψ1, . . . , φm ⇒ ψm} be objective and ~γ = 〈γ1, . . . , γm+1〉 be
defined inductively by γp =

∧
i:γ0 |=¬φi,...,γp−1 |=¬φi (φi ⊃ ψi). Then ~γ is an objective represen-

64

4.8 Representation theorem

tation ofOΓ, and for every other objective representation ~γ ′, |= γp ≡ γ ′p for all p ∈ P.
Proof. The construction of ~γ precisely reflects ~e from Lemma 4.5.2. Since that ~e is
unique by Lemma 4.5.1, and by construction ep = {w | w |= γp}, ~γ is an objective
representation and unique (modulo logical equivalence). �

The idea is that the γp of an objective representation of OΓ will take the place of φ
in RESnψ, φo. But what about ψ? Recall that OΓ |= B(α ⇒ β) iff for all p ∈ P, if ¬α
holds at all spheres p ′ < p, then α ⊃ β holds at sphere p. Provided that Γ and φ′, ψ ′

are objective, we can reformulate whether OΓ |= B(φ′ ⇒ ψ ′) using Lemma 4.8.3: for
an objective representation ~γ of OΓ, the entailment OΓ |= B(φ′ ⇒ ψ ′) holds iff for all
1 ≤ p ≤ m + 1, if RESn¬φ′, γp′o is valid for all p ′ < p, then RESnφ′ ⊃ ψ ′, γpo is valid.
We can thus define a procedure ‖α‖~γ to eliminate all B(φ′ ⇒ ψ ′) from α. To cope with
non-objective φ′ or ψ ′, we simply apply ‖ · ‖~γ recursively from the inside.

Definition 4.8.4 Let α be a formula without O and let ~γ = 〈γ1, . . . , γq〉 be objective
sentences. Then ‖α‖~γ is defined inductively:

• ‖α‖~γ = α if α is an objective formula;

• ‖¬α‖~γ = ¬‖α‖~γ ;
• ‖(α1 ∨ α2)‖~γ = (‖α1‖~γ ∨ ‖α2‖~γ);
• ‖∃xα‖~γ = ∃x ‖α‖~γ ;
• ‖B(α ⇒ β)‖~γ = ∧q

p=1
��∧p−1

p′=1 RESn‖¬α‖~γ, γp′o
�
⊃ RESn‖(α ⊃ β)‖~γ, γpo

�
.

We use ‖α‖OΓ as an abbreviation for ‖α‖~γ where ~γ is the objective representation of
OΓ from Lemma 4.8.3.

With these definitions, we can eliminate modal operators from formulas. We hence ob-
tain the following result, which generalizes the representation theorem from (Levesque
1984b; Levesque and Lakemeyer 2001) to conditional beliefs.

Theorem 4.8.5 Let Γ = {φ1 ⇒ ψ1, . . . , φm ⇒ ψm} be objective and α be without O.
ThenOΓ |= α iff |= ‖α‖OΓ.

These results are proved in Appendix B.5, where we consider the more general
representation theorem for ESB that is to be introduced in the next chapter.

Let us illustrate the representation theorem with a simple example; a more elaborate
one that involves introspection and quantifying-in is shown in the next chapter.

Example 4.8.6 Let Γ contain the conditionals from the formalization in Example 4.2.2.
We show that OΓ |= B(¬Italian ⇒ ¬Veggie). From Example 4.5.5 we can read off an

65

4 Conditional Belief and Only-Believing

objective representation ~γ of OΓ, which can be rewritten equivalently as

γ1 = ¬Aussie ∧ Italian ∧ µ;

γ2 = (Aussie ⊃ ¬Italian ∧ Eats(roo)) ∧ (¬Italian ⊃ Aussie) ∧ µ;
γ3 = µ,

where once again µ = Meat(roo) ∧ ∀x (Veggie ∧Meat(x) ⊃ ¬Eats(x)) represents our
knowledge about meat and vegetarians.

By Theorem 4.8.5 we need to determine validity of ‖B(¬Italian⇒ ¬Veggie)‖~γ , which
expands to

RESn¬Italian ⊃ ¬Veggie, γ1o ∧
(RESn¬¬Italian, γ1o ⊃ RESn¬Italian ⊃ ¬Veggie, γ2o) ∧

(RESn¬¬Italian, γ1o ∧ RESn¬¬Italian, γ2o ⊃ RESn¬Italian ⊃ ¬Veggie, γ3o).

The first line checks for belief at the first sphere, the second line checks the second
sphere, and the third line the third and last sphere.

Clearly γ1 |= (¬Italian ⊃ ¬Veggie), so RESn¬Italian ⊃ ¬Veggie, γ1o is true. Like-
wise, RESn¬¬Italian, γ1o is true, and RESn¬Italian ⊃ ¬Veggie, γ2o is true as well
since γ2 |= ¬Italian ⊃ ¬Veggie; hence the second line is true ⊃ true. Finally, since
γ2 6|= Italian, RESn¬¬Italian, γ2o is false, so the third line is true ∧ false ⊃ . . . (the
consequent is irrelevant as the antecedent is unsatisfiable).

Altogether, by Theorem 4.8.5, we have that OΓ |= B(¬Italian⇒ ¬Veggie) iff true ∧

(true ⊃ true) ∧ (true ∧ false ⊃ . . .) is valid, which clearly is the case. That way, we
proved OΓ |= B(¬Italian⇒ ¬Veggie) without any non-modal reasoning whatsoever.

4.9 Discussion

In this chapter we presented the logic BO, which extends Levesque’s logic of only-
knowing OL to accommodate conditional beliefs. Many typical properties of conditional
belief are satisfied in BO (Theorem 4.4.1). Our definition of conditional belief is also
expressive enough to capture indefeasible knowledge. In fact, OL can be embedded in
BO (Theorem 4.6.4).

The arguably most important result from this chapter is the unique-model property
of only-believing for objective conditionals (Theorem 4.5.3). As a consequence, only-
believing an objective conditional knowledge base completely determines the agent’s

66

4.9 Discussion

beliefs. In fact, only-believing minimizes the agent’s beliefs and maximizes the non-
beliefs (Theorem 4.6.2) – just like only-knowing does for knowledge. In light of these
results it is fair to say: only-believing is to conditional belief what only-knowing is to
knowledge. In other words, not only does BO subsume OL (Theorem 4.6.4), but it
handles conditional belief in the same spirit as OL handles knowledge.

Only-believing also turns out to be related to System Z (Theorems 4.7.4 and 4.7.7).
In a way, BO incorporates the ideas of System Z in a single logical language, whereas
System Z is more of a meta-logical toolbox. BO is also more general, as its behaviour
is also well-defined for inconsistent (in the sense of Definition 4.7.1) conditionals and
features first-order logic including quantifying-in and introspection.

Finally we extended Levesque’s representation theorem for OL to conditional beliefs.
Besides the unique model of only-believing, our simple semantics of conditional belief
made this possible: recall that in an iterated conditional like B(α ⇒ B(β ⇒ γ)) the
nested belief B(β ⇒ γ) is not conditioned on α (Property (xii) in Theorem 4.4.4). This
is different from other accounts of conditional belief. Levi (1988) argues on philosophical
grounds that B(α ⇒ B(β ⇒ γ)) should be equivalent to B(α ∧ β ⇒ γ). And Boutilier
(1993) defines truth of B(α ⇒ β) as truth of Bβ after revision by α. (We did the
same in (Schwering, Lakemeyer, and Pagnucco 2015).) Such semantics would have
made the reduction of conditional beliefs to non-modal reasoning (Definition 4.8.4)
probably much more complicated or perhaps even impossible, because the reduction
works its way from the innermost beliefs to the outside, which in Boutilier’s semantics
at least would clash with the revisions from the outer beliefs. In the next chapter, our
simple semantics will help us a second time, namely with the regression theorem. Not
conditioning nested beliefs on an outer belief’s antecedent hence seems to be worth to
be at odds with other formalisms. (In fact, Levi himself seems not to bother much, as
we writes he has “always been mystified why so many serious authors have thought that
the problem of iterated conditionals is so important.”)

The connections of BO with OL and System Z open many interesting follow-up
questions. For example, Levesque (1990) and Lakemeyer and Levesque (2005) have
shown that only-knowing has close ties to autoepistemic logic (Moore 1985) and Reiter’s
default logic (Reiter 1980). It would be interesting how these relationships carry over to
only-believing. Such an investigation could possibly lead to a logic for reasoning about
contingencies in autoepistemic and/or default logic.

Another open problem is to develop a proof theory for BO. Existing proof theories
for the propositional fragment of OL (Levesque and Lakemeyer 2001) and for different
accounts of conditional logic (Lewis 1973; Stalnaker 1968) could provide a good starting

67

4 Conditional Belief and Only-Believing

point. As for the first-order case, the following negative result inherited from OL sets
limits to any proof theory of BO: no sound and complete axiom system of BO can
be recursive. The problem is that any sound and complete proof theory of BO needs
to be able to prove O{true ⇒ true} ⊃ ¬B¬φ for objective φ iff φ is satisfiable; yet
the satisfiable formulas are not recursively enumerable in first-order logic, so the proof
theory cannot be recursive.

Many further questions arise from the connections originating from System Z. In
particular, System Z is related to Pearl’s work on probabilistic inference (Pearl 1990,
2014), and it seems plausible to build on that to facilitate probabilistic reasoning in
BO. To this end, one might annotate conditionals with probabilities. Belle, Lakemeyer,
and Levesque (2016) similarly annotate sentences, but do not allow for conditional
probabilities.

An earlier approach to semantically capture System Z is due to Boutilier (1991).
Boutilier employs two modal operators to refer to the accessible and the inaccessible
worlds in a Kripke structure. In this sense, he draws on the idea of only-knowing, which
can be understood as a combination of two modalities: ordinary knowing (at least) and
knowing at most. The semantics of Boutilier’s logic is quite technical, and Boutilier
mentions as future work a “connective analogous to Levesque’s O operator” in order to
combine conditionals with the “semantic clarity of only-knowing.” BO addresses this
need with its only-believing operator. Otherwise, it is not easy to see how much OL
and BO have in common with Boutilier’s logic. For example, it is unclear whether a
unique-model property comparable to Theorem 4.5.3 holds. A comparison of the logics
is left for future work.

This chapter extensively covered the problem of querying a conditional knowledge
base, represented as the entailment problem OΓ |= B(α ⇒ β). We were not concerned
with the question how beliefs change in the face of physical actions or when new
information is received and beliefs need be revised appropriately. The interaction of
conditional belief with change in the sense of Reiter’s situation calculus is the focus of
the next chapter.

In terms of Levesque’s functional view of knowledge representation (Levesque 1984b;
Levesque and Lakemeyer 2001), the present chapter was concerned with asking, and the
next one deals with telling. Defining and studying according operations TELL and ASK
on epistemic states is another perspective of future work.

Reasoning in BO is of course undecidable because it subsumes the first-order logic
L. While the representation theorem eliminates the modal operators, the complexity
of first-order logic remains. To alleviate this, we introduce a limited variant of BO in

68

4.9 Discussion

Chapter 7.

69

5 Actions and Belief Revision

In this chapter we investigate how conditional beliefs and classical revision interact with
actions. The logic, called ESB for epistemic situation calculus with beliefs, inherits the
conditional belief features from BO and complements them with situation calculus-style
actions. Actions can have two different kinds of effects:

• the physical effect of, say, dropping a box is that fragile items in the box break;

• the epistemic effect of hearing a clink upon dropping the box is that it makes us
believe something inside the box broke.

The notion of actions follows the epistemic situation calculus ES (Lakemeyer and
Levesque 2011) presented in Chapter 3. Rather than adopting the approach of classical
sensing à la ES, however, we introduce a concept of informing where new information
is incorporated by classical revision techniques.

Our particular focus in this chapter is on the projection problem for beliefs, which
refers to determining what is believed after a sequence of actions occurs. Surprisingly,
the belief projection problem in the context of conditional beliefs and/or belief revision
remained open for a long time. We present two solutions. The first one is by backward
reasoning: formulas are rewritten in order to roll back any actions; this procedure is
called regression. The alternative is to reason forward: the knowledge base is revised and
updated according to actions that occur; this approach is called progression.

Besides these main results, we also lift the representation theorem from the previous
chapter to ESB. Finally we situate ESB within the popular belief revision postulate
systems and compare informing to sensing in ES.

The presentation of ESB is based on (Schwering and Lakemeyer 2014, 2015; Schwe-
ring, Lakemeyer, and Pagnucco 2015). The results of this chapter require some lengthy
proofs, which are given in Appendix B to keep the presentation clear.

71

5 Actions and Belief Revision

5.1 Informing versus sensing

Informing and sensing are two related but different models of how an agent may obtain
new information from the outside world. The classical model (Scherl and Levesque
2003) is to let any action sense if a specific formula holds in the real world. Thus sensing
actions answer yes–no questions such as “is the gift broken?”; these answers are definitive
and cannot be revised. ES follows this approach, too.

In ESB, we use a more lightweight concept which we call informing. Here, an action
simply informs the agent about a suspected fact, possibly without any legitimization
from the real world. For example, a clink tells the agent “the gift is broken,” but nobody
verified this information and it might be actually wrong. This information is inherent
to the clink alone, it is independent of what is true in the real world.

Why would we give up the tried and tested concept of sensing? The trouble with
sensing is that it is not well-suited for contradictory sensings. Technically, when an
action n is performed, the set of possible worlds is thinned out by removing all worlds
which disagree with the actual world on the value of SF(n). For one thing, this means
that when two subsequent sensings contradict each other, no possible world is left. Such
a logically inconsistent state is highly undesirable as the agent likely is incapable of any
reasonable action. For another, even if contradictory information could be handled in a
useful way, some error model of would be necessary. Probably it would be represented
with two different axioms defining SF, one for the actual world and the other for the
possible worlds. Nevertheless it is not clear how these axioms should look like in general.
ESB addresses the need to handle contradictory information by using (iterated) belief

revision. That way implausible information can be displaced. They are not lost once
and for all, though, but instead they can be reinstated if new evidence suggests so. The
epistemic state of ESB is hence not just a set of worlds but a system of spheres as in
BO. New information is incorporated into this system using classical belief revision
schemes, namely natural revision (Boutilier 1993, 1996) or lexicographic revision (Nayak
1994; Nayak, Pagnucco, and Peppas 2003). Natural revision is suitable for less reliable
information, lexicographic revision on the other hand leads to strong belief in the new
information. For example, the clinking noise is perhaps a weak indicator that something
inside the box broke. On the other hand, when we see someone unboxing an object
or even do it ourselves, it is quite a convincing that the object actually was in the box,
unless perhaps we hallucinate. We hence refer to natural revision as weak revision and
to lexicographic revision as strong revision.

Formally, informing is modelled with a special atom IF(n) that represents the infor-

72

5.2 The language ESB

mation carried by the action n. Whenever n is executed, the epistemic state is revised by
the information IF(n) according to the revision scheme associated with n. In particular,
this means to bring the most-plausible worlds that satisfy IF(n) to the new first sphere,
so that afterwards IF(n) is believed.

The second problem with classical sensing mentioned above is to axiomatize the
sensor error model. Informing “solves” this problem as a side-effect of its simplicity:
there is no error model (in general). (We show in Section 5.11 that informing can mimic
sensing à la ES, in which case the problems of classical sensing arise again, of course.)
Right or wrong information can freely flow in, without anybody or anything checking
its truth or falsity.

Informing has a specific exogenous flavour. In classical sensing, the sensing action
is clearly under the agent’s control, and its outcome is predetermined by the actual
world. By contrast, a clink, for example, is usually not performed by an agent, but
rather happens as a consequence of the agent’s actions such as dropping the box. Reiter
attributes such exogenous actions to “nature” (Reiter 2001). Unwrapping a gift box and
finding an object n could be modelled with an action unbox(n). Here, the parameter n
intuitively is not under the agent’s control but rather an exogenous input: nature fills
in which object n was in the box. Bacchus, Halpern, and Levesque (1999) use action
parameters in a similar fashion to model noisy sensing results in their probabilistic
model.

5.2 The language ESB

The language ESB is a combination of ES and BO. The reader will hence recognize
much of the following definition.

Definition 5.2.1 The symbols of ESB are the same as for ES (Definition 3.9.1) minus
K plus curly brackets, ⇒, and B. There shall be a unary special fluent IF (instead of
SF). The terms are the same as in ES (Definition 3.9.2), except that action functions
come in two subsorts, namely weak-revision and strong-revision actions. The formulas
are formed by the same rules as ES (Definition 3.9.3) with the rule for Kα and Oα
replaced with

• B(α1 ⇒ β1) and O{α1 ⇒ β1, . . . , αm ⇒ βm} are formulas if αi, βi are formulas.

A formula that mentions no B or O is called objective. A set {φ1 ⇒ ψ1, . . . , φm ⇒ ψm}
is called objective when all φi and ψi are objective. A formula that mentions function

73

5 Actions and Belief Revision

and predicate symbols only within B or O is called subjective. A formula that mentions
no [t] or � operators is called static.

Perhaps a few clarifying words about sorts and subsorts are in order. Every function
symbol is to be of sort object or action, and every action function is to be of sort
weak- or strong-revision. As a consequence, every standard name is of exactly one of
the following sorts: object, weak-revision action, or strong-revision action. Variables,
however, exist for every sort and subsort; in particular, there are generic action variables,
which range over weak-revision and strong-revision actions.

Comparing the syntax of OL and ES (Definitions 3.6.1 and 3.9.3) on the one hand and
of BO and ESB (Definitions 4.2.1 and 5.2.1) on the other shows that ESB extends BO
with actions the same way as ES extends OL. The action operators and the conditional
belief operators thus have the same meaning in ESB as in ES and BO, respectively. We
also inherit the abbreviations Bα and Kα from BO.

The newly introduced predicate symbol IF is used to represent the information carried
by every action. For example, if t is the action that represents a clink, IF(t) would be
true iff something is broken. The subsort of t indicates whether the information shall be
trusted weakly or strongly, which will be semantically reflected in the revision scheme.

We use the same logical abbreviations as for BO. Like with other unary operators,
[t] shall bind stronger than any other operators; �, however, shall bind weakest. For
example, �[a]Broken(y) ≡ Broken(y)∨InBox(y)∧Fragile(y)∧ a = dropbox abbreviates
∀a∀y�

�([a]Broken(y)) ≡ �
Broken(y) ∨ ((InBox(y) ∧ Fragile(y)) ∧ (a = dropbox))��

.
Let us assume that standard names, variables, and function symbols of sort object in

ESB are exactly the standard names, variables, and function symbols of L, and similarly
that the rigid predicate symbols in ESB are the predicate symbols of L. Then clearly
every formula of L or BO is also a formula of ESB.

5.3 The semantics of ESB

Since ESB combines the features of BO and ES, it is no surprise that we can adopt
most semantic concepts from them. Action sequences and worlds are defined the
same way as in ES (Definition 3.10.1). An epistemic state is a system of spheres
as in BO (Definition 4.3.1), except that the worlds are worlds in the sense of ES
(Definition 3.10.1). The denotation of a term is also defined as in ES (Definition 3.10.2).

We define the semantics of ESB without the additional z parameter for the action
sequence used in ES. Instead of keeping the history of executed actions in the model,
we simply progress worlds immediately whenever an action occurs.

74

5.3 The semantics of ESB

Definition 5.3.1 The progression of a world w by an action standard name n is a world
w� n such that

• (w� n)[g (n1, . . . , nk)] = w[g (n1, . . . , nk)] for all object function symbols g ;

• (w� n)[R(n1, . . . , nk)] = w[R(n1, . . . , nk)] for all rigid predicate symbols R;

• (w� n)[F (n1, . . . , nk), z] = w[F (n1, . . . , nk), n·z] for all fluent predicate symbols
F and action sequences z .

We abbreviate w� n1� . . .� nk by w� 〈n1, . . . , nk〉.
It is immediate that w� n is uniquely defined. Having that, we can define the

semantics of objective sentences.

Definition 5.3.2 The truth relation |= of ESB for objective sentences is defined with
respect to a world w :

ESB1’. w |= R(t1, . . . , tk) iff
R is rigid and w[R(n1, . . . , nk)] = 1 where ni = w(ti);

ESB2’. w |= F (t1, . . . , tk) iff
F is fluent and w[F (n1, . . . , nk), 〈〉] = 1 where ni = w(ti);

ESB3’. w |= (t1 = t2) iff n1 and n2 are identical names where ni = w(ti);
ESB4’. w |= ¬α iff w 6|= α;

ESB5’. w |= (α ∨ β) iff w |= α or w |= β;

ESB6’. w |= ∃xα iff w |= αx
n for some name n of the same sort as x ;

ESB7’. w |= [t]α iff w� n |= α where n = w(t);
ESB8’. w |= �α iff w� z |= α for every action sequence z .

Only Rules ESB2’, ESB7’, and ESB8’ differ from the corresponding rules for ES in
Definition 3.10.4. The difference is because the action sequence is no part of the model
in ESB; instead, worlds are progressed immediately when an action is executed. Both
approaches are equivalent, but ours is easier to work with as we shall see when we give
semantics to the belief modalities.

Progressing an epistemic state by an action is more complicated, because the infor-
mation content of the action needs to be considered. That is, we need to first revise
the epistemic state before we progress its individual worlds. The following definition
introduces the necessary tools.

75

5 Actions and Belief Revision

Definition 5.3.3 For an epistemic state ~e and an objective sentence φ, we define

• b~ec = min{p | p = ∞ or ep , {}};
• d~ee = max{p | p = 1 or ep−1 , ep}.
• ~e | φ = 〈e1 ∩W , . . . , ed~ee ∩W 〉 whereW = {w | w |= φ} for objective φ.

Intuitively, b~ec denotes the first non-empty level of ~e , and d~ee refers to the last
distinct level. Notice that b~ec = ∞ when the epistemic state is empty, whereas always
d~ee ∈ P since ~e converges. We will always make explicit when b~ec can take the value
∞. Restricting ~e to only φ-worlds by writing ~e | φ is useful in combination with b~ec to
capture the plausibility of φ in ~e : b~e | φc. For now, this expression is only defined for
objective sentences φ, for we have not yet introduced the semantics of beliefs; but in a
few moments we can generalize ~e | φ to arbitrary formulas. The reader may have noticed
that we introduced the same notation b~e | αc already in Definition 4.3.2 for BO; once
we generalize ~e | φ to arbitrary formulas, the old definition of b~e | αc from BO coincides
with the new one.

We can now define what it means to revise an epistemic state. Weak revision moves
the most-plausible worlds that satisfy the new information to the front. Strong revision,
by contrast, promotes all worlds that satisfy the new information over all other ones.
An illustration is depicted in Figure 5.1. The first sphere is thus the same after a single
revision, but the subsequent ones differ. Intuitively, after strong revision the agent is
more reluctant to give up belief in the new information again. Strong revision hence
leads to stronger belief in the new information than weak revision.

Definition 5.3.4 The weak revision ~e ∗w φ of ~e by an objective sentence φ is defined as
follows:

• if b~e | φc = ∞: ~e ∗w φ = 〈{}〉;
• if b~e | φc , ∞: ~e ∗w φ = 〈W , e1 ∪W , . . . , ed~ee ∪W 〉 whereW = (~e | φ)b~e | φc .

The strong revision ~e ∗s φ of ~e by an objective sentence φ is defined as follows:

• if b~e | φc = ∞: ~e ∗s φ = 〈{}〉;
• if b~e | φc , ∞: ~e ∗s φ = 〈(~e | φ)b~e | φc, . . . , (~e | φ)d~ee,

(~e |¬φ)b~e |¬φc ∪W , . . . , (~e |¬φ)d~ee ∪W 〉
whereW = (~e | φ)d~ee .

76

5.3 The semantics of ESB

e3 |¬φ e3 | φ
e2 |¬φ e2 | φ

e1

(a) An epistemic state ~e .

e3 |¬φ e3 | φ
e2

e1 ∪ (e2 | φ)
e2 | φ

(b) Weak revision ~e ∗w φ.

e3
e2 ∪ (e3 | φ)
e1 ∪ (e3 | φ)

e3 | φ
e2 | φ

(c) Strong revision ~e ∗s φ.

Figure 5.1: The original epistemic state ~e in (a) has three different spheres 〈e1, e2, e3〉.
Hatched area indicates φ-worlds; the most-plausible ones occur in e2, and
e3 contains additional ones. Weak (natural) revision by φ promotes these
most-plausible φ-worlds, namely e2 | φ, to the first sphere, but leaves the
ranking otherwise unchanged, as depicted in (b). Strong (lexicographic) revi-
sion promotes all φ-worlds, namely e2 | φ and e3 | φ, over all ¬φ-worlds, but
preserves the relative ordering of the φ-worlds and ¬φ-worlds, respectively,
as depicted (c).

When the revision mechanism is clear from context or irrelevant, we just write ~e ∗ φ.
In particular, we mean by ~e ∗ IF(n) the revision according to the sort of n, that is,
~e ∗w IF(n) if n is a weak-revision action and ~e ∗s IF(n) if n is a strong-revision action.
Now it is easy to define the progression of an epistemic state.

Definition 5.3.5 The progression of a set of worldsW and of an epistemic state ~e are
defined as

• W � n = {w� n | w ∈W };
• ~e� n = 〈e ′1� n, . . . , e ′q � n〉 where 〈e ′1, . . . , e ′q〉 = ~e ∗ IF(n).

We abbreviate ~e� n1� . . .� nk by ~e� 〈n1, . . . , nk〉.
The following lemma says that the revision and the progression of an epistemic state

are well-behaved.

Lemma 5.3.6 ~e ∗w φ, ~e ∗s φ, and ~e� n are epistemic states.

Proof. Let ~e = 〈e1, . . . , eq〉 be an epistemic state. Then ep ⊆ ep+1 for all p ∈ P, and
eq = ep for all p ≥ q .

Hence (~e ∗w φ)p ⊆ (~e ∗w φ)p+1 for all p ∈ P, and (~e ∗w φ)q+1 = (~e ∗w φ)p for all
p ≥ q+1, so ~e ∗w φ satisfies the concentricity and convergence constraints, and thus is an

77

5 Actions and Belief Revision

epistemic state. Likewise, (~e ∗s φ)p ⊆ (~e ∗s φ)p+1 for all p ∈ P, and (~e ∗s φ)2·q = (~e ∗s φ)p
for all p ≥ 2 · q , so ~e ∗s φ is an epistemic state, too.

Finally consider ~e� n, which simply progresses the individual worlds in ~e ∗ IF(n).
It is immediate from Definition 5.3.1 that the progression w� n of a world w again
is a world. ThusW � n is a set of worlds ifW is one, and ifW ⊆W ′, thenW � n ⊆
W ′� n. Therefore, since ~e ∗ IF(n) is an epistemic state, ~e� n is one, too. �

As mentioned above, weak and strong revision of the same epistemic state lead to the
same factual beliefs (but typically differ in the counterfactual beliefs).

Lemma 5.3.7 (~e ∗w φ)1 = (~e ∗s φ)1 and b~e ∗ φ | φc = 1, or (~e ∗w φ) = (~e ∗s φ).
Proof. If b~e | φc = ∞, ~e ∗w φ = 〈{}〉 = ~e ∗s φ. Otherwise, (~e ∗w φ)1 = (~e | φ)b~e | φc =
(~e ∗s φ)1 , {} and b~e ∗ φ | φc = 1. �

With these definitions in hand, we can give semantics to the full language.

Definition 5.3.8 The truth relation |= of ESB is defined with respect to an epistemic
state ~e and a world w :

ESB1. ~e,w |= R(t1, . . . , tk) iff
R is rigid and w[R(n1, . . . , nk)] = 1 where ni = w(ti);

ESB2. ~e,w |= F (t1, . . . , tk) iff
F is fluent and w[F (n1, . . . , nk), 〈〉] = 1 where ni = w(ti);

ESB3. ~e,w |= (t1 = t2) iff n1 and n2 are identical names where ni = w(ti);
ESB4. ~e,w |= ¬α iff ~e,w 6|= α;

ESB5. ~e,w |= (α ∨ β) iff ~e,w |= α or ~e,w |= β;

ESB6. ~e,w |= ∃xα iff ~e,w |= αx
n for some name n of the same sort as x ;

ESB7. ~e,w |= [t]α iff ~e� n,w� n |= α where n = w(t);
ESB8. ~e,w |= �α iff ~e� z,w� z |= α for every action sequence z ;

ESB9. ~e,w |= B(α ⇒ β) iff
for all p ∈ P, if p ≤ b~e | αc and w ′ ∈ ep , then ~e,w ′ |= (α ⊃ β);

ESB10. ~e,w |= O{α1 ⇒ β1, . . . , αm ⇒ βm} iff
for all p ∈ P, w ′ ∈ ep iff ~e,w ′ |= ∧i:b~e | αi c≥p(αi ⊃ βi);

where ~e | α = 〈e1 ∩W , . . . , ed~ee ∩W 〉 for W = {w | ~e,w |= α} generalizes ~e | φ to
arbitrary α.

78

5.3 The semantics of ESB

Rules ESB2–ESB8 are just the ones from the objective semantics (Definition 5.3.2)
retrofitted with an additional epistemic state ~e , which in case of [t] and � needs to be
progressed on the right-hand side. It is hence immediate that the Definitions 5.3.2 and
5.3.8 agree on the truth of objective sentences. The new Rules ESB9 and ESB10 are
the same as for BO (Definition 4.3.2) and express the same intuition.

Theorem 5.3.9 Let α be a sentence of BO. Then |=BO α iff |= α.
The proof is surprisingly tedious; we give it in Appendix B.1.

Lemma 5.3.10 |= �α iff |= α.
Proof. For the only-if direction suppose |= �α. Then by Rule ESB8, ~e� z,w� z |= α
for all ~e , w , and z . In particular, this holds for z = 〈〉, and since ~e� 〈〉 = ~e and
w� 〈〉 = w , we have ~e,w |= α for all ~e , w , so |= α. Conversely, suppose |= α. Therefore
and by Lemma 5.3.6, for all ~e , w , z , we have ~e� z,w� z |= α, and by Rule ESB8
~e,w |= �α. Thus |= �α. �

The proofs of Theorems 4.4.5, 4.4.1, 4.4.2, 4.4.3, 4.4.4, and 4.5.3 all carry over to
ESB without any modification. By Lemma 5.3.10, Theorems 4.4.5, 4.4.4 and 4.5.3 also
hold after any sequence of actions. We therefore have the counterparts to the mentioned
BO theorems in ESB.

Theorem 5.3.11 |= �O{α1 ⇒ β1, . . . , αm ⇒ βm} ⊃ ∧i B(αi ⇒ βi).
Theorem 5.3.12 ~e |= B(α ⇒ β) iff b~e | αc = ∞ or ~e,w |= (α ⊃ β) for all w ∈ eb~e | αc .
Theorem 5.3.13 ~e |= Kα iff ~e,w |= α for all w ∈ ep and p ∈ P.

Theorem 5.3.14 ~e |= B(α ∨ β ⇒ ¬β) iff b~e | αc < b~e | βc or b~e | αc = b~e | βc = ∞.
Theorem 5.3.15

(i) 6|= �B(α ⇒ β) ∧ B(β ⇒ γ) ⊃ B(α ⇒ γ);
(ii) 6|= �B(α ⇒ γ) ⊃ B(α ∧ β ⇒ γ);
(iii) 6|= �B(α ⇒ β) ≡ B(¬β ⇒ ¬α);
(iv) |= �Bα ∧ B(α ⊃ β) ⊃ Bβ;

(v) |= �Kα ∧ K(α ⊃ β) ⊃ Kβ;

(vi) |= �Bα ∧ B(α ⇒ β) ⊃ Bβ;

(vii) |= �Kα ⊃ Bα;

(viii) |= �B(α ⇒ β) ⊃ KB(α ⇒ β);

79

5 Actions and Belief Revision

(ix) |= �¬B(α ⇒ β) ⊃ K¬B(α ⇒ β);
(x) |= �∀xB(α ⇒ β) ⊃ B(α ⇒ ∀x β) where x does not occur freely in α;

(xi) |= �Kα if |= α;
(xii) |= �B(α ⇒ B(β ⇒ γ)) ∧ ¬K¬α ⊃ B(β ⇒ γ).
Theorem 5.3.16 Let Γ = {φ1 ⇒ ψ1, . . . , φm ⇒ ψm} be objective.
Then there is a unique ~e = 〈e1, . . . , em+1〉 such that ~e |= OΓ.

5.4 The belief projection problem

The belief projection problem is to decide if a specific belief holds true after a sequence
of actions. Logically this is expressed as an entailment problem: given a knowledge
base about the domain’s dynamics and the agent’s (conditional) beliefs, does a certain
formula about actions and beliefs follow? Following (Lakemeyer and Levesque 2011;
Reiter 2001), we consider knowledge bases of the following form in this paper.

Definition 5.4.1 Let F be a finite set of fluent predicate symbols and IF < F . A
formula is fluent when it is objective, static, and all fluent predicate symbols are from
F . A basic action theory over F consists of two sets Σdyn and Σbel, where

• Σdyn contains dynamic axioms, namely

– a sentence �[a]F (x1, . . . , xk) ≡ γF for every fluent predicate symbol F ∈ F
where γF is a fluent formula;

– a single sentence �IF(a) ≡ ϕ where ϕ is a fluent formula;1

• Σbel contains finitely many conditionals φ ⇒ ψ where φ and ψ are fluent sentences.

We identify Σdyn with the conjunction of its elements and let O(Σdyn,Σbel) stand for
O({¬Σdyn ⇒ false} ∪ Σbel). Then the belief projection problem is to decide entailments
of the form

O(Σdyn,Σbel) |= [t1] . . . [tk]B(α ⇒ β).
The idea of basic action theories dates back to Reiter (1991, 2001). Sentences of the

form �[a]F (x1, . . . , xk) ≡ γF are called successor-state axioms because they relate the
state after an action a to the one before a. They incorporate Reiter’s solution to the
1Usually, basic action theories also feature a precondition axiom of the form Poss(a) ≡ π for a fluent

formula π. It is generally treated very similar to the IF(a) ≡ ϕ axiom. For simplicity, we omit it here.
Also see Section 5.11.

80

5.4 The belief projection problem

frame problem (Reiter 2001). The informed-fluent axiom �IF(a) ≡ ϕ axiomatizes the
information an action a tells the agent. The conditional ¬Σdyn ⇒ false in O(Σdyn,Σbel)
expresses that the agent knows these dynamic axioms.

There are two principal answers to (belief) projection problems.

Query regression reasons backwards: it rewrites the query to undo the actions and thus
reduces reasoning about future situations to reasoning about the initial situation
(Reiter 1991, 2001). The goal is hence to rewrite the query [t1] . . . [tk]B(α ⇒ β)
to a new, static query which is equivalent (modulo O(Σdyn,Σbel)) to the original
query.

Successor-state axioms are fundamental to roll back an action: they deterministi-
cally relate every fluent’s value before and after an action. For example, a fluent
after an action such as [n]F (n′) can be replaced with the right-hand side of F ’s
successor-state axiom γF

x a
n′ n. This process can be iterated until the initial situation

is reached.

As we shall see, this procedure not only works for objective formulas, but also for
conditional beliefs. In fact, two theorems will play a role analogous to successor-
state axioms: they relate [n]B(α ⇒ ψ) to a belief before n.

Regression is a very elegant mechanism to eliminate actions from the reasoning
task. On the downside, the regressed query may grow exponentially in the number
of actions. The procedure is hence not suited for long-lived systems that amass a
huge number of actions.

Knowledge base progression reasons forward: it applies the action to the knowledge
base and thus produces a new “snapshot” of the world (Lin and Reiter 1997;
Reiter 2001). That is, we need to determine some updated beliefs Σ′bel such that
O(Σdyn,Σbel) entails [n]O(Σdyn,Σ′bel).
A general way to do so is to rename all fluent symbols in the knowledge based
and initialize the original symbols to the correct value after an action using the
successor-state axioms. For example, if we have only a single fluent F and a
knowledge base F (n1) ∨ F (n2), then after doing n the new knowledge base can
be represented as (R(n1) ∨ R(n2)) ∧ ∀x (F (x) ≡ γF x F

n R).
Unfortunately, progression is highly complex; it is not first-order definable (Lin
and Reiter 1997; Vassos and Levesque 2013). The problem is that in general it is
inevitable to introduce new predicate symbols, like we did with R above. These

81

5 Actions and Belief Revision

new predicates need to be forgotten again, which can be achieved using second-
order logic (Lin and Reiter 1994, 1997): R shall be an existentially second-order
variable.

We will see that the sketched general approach to progression can be generalized
to conditional knowledge bases using a notion of only-believing extended with
means to forget predicates.

Before we study regression and progression in the upcoming sections, let us formalize
Example 1.1.1 as a basic action theory and investigate a few example queries.

Example 5.4.2 The scenario comprises a single box that may contain items, which we
represent by a fluent predicate InBox(n). Items can be taken out of the box by action
unbox(n), and the box can be dropped by action dropbox. Dropping the box breaks
all fragile items in it, which is formalized using a rigid predicate Fragile(n) and another
fluent predicate Broken(n). A clinking noise, represented by the action clink, indicates
that something in the box seems to be broken: ∃y (InBox(y) ∧ Broken(y)). Intuitively
clink is exogenous, that is, it is not under the agent’s control but she observes (nature
executing) a clink. Unboxing an item n through action unbox(n) tells us that this item
was in the box and is not broken: InBox(n) ∧ ¬Broken(n). The successor-state axioms
for InBox and Broken and the informed-fluent axiom constitute the dynamic axioms

Σdyn = {�[a]InBox(y) ≡ InBox(y) ∧ a , unbox(y),
�[a]Broken(y) ≡ Broken(y) ∨ InBox(y) ∧ Fragile(y) ∧ a = dropbox,

�IF(a) ≡ (a = clink ⊃ ∃y (InBox(y) ∧ Broken(y))) ∧
∀y (a = unbox(y) ⊃ InBox(y) ∧ ¬Broken(y))}.

We still need to decide of which revision sort the actions are. Since a clinking noise is a
rather unreliable hint that something is broken, we make clink a weak-revision action.
By contrast, when one takes an object out of the box, that object must indeed have
been in the box and be in one piece (otherwise one probably hallucinates), so unbox(n)
shall be a strong-revision action. We let dropbox be a strong-revision action, too; since
IF(dropbox) is vacuously true the revision has no effect anyway.

Our agent believes that most likely the box is empty; but taking the possibility into
account that she may be wrong about that, she believes that in this case only the gift
would be in the box. We use the object constant gift to refer to the gift that may or may
not be in the box. Note that it is not a standard name, so the agent might have no clue
what the gift actually is. She moreover believes that if there was something in the box, it

82

5.4 The belief projection problem

would not be broken yet. Thus we define the initial beliefs as

Σbel = {true⇒ ∀y¬InBox(y),
∃y InBox(y)⇒ ∀y (InBox(y) ≡ y = gift),
∃y InBox(y)⇒ ∀y (InBox(y) ⊃ ¬Broken(y))}.

This completes the basic action theory. As we shall see,O(Σdyn,Σbel) entails the following
queries.

Q1. Initially the agent believes the box is empty: B∀y¬InBox(y).
Q2. After dropping the box, she still believes the box is empty, but also that if some-

thing fragile was in the box, it would be broken:
[dropbox](B(∀y¬InBox(y)) ∧ ∀yB(InBox(y) ∧ Fragile(y)⇒ Broken(y))).

Q3. When a clink occurs after dropping the box, she comes to believe that the gift was
in the box, but she has no idea what the gift is:
[dropbox][clink]B(InBox(gift) ∧ Broken(gift) ∧ ¬∃yBgift = y).

Q4. When the object #5 is taken out of the box, she believes that this must be the gift,
and that it is not broken after all:
[dropbox][clink][unbox(#5)]∃yB(gift = y ∧ ¬InBox(gift) ∧ ¬Broken(gift)).

We use the latter two queries to illustrate the results of this chapter: regression,
progression, and representation theorem. To begin with, we prove these queries seman-
tically.

Example 5.4.3 First we need to determine the epistemic state ~e |= O(Σdyn,Σbel). By
Theorem 5.3.16, ~e is unique, and using the idea from the proof of Lemma 4.5.2 we
generate ~e = 〈e1, e2, e3〉. The first level e1 contains all worlds that satisfy Σdyn and the
material-implication-versions of all conditionals in Σbel, which simplifies to

e1 = {w | w |= Σdyn ∧ ∀y¬InBox(y)}.

Thus b~e | truec = 1 and b~e | ∃y InBox(y)c > 1, so the next level e2 contains all worlds
that satisfy Σdyn and ∃y InBox(y) ⊃ ∀y (InBox(y) ≡ y = gift) as well as ∃y InBox(y) ⊃
∀y (InBox(y) ⊃ ¬Broken(y)), which simplifies to

e2 = {w | w |= Σdyn ∧ ∀y (InBox(y) ⊃ y = gift ∧ ¬Broken(y))}.

83

5 Actions and Belief Revision

Hence b~e | ∃y InBox(y)c = 2, so all following levels contain all worlds that satisfy Σdyn,
that is,

e3 = {w | w |= Σdyn}.
Example 5.4.4 Now we can prove the above queries.

Q1. B∀y¬InBox(y).
Clearly, e1 , {}, so b~e | truec = 1. Moreover w |= ∀y¬InBox(y) for all w ∈ e1. By
Theorem 5.3.12, the query holds.

Q2. [dropbox](B(∀y¬InBox(y)) ∧ ∀yB(InBox(y) ∧ Fragile(y)⇒ Broken(y))).
We progress ~e to evaluate this query. The action dropbox makes each Broken(n) true
when Fragile(n) and InBox(n) are true. Since dropbox makes a (strong) revision by
the vacuously true IF(dropbox), there effectively is no revision. The progressed state
~e� dropbox is thus

(~e� dropbox)1 = {w | w |= Σdyn ∧ ∀y¬InBox(y)};
(~e� dropbox)2 = {w | w |= Σdyn ∧

∀y (InBox(y) ⊃ y = gift ∧ (Broken(y) ≡ Fragile(y)))};
(~e� dropbox)3 = {w | w |= Σdyn ∧ ∀y (InBox(y) ∧ Fragile(y) ⊃ Broken(y))}.

By the same argument as for Q1, [dropbox]B∀y¬InBox(y) is true. And for all n, there
is some w ∈ (~e� dropbox)2 such that w |= InBox(n) ∧ Fragile(n), and then also
w |= Broken(n), so [dropbox]∀yB(InBox(y) ∧ Fragile(y)⇒ Broken(y)) holds as well.

Q3. [dropbox][clink]B(InBox(gift) ∧ Broken(gift) ∧ ¬∃yBgift = y).
The action clink does not change the truth value of any fluents, but it triggers a
weak revision by ∃y (InBox(y) ∧ Broken(y)), that is, the most-plausible worlds from
~e� dropbox satisfying this formula constitute the first plausibility level in the revised
state (~e� dropbox) ∗ clink. Thus (~e� dropbox) ∗ clink can be written as

((~e� dropbox) ∗ clink)1 = {w | w |= Σdyn ∧
∀y (InBox(y) ≡ y = gift) ∧ Broken(gift) ∧ Fragile(gift)};

((~e� dropbox) ∗ clink)2 = {w | w |= Σdyn ∧
∀y (InBox(y) ⊃ y = gift ∧ Broken(gift) ∧ Fragile(gift))};

((~e� dropbox) ∗ clink)3 = {w | w |= Σdyn ∧
∀y (InBox(y) ⊃ y = gift ∧ (Broken(y) ≡ Fragile(y)))};

84

5.4 The belief projection problem

((~e� dropbox) ∗ clink)4 = {w | w |= Σdyn ∧
∀y (InBox(y) ∧ Fragile(y) ⊃ Broken(y))}.

Since clink has no physical effect, (~e� dropbox)� clink = (~e� dropbox) ∗ clink. So
w |= InBox(gift) ∧ Broken(gift) for all w ∈ (~e� dropbox� clink)1. Moreover, the
worlds do not agree on the denotation of gift, so there is no standard name n such that
w |= (gift = n) for all w ∈ (~e� dropbox� clink)1. Thus the query, which says that the
gift is believed to be in the box and broken but the agent has no clue what the gift is,
comes out true.

Q4. [dropbox][clink][unbox(#5)]∃yB(gift = y ∧ ¬InBox(gift) ∧ ¬Broken(gift)).
We need to make another progression by unbox(#5). Firstly, the state is strongly revised
by IF(unbox(#5)), which is equivalent to InBox(#5) ∧ ¬Broken(#5). The first two levels
of the revised state thus contain the IF(unbox(#5))-worlds from (~e� dropbox� clink)3
and (~e� dropbox� clink)4. For space reasons we only consider the first plausibility
level, which is

((~e� dropbox� clink) ∗ unbox(#5))1 = {w | w |= Σdyn ∧
∀y (InBox(y) ≡ y = #5) ∧ gift = #5 ∧ ¬Broken(#5) ∧ ¬Fragile(#5)},

and when we then apply the physical effect of unbox(#5), namely make InBox(#5) false,
we obtain

(~e� dropbox� clink� unbox(#5))1 = {w | w |= Σdyn ∧
∀y¬InBox(y) ∧ gift = #5 ∧ ¬InBox(#5) ∧ ¬Broken(#5) ∧ ¬Fragile(#5)}.

The query is thus true, because all worlds at the first plausibility level agree on gift being
#5.

It is remarkable that Q4 would not have come out true if clink was a strong-revision
action. Then the agent would have rather believed that there were two (or more) items
in the box than that the clink was due to something other than an object in the box
breaking. That is quite reasonable: making clink a strong-revision action would have
meant strong trust in its information; the agent would therefore be reluctant to give up
the belief that something inside the box broke.

85

5 Actions and Belief Revision

5.5 Projection by regression

The first solution we offer for the belief projection problem is by regression. Regression
rewrites a formula about future situations to a formula about the initial situation.
The idea, due to Reiter (Reiter 1991, 2001), is to successively replace subformulas
[t]F (t1, . . . , tk) with the right-hand side of F ’s successor-state axiom γF . Intuitively this
is sound because the successor-state axioms ensure that action effects are deterministic.
As we shall see in this section, we can regress conditional beliefs after actions in a similar
way.

Definition 5.5.1 A formula that mentions no � or O and no fluent predicates other
than those from F ∪ {IF} is called regressable.

To ease the technical treatment we assume that the formula to be regressed adheres to
the following form:

• it is rectified: quantifiers use distinct variables, and none of the variables occurs in
the basic action theory;

• the ti in action terms A(t1, . . . , tn) are standard names or variables.

It is easy to see that any formula can be rewritten to satisfy these constraints. For example,
IF(unbox(gift)) is transformed to ∃x (x = gift ∧ IF(unbox(x))). The first restriction is
needed because otherwise scopes of variables may collide during regression. The second
one will allow us to push action operators inside B, which would be inappropriate for
action terms like unbox(gift) because the denotation of gift shall be determined by the
real world.

Definition 5.5.2 The regression of an objective regressable formula α after actions r
with respect to a basic action theory with dynamic axioms Σdyn is defined as follows:

R1. R[r ,R(t1, . . . , tk)] = R(t1, . . . , tk) for rigid R;

R2. R[r , F (t1, . . . , tk)] for fluent F ∈ F is defined inductively on r :

• R[〈〉, F (t1, . . . , tk)] = F (t1, . . . , tk);
• R[r · t, F (t1, . . . , tk)] = R[r , γF x1 ... xk a

t1 ... tk t];
R3. R[r , IF(t)] = R[r , ϕa

t];
R4. R[r , (t1 = t2)] = (t1 = t2);
R5. R[r ,¬α] = ¬R[r , α];

86

5.5 Projection by regression

R6. R[r , (α1 ∨ α2)] = (R[r , α1] ∨ R[r , α2]);
R7. R[r ,∃xα] = ∃xR[r , α];
R8. R[r , [t]α] = R[r · t, α].
We write R[α] for R[〈〉, α].

With that definition, we can already regress objective formulas. The following theorem
states that regression soundly takes the dynamics out of the reasoning task.

Theorem 5.5.3 Let Σdyn be the dynamic axioms of a basic action theory, φ be a fluent
sentence, and ψ be an objective regressable sentence. Then Σdyn ∧ φ |= ψ iff φ |= R[ψ].

The proof is in Appendix B.2. Induction proofs about regression are quite involved
because formulas grow during regression. Our proofs are unconventional in that we use
a non-standard length measure (Definition B.2.9). Once it is shown that this measure is
well-behaved for inductions, the actual proofs come out quite easily. Besides that, the
idea is similar to the regression theorem for ES sketched by Lakemeyer and Levesque
(2011).

The key to extending regression to conditional beliefs is the relationship between
beliefs after an action and the conditional beliefs before that action. The following two
theorems establish such a relationship for weak- and strong-revision actions, respectively.
We will use this correspondence to regress beliefs similarly to how we use successor-state
axioms to regress fluent atoms.

Theorem 5.5.4 Let a be a weak-revision action variable. Then

|= �[a]B(α ⇒ β) ≡ ¬B(IF(a)⇒ ¬[a]α) ∧ B(IF(a) ∧ [a]α ⇒ [a]β) ∨
B(IF(a)⇒ ¬[a]α) ∧ B([a]α ⇒ [a]β) ∨
B(IF(a)⇒ false).

The proof is in Appendix B.2. Intuitively the disjunction on the right-hand side
considers three different cases. Action a triggers a revision, which promotes certain
worlds to the first plausibility level. In the first case, at least one of these worlds satisfies
α after a, and therefore we need to consider information learned by a in the antecedent.
In the second case, none of them satisfies α after a, and therefore the revision is not
relevant to the belief. The third case deals with revision by inconsistent information.
The formal proof follows that intuition.

87

5 Actions and Belief Revision

Theorem 5.5.5 Let a be a strong-revision action variable. Then

|= �[a]B(α ⇒ β) ≡ ¬B(IF(a) ∧ [a]α ⇒ false) ∧ B(IF(a) ∧ [a]α ⇒ [a]β) ∨
B(IF(a) ∧ [a]α ⇒ false) ∧ B([a]α ⇒ [a]β) ∨
B(IF(a)⇒ false).

The proof is in Appendix B.2. The three cases on the right-hand side are similar to
the ones for weak revision in Theorem 5.5.4. The strong revision caused by a promotes
all IF(a)-worlds over all ¬IF(a)-worlds. In case some of the former worlds satisfy α

after a, some of them make up the most-plausible α-worlds after a, so the belief must
also be conditioned on IF(a). This is covered by the first case. Otherwise, if none of
the promoted worlds satisfies α after a, the revision is irrelevant for that particular
conditional belief. The third case deals with revision by inconsistent information. The
formal argument follows this intuition and proceeds generally similar to the one of
Theorem 5.5.4.

Theorems 5.5.4 and 5.5.5 resemble successor-state axioms in that the action a occurs
outside of the belief at the left-hand side, but not at the right-hand side of the equivalence.
We can use them in a way similar to Rule R2 to push the action inside the scope of B.
Once that is done, regression proceeds with the antecedent and consequent in B.

Definition 5.5.6 The regression of a regressable formula α is defined as in Defini-
tion 5.5.2 plus the following rule:

R9. R[r ,B(α ⇒ β)] is defined inductively on r :

• R[〈〉,B(α ⇒ β)] = B(R[α]⇒ R[β]);
• R[r · t,B(α ⇒ β)] = R[r , σa

t] where σ is the right-hand side of Theorem
5.5.4 or 5.5.5 depending on the sort of t .

This completes the regression operator. The following theorem states its correctness.

Theorem 5.5.7 Let Σdyn,Σbel be a basic action theory and let α be a regressable sentence.
ThenO(Σdyn,Σbel) |= α iffOΣbel |= R[α].

The proof can be found in B.2. Let us illustrate regression using the gift-giving
example.

Example 5.5.8 Consider query Q4 from Example 5.4.2:

O(Σdyn,Σbel) |=
[dropbox][clink][unbox(#5)]∃yB(gift = y ∧ ¬InBox(gift) ∧ ¬Broken(gift)).

88

5.5 Projection by regression

We first regress [unbox(#5)]∃yB(gift = y ∧ ¬InBox(gift) ∧ ¬Broken(gift)), and then
show that the regressed sentence is satisfied by ~e� dropbox� clink, the progression of
the model of O(Σdyn,Σbel), which we determined in Example 5.4.3. We do not regress
by clink and dropbox here for space reasons; we handle them in Example 5.8.4 by
progression. After rewriting the formula to adhere to the normal form required for
regression, the task is to determine

R[[unbox(#5)]∃yB∃y ′(gift = y ′ ∧ gift = y ∧ ¬InBox(y ′) ∧ ¬Broken(y ′))].

Regression then moves inside the existential and the action unbox(#5) and we obtain

∃yR[unbox(#5),B∃y ′(gift = y ′ ∧ gift = y ∧ ¬InBox(y ′) ∧ ¬Broken(y ′))].

The action unbox(#5) is then pushed inside of the belief modalities and we obtain, after
minor simplifications,

∃y (R[¬B(IF(unbox(#5))⇒ false) ∧ B(IF(unbox(#5))⇒ ψ)] ∨
R[B(IF(unbox(#5))⇒ false) ∧ Bψ)] ∨
R[B(IF(unbox(#5))⇒ false)])

where ψ = [unbox(#5)]∃y ′(gift = y ′ ∧ gift = y ∧ ¬InBox(y ′) ∧ ¬Broken(y ′)).

Now regression proceeds inside the belief modalities with the antecedents and con-
sequents. In particular, regressing ψ substitutes InBox(y ′) and Broken(y ′) with the
right-hand sides of the successor-state axioms:

R[ψ] = ∃y ′(gift = y ′ ∧ gift = y ∧

¬(InBox(y ′) ∧ unbox(#5) , unbox(y ′)) ∧
¬(Broken(y ′) ∨ InBox(y ′) ∧ Fragile(y ′) ∧ unbox(#5) = dropbox)).

After some trivial simplifications, the final regressed formula is equivalent to

(¬B(InBox(#5) ∧ ¬Broken(#5)⇒ false) ∧
∃yB(InBox(#5) ∧ ¬Broken(#5)⇒ gift = #5 ∧ gift = y ∧ ¬Broken(#5))) ∨

B(InBox(#5) ∧ ¬Broken(#5)⇒ false).

Finally we need to prove that ~e� dropbox� clink satisfies this formula. Note that
there are w ∈ (~e� dropbox� clink)3 with w |= InBox(#5) ∧ ¬Broken(#5). Consider

89

5 Actions and Belief Revision

any such w . Since such worlds do exist, ¬B(InBox(#5) ∧ ¬Broken(#5) ⇒ false) is
true, and therefore we need to prove that ∃yB(InBox(#5) ∧ ¬Broken(#5) ⇒ gift =
#5 ∧ gift = y ∧ ¬Broken(#5)) is true as well. We substitute #5 for the existentially
quantified y. Since w |= InBox(#5) by assumption and nothing but gift is in the box
at level (~e� dropbox� clink)3, w also satisfies the consequent, namely w |= gift =
#5∧(gift = y)y#5∧¬Broken(#5). Thus ~e� dropbox� clink satisfies the regressed formula.
We finish the proof of the query in Example 5.8.4 where we deal with dropbox and
clink by progression.

This completes the discussion of our first solution of the belief projection problem,
and we turn to progression next.

5.6 Forgetting in only-believing

Progressing a knowledge base by some action n means to update that knowledge base
according to the effects of n. In other words, we want to forget the initial knowledge
and let an updated knowledge base take the place of the now obsolete knowledge. This
correspondence between progression and forgetting was first observed by Lin and Reiter
(1997). Their notion of forgetting is irreversible, and it is therefore not to be confused
with belief contraction known from belief revision theory. Unfortunately, even the
seemingly simple forgetting-as-erasure is already highly complex: in general, it requires
second-order logic (Lin and Reiter 1994, 1997).

The relationship between forgetting and second-order logic is easily seen by an
example. Consider the set of worlds e = {w | w |= (G1 ∧G2)}, which expresses that
all we know is G1 and G2. Forgetting G2 should lead to additional possible worlds,
namely those which still satisfy G1 but perhaps not G2. Assuming an appropriate
second-order extension of our language, the resulting set of worlds could be represented
as e ′ = {w | w |= ∃G2 (G1 ∧G2)}, where G2 is now an existentially quantified second-
order variable. (As for the semantics of the existential, we would want something like
w |= ∃G2 (G1 ∧G2) iff w ′ |= (G1 ∧G2) for some w ′ that agrees with w on everything
except perhaps G2.)

The reader may argue that the representation with second-order quantification is
overly complex, as we could simply write e ′ = {w | w |= G1}. Indeed an atomic propo-
sition can be easily forgotten without second-order logic by replacing all occurrences
with true and false and taking the disjunction of the respective sentences (Lin and
Reiter 1994). However, things get more complicated when first-order logic comes into
play and whole relations, not just atomic facts, need to be forgotten. As a matter of fact,

90

5.6 Forgetting in only-believing

Lin and Reiter (1997) present an example for which forgetting of a relation cannot be
defined with first-order logic alone.

In this and the next two sections, we adopt the idea of progression of a basic action
theory through syntactic manipulation using existentially second-order variables. It was
introduced by Lin and Reiter (1997) in a non-epistemic setting. The first question that
arises here is therefore how to extend our language with second-order quantifiers. The
subsequent sections then investigate, firstly, how the revision of a knowledge base can
be represented, and, finally, how physical and epistemic effects on a knowledge can be
accounted for.

For the purposes of forgetting we need to introduce second-order variables in only-
believing expressions O{α1 ⇒ β1, . . . , αm ⇒ βm}. But what should be their scope?
The variables clearly should be quantified within O, yet its scope should encompass
all αi and βi , so that all occurrences in αi, βi refer to the same variable. Adding full
support of second-order quantifiers and allowing them to appear between the O and
its arguments {α1 ⇒ β1, . . . , αm ⇒ βm} requires a quite cumbersome semantics,
though. On the other hand, full second-order logic is not even required for forgetting
– existentials between O and {α1 ⇒ β1, . . . , αm ⇒ βm} suffice. As it permits a much
simpler semantics, we parameterize the only-believing operator with a finite set of
function and predicate symbols, which are taken to be existentially quantified inside O.

Definition 5.6.1 The set of well-formed formulas is the least set formed from the rules
from Definition 5.2.1 and

• OS{α1 ⇒ β1, . . . , αm ⇒ βm} is a formula where the αi and βi are formulas and
S is a finite set of object function and predicate symbols.

We say α is S-free when it mentions no object function or predicate symbol from S.

Due to the relationship between existential quantification and forgetting, we read
OS{α1 ⇒ β1, . . . , αm ⇒ βm} as “before everything about S is forgotten, the condi-
tionals αi ⇒ βi are all that is believed.” We let S stand for a finite set of object function
and predicate symbols for the rest of this chapter.

To characterize the semantics of existential quantification, we use the following
relation to say that two worlds agree on everything except perhaps certain symbols.

Definition 5.6.2 We define w ≈S w ′ iff

• w[g (n1, . . . , nk)] = w ′[g (n1, . . . , nk)] for all object function symbols g < S;

• w[R(n1, . . . , nk)] = w ′[R(n1, . . . , nk)] for all rigid predicate symbols R < S;

91

5 Actions and Belief Revision

• w[F (n1, . . . , nk), z] = w ′[F (n1, . . . , nk), z] for all fluent predicate symbols F < S
and action sequences z .

For a set of worldsW and an epistemic state ~e , we letWS = {w ′ | w ∈W and w ≈S w ′}
and ~eS = 〈(e1)S, . . . , (ed~ee)S〉.

Intuitively, w ≈S w ′ means that w and w ′ agree on everything except perhaps S.
Notice that w ≈{} w ′ iff w = w ′. The epistemic state ~eS is the result of forgetting
everything about S in ~e . For example, suppose one believes that R and (R ≡ R′) in
~e and e1 , {}. Then w[R] = w[R′] = 1 for all w ∈ e1. Belief in R is then lost in
~e{R}, while R′ is retained: for each w ∈ e1, not only w ∈ (~e{R})1, but there also is a
w ′ ∈ (~e{R})1 which agrees with w on everything except that w ′[R] = 0.

Definition 5.6.3 The semantics of the new only-believing operator is defined using
standard only-believing:

ESB11. ~e,w |= OS{α1 ⇒ β1, . . . , αm ⇒ βm} iff
~e ′,w |= O{α1 ⇒ β1, . . . , αm ⇒ βm} and ~e = ~e ′

S
for some ~e ′.

Note that extended only-believing subsumes standard only-believing, as their seman-
tics coincide for S = {}. It is not surprising that earlier results such as the unique-model
property from Theorem 5.3.16 and the regression result Theorem 5.5.7 carry over to
the extended operator.

Corollary 5.6.4 Let Γ = {φ1 ⇒ ψ1, . . . , φm ⇒ ψm} be objective.
Then there is a unique ~e = 〈e1, . . . , em+1〉 such that ~e |= OSΓ.

Proof. ~e ′ |= OΓ is unique by Theorem 5.3.16, so ~e = ~e ′
S

is unique by Rule ESB11. �

Theorem 5.6.5 Let Σdyn,Σbel be a basic action theory with S-free Σdyn and let α be a
regressable sentence. ThenOS(Σdyn,Σbel) |= α iffOSΣbel |= R[α].

The proof is an easy consequence of the original regression theorem shown in Ap-
pendix B.2.

5.7 Revision of only-believing

How does a conditional knowledge base change when new information comes in? An
answer to this brings us already half way to knowledge base progression. Because to
update a knowledge base when an action occurs, progression needs to take into account
both the revision effect and the physical effect of an action. Here we are only concerned
with the former. The goal is to find for a set of objective conditionals Γ a revised set
Γ ∗ υ that matches the semantic revision by υ.

92

5.7 Revision of only-believing

Semantically, performing an action brings along a revision of the epistemic state,
which promotes certain worlds over others. In this section we examine how the semantic
revision can be matched syntactically. More precisely, we are looking for a set of
conditionals Γ ∗ υ which is only-believed when Γ was only-believed before revising by υ.

Recall that by Theorem 5.3.14, B(α ∨ β ⇒ ¬β) asserts that α is more plausible than
β or both are considered impossible. We use this to define Γδ as the set conditionals
whose material implication holds in the first sphere consistent with δ. Γδ will be helpful
to characterize different spheres in order to represent revision by δ.

Definition 5.7.1 Γδ = {α ⇒ β ∈ Γ | OΓ |= B(δ ∨ ¬(α ⊃ β)⇒ (α ⊃ β))}.
A syntactic representation of weak revision by υ needs to reflect that the most-

plausible υ-worlds are promoted to the first level. To this end we use a new dummy
predicate R to partition the worlds: the R-worlds represent those which are promoted,
and the ¬R-worlds represent the beliefs before the revision.

Definition 5.7.2 Let R be a rigid predicate symbol. Let Γ = {φ1 ⇒ ψ1, . . . , φm ⇒ ψm}
and υ be objective and {R}-free. Then the weak revision of Γ by υ is

Γ ∗w υ = {true ⇒ R} ∪

{¬(R ⊃ υ) ⇒ false} ∪

{¬(R ⊃ (φ ⊃ ψ))⇒ false | φ ⇒ ψ ∈ Γυ} ∪
{(¬R ∧ φ) ⇒ ψ | φ ⇒ ψ ∈ Γ}.

We now prove that the revised set of conditionals (after forgetting R) matches
semantical weak revision.

Theorem 5.7.3 Let Γ = {φ1 ⇒ ψ1, . . . , φm ⇒ ψm} and υ be objective and S-free. Let R
be the nullary rigid predicate newly introduced in Γ ∗w υ.
If ~e |= OSΓ, then ~e ∗w υ |= OS∪{R}Γ ∗w υ.

The proof is in Appendix B.3. It proceeds by constructing a state ~e ′ whose first sphere
is e ′1 = ((~e ∗w υ) | R)1 and the subsequent spheres are e ′p = ((~e ∗w υ) |¬R)p for p > 1.
Then ~e ′ is a model of OΓ ∗w υ, and forgetting S ∪ {R} obtains the theorem.

Strong revision changes the ranking of the worlds more profoundly than weak
revision, and representing this change is hence more complex. Strong revision by υ

promotes all υ-worlds over all ¬υ-worlds. We therefore duplicate the conditionals from
Γ twice using new predicates, and require υ to be true in the first copy. The revised
truth values are then set through additional conditionals based on the dummies’ truth
values.

93

5 Actions and Belief Revision

To ease the presentation, we restrict our consideration of strong revision to static
formulas. They are sufficient for our purposes of progressing a basic action theories,
since the initial beliefs Σbel are static as well. Extending the below definition and theorem
for non-static conditionals is straightforward.

Definition 5.7.4 Let Γ = {φ1 ⇒ ψ1, . . . , φm ⇒ ψm} and υ be objective and static. Let
S′ be the object function and predicate symbols in Γ, and let S′′ be just as many object
function and rigid predicate symbols of corresponding arity which do not occur in Γ or υ.
For any formula β, let β∗ be the formula obtained from β by replacing each symbol from
S′ with the corresponding symbol from S′′. Let ∆ = {φ ⇒ ψ ∈ Γυ | OΓ 6|= K(φ ⊃ ψ)}.
Then the strong revision of Γ by υ is defined as

Γ ∗s υ = {φ∗ ⇒ ψ∗ | φ ⇒ ψ ∈ Γυ} ∪

{(φ∗ ∧ ¬υ)⇒ ψ∗ | φ ⇒ ψ ∈ Γ¬υ} ∪

{true⇒ υ} ∪ {¬(φ∗ ⊃ ψ∗) ∨ ¬υ ⇒ υ | φ ⇒ ψ ∈ ∆} ∪

{¬((υ ∧ ¬υ∗) ⊃ (φ ⊃ ψ)) ⇒ false | φ ⇒ ψ ∈ Γυ} ∪
{¬((¬υ ∧ υ∗) ⊃ (φ ⊃ ψ)) ⇒ false | φ ⇒ ψ ∈ Γ¬υ} ∪
{¬((υ ≡ υ∗) ⊃ (φ ≡ φ∗) ∧ (ψ ≡ ψ∗))⇒ false | φ ⇒ ψ ∈ Γ}.

The first and the third line account for the promoted υ-worlds in the revised epistemic
state. In particular, the third line asserts that there is the right number of levels where
υ holds. The material implications in the last three lines set the original predicates
according to the values of the dummy predicates.

As with weak revision, the syntactic strong revision Γ ∗s υ matches its semantic
counterpart.

Theorem 5.7.5 Let Γ = {φ1 ⇒ ψ1, . . . , φm ⇒ ψm} and υ be objective and static. Let S
be a finite set of object function and predicate symbols, and let υ be S-free. Let S′′ be the
symbols newly introduced in Γ ∗s υ. If ~e |= OSΓ, then ~e ∗s υ |= OS∪S′′Γ ∗s υ.

The proof is structurally similar to the proof of Theorem 5.7.3 and can be found in
Appendix B.3.

5.8 Projection by progression

With the preparatory work from the preceding two sections, we are now ready to
define the progression of a basic action theory Σdyn,Σbel. Given an action standard
name n, we first revise the theory by n’s information and then apply n’s effects on

94

5.8 Projection by progression

fluents. The revision is captured by Σbel ∗ ϕa
n where ϕ is from the informed-fluent axiom

�IF(a) ≡ ϕ ∈ Σdyn, and the type of revision corresponds to the subsort of n. (The
reason for taking ϕa

n instead of IF(n) is to keep the belief conditionals fluent.) In this
section we show how the physical effects of n are handled.

For two sets of predicate symbols F = {F1, . . . , Fk} and R = {R1, . . . ,Rk} of
corresponding arity we denote by αF

R
the formula obtained by replacing each Fi with

Ri in α.

Definition 5.8.1 Let Σdyn,Σbel be a basic action theory over fluents F = {F1, . . . , Fk},
and let R = {R1, . . . ,Rk} be rigid predicates of corresponding arity which do not other-
wise occur in Σdyn or Σbel ∗ ϕa

n. Let n be a action standard name. Then the progression
of Σbel by n is defined as

Σbel� n = (Σbel ∗ ϕa
n)FR ∪ {¬∀x1 . . .∀x l (F (x1, . . . , x l) ≡ γF a F

n R)⇒ false | F ∈ F }.

The intuition behind the definition is as follows. When n is executed, the beliefs are
first revised by the information ϕa

n produced by n, which leads to Σbel ∗ ϕa
n. The beliefs

(Σbel ∗ ϕa
n)FR represent the same conditionals belief as Σbel ∗ ϕa

n, except that each Fi is
renamed to Ri . Intuitively, the Ri memorize the value of Fi before the physical effect of
n. The additional conditionals in Σbel� n initialize each fluent F (x1, . . . , x l) with its
value after doing n, that is, γF a F

n R . Notice that the progression of a basic action theory
again is a basic action theory over F , so progression can iterate.

The following two results establish the correctness of progression. The first theorem
says that, if all that is believed is a basic action theory, then after doing action n all that
is believed is the progressed basic action theory.

Theorem 5.8.2 Let Σdyn,Σbel be a basic action theory. Let S′ be the symbols newly intro-
duced by Σbel� n. Then |= OS(Σdyn,Σbel) ⊃ [n]OS∪S′(Σdyn,Σbel� n).

The second theorem says that the same beliefs are entailed by a basic action theory
after doing action n and the progression by n of that basic action theory.

Theorem 5.8.3 Let Σdyn,Σbel be a basic action theory. Let S′ be the symbols newly intro-
duced by Σbel� n. ThenOS(Σdyn,Σbel) |= [n]α iffOS∪S′(Σdyn,Σbel� n) |= α.

The proofs of both theorems are in Appendix B.4. They proceed in two steps.
First, we show that Σbel ∗ ϕa

n and (Σbel ∗ ϕa
n)FR determine the same conditional beliefs

modulo the substitution of F by R, where R ⊆ S′ is the set of rigid predicates from
Definition 5.8.1. Second, we see that after progressing the individual worlds in the
model of O(Σdyn,Σbel ∗ ϕa

n) by n, the resulting epistemic state agrees with the model of

95

5 Actions and Belief Revision

O(Σdyn,Σbel� n) on everything except perhaps R. We therefore have that, when using
standard only-believing, the semantic progression and the syntactic progression agree
on everything except R. Using the extended only-believing operator also the differences
in R vanish.

Example 5.8.4 Let us proceed with query Q4 from Example 5.4.2 which we investi-
gated in Example 5.5.8 already. The query involves the action sequence dropbox, clink,
unbox(#5). Since dropbox is a physical action with no epistemic effect, let us take an
abbreviation instead of doing it by the definitions: it is easy to see that ~e� dropbox
from Example 5.4.4 satisfies O(Σdyn,Σ′bel) where

Σ
′

bel = {true⇒ ∀y¬InBox(y),
∃y InBox(y)⇒ ∀y (InBox(y) ≡ y = gift),
∃y InBox(y)⇒ ∀y (InBox(y) ⊃ (Broken(y) ≡ Fragile(y))),
¬∀y (InBox(y) ∧ Fragile(y) ⊃ Broken(y))⇒ false}.

We focus on the progression of O(Σdyn,Σ′bel) by the weak-revision action clink. Accord-
ing to Definition 5.7.2, the revision Σ′bel ∗ ϕ

a
clink contains the conditionals

• true⇒ R;

• ¬(R ⊃ ϕa
clink)⇒ false;

• ¬(R ⊃ (φ ⊃ ψ)) ⇒ false for each φ ⇒ ψ ∈ Σ′bel such that OΣ′bel |= B(ϕa
clink ∨

¬(φ ⊃ ψ)⇒ (φ ⊃ ψ));
• ¬R ∧ φ ⇒ ψ for each φ ⇒ ψ ∈ Σ′bel.

This amounts to

Σ
′

bel ∗ ϕ
a
clink = {true⇒ R,

¬(R ⊃ ∃y (InBox(y) ∧ Broken(y)))⇒ false,

¬(R ⊃ (∃y InBox(y) ⊃ ∀y (InBox(y) ≡ y = gift)))⇒ false,

¬(R ⊃ (∃y InBox(y) ⊃ ∀y (InBox(y) ⊃ (Broken(y) ≡ Fragile(y)))))⇒ false,

¬(R ⊃ (¬∀y (InBox(y) ∧ Fragile(y) ⊃ Broken(y)) ⊃ false))⇒ false,

true ∧ ¬R ⇒ ∀y¬InBox(y),
¬R ∧ ∃y InBox(y)⇒ ∀y (InBox(y) ≡ y = gift),
¬R ∧ ∃y InBox(y)⇒ ∀y (InBox(y) ⊃ (Broken(y) ≡ Fragile(y))),
¬R ∧ ¬∀y (InBox(y) ∧ Fragile(y) ⊃ Broken(y))⇒ false}.

96

5.8 Projection by progression

In the progression Σ′bel� clink the fluents InBox and Broken are renamed RInBox and
RBroken, respectively, and two conditionals are added to set InBox and Broken to its
correct value:

Σ
′

bel� clink = (Σ′bel ∗ ϕa
clink)InBox

RInBox
Broken
RBroken

∪

{¬(InBox(y) ≡ RInBox(y) ∧ clink , unbox(y))⇒ false,

¬(Broken(y) ≡ RBroken(y) ∨
RInBox(y) ∧ Fragile(y) ∧ clink = dropbox)⇒ false}.

Let us consider projection problem Q4 from Example 5.4.2 another time:

O(Σdyn,Σbel) |=
[dropbox][clink][unbox(#5)]∃yB(gift = y ∧ ¬InBox(gift) ∧ ¬Broken(gift)).

So far we have determined the progression of Σbel by dropbox and clink, and in Exam-
ple 5.5.8 we regressed the query by unbox(#5). Together, this projection problem can
therefore be recast as the purely static entailment problem

O{R,RInBox,RBroken}(Σdyn,Σ′bel� clink) |=
¬B(InBox(#5) ∧ ¬Broken(#5)⇒ false) ∧

B(InBox(#5) ∧ ¬Broken(#5)⇒ gift = #5 ∧ ¬Broken(#5)) ∨
B(InBox(#5) ∧ ¬Broken(#5)⇒ false).

The equivalence of both entailment problems follows from the progression and re-
gression results, Theorems 5.8.3 and 5.6.5. Let us confirm for this example that the
(regressed) query indeed is a logical consequence of the (progressed) theory. In Exam-
ple 5.4.4 we proved that ~e� dropbox� clink satisfies the regressed query. So it suffices
to show that ~e� dropbox� clink is the model of O{R,RInBox,RBroken}(Σdyn,Σ′bel� clink).
Following the procedure from the proof of Lemma 4.5.2, ~e ′ |= O(Σdyn,Σ′bel� clink) iff
~e ′ = 〈e ′1, e ′2, e ′3, e ′4〉 where

e ′1 = {w | w |= Σdyn ∧ R ∧

(R ⊃ ∀y (RInBox(y) ≡ y = gift) ∧ RBroken(gift) ∧ Fragile(gift)) ∧
∀y (InBox(y) ≡ RInBox(y)) ∧ ∀y (Broken(y) ≡ RBroken(y))};

97

5 Actions and Belief Revision

e ′2 = {w | w |= Σdyn ∧ (R ⊃ ∀y (RInBox(y) ≡ y = gift) ∧ RBroken(gift) ∧ Fragile(gift)) ∧
(¬R ⊃ ∀y¬RInBox(y)) ∧
∀y (InBox(y) ≡ RInBox(y)) ∧ ∀y (Broken(y) ≡ RBroken(y))};

e ′3 = {w | w |= Σdyn ∧ (R ⊃ ∀y (RInBox(y) ≡ y = gift) ∧ RBroken(gift) ∧ Fragile(gift)) ∧
(¬R ⊃ ∀y (RInBox(y) ⊃ y = gift ∧ (RBroken(y) ≡ Fragile(y)))) ∧
∀y (InBox(y) ≡ RInBox(y)) ∧ ∀y (Broken(y) ≡ RBroken(y))};

e ′4 = {w | w |= Σdyn ∧ (R ⊃ ∀y (RInBox(y) ≡ y = gift) ∧ RBroken(gift) ∧ Fragile(gift)) ∧
(¬R ⊃ ∀y (RInBox(y) ∧ Fragile(y) ⊃ RBroken(y))) ∧
∀y (InBox(y) ≡ RInBox(y)) ∧ ∀y (Broken(y) ≡ RBroken(y))};

and then it is easy to verify that ~e ′{R,RInBox,RBroken} = ~e� dropbox� clink: the R-worlds
in ~e ′ represent the worlds from (~e� dropbox� clink)1, and the ¬R-worlds represent
the additional worlds in (~e� dropbox� clink)p . Since there is no other model by
Corollary 5.6.4, the static entailment equivalent to Q4 shown above indeed holds.

5.9 Representation theorem

So far in this chapter, we have seen how actions can be taken out of the belief projection
problem, which leaves us with static reasoning about beliefs as in BO. In Section 4.8
we saw that such belief entailments can be reduced to ordinary non-modal reasoning. It
thus appears straightforward to extend the representation theorem for BO to the static
formulas of ESB.

At first sight, this may seem trivial, as static ESB adds nothing but terms of sort
action to BO. The catch is that action standard names are not atomic but formed with
an action function symbol A. In general, taking all ground terms as standard names is
problematic: if all we knew was φ = P (#1) ∧ ∀x (R(x) ⊃ R(g (g (x)))), which intuitively
means that P is the set of odd natural numbers, then RESnP (x), φo would have to
enumerate all odd “numbers:” #1, g (g (#1)), g (g (g (g (#1)))), and so on. Levesque (1984b)
concludes that such standard names would be too expressive for the representation
theorem.

Our rescue is that action function symbols may only take terms of sort object, which
restricts the nesting of standard names at the first level already. Action standard names
are hence of the form A(n1, . . . , nk) for object standard names ni . We hence only need
to update the RESnψ, φo operator (Definition 4.8.1) to handle free action variables.

Care needs to be taken to choose the right action standard names to substitute for

98

5.9 Representation theorem

the free action variable. For example, a relevant action standard name might not occur
directly but be “hidden,” as in ∃x (a = A(x) ∧ x = #1) as opposed to a = A(#1). Clearly
this formula is true for certain values of a, but we can find out so only by trying A(#1)
for a. So at least we need to consider all action standard names that can be formed from
the action function symbols and object standard names that occur in φ or ψ. As another
example, consider ∃x (a = A(x) ∧ x , #1). Again this sentence is true for appropriate a,
but we can neither find that out by substituting A(#1) for a nor with some arbitrary
other name A′. Instead, we need to test A(n) for some n , #1. So the trick is to take the
action function symbols from φ and ψ and close them also under some names that do
not occur in φ or ψ, such as A(#2) in this example.

While the definition of RES below admittedly seems complex at first, it follows this
rather simple idea. We also provide an example to illustrate it below.

Definition 5.9.1 Let φ be an objective sentence and ψ be an objective formula. Then
RESnψ, φo is defined as follows:

• if ψ has no free variables, then

RESnψ, φo =



true if |= (φ ⊃ ψ);
false otherwise;

• if y is a free object variable in ψ and

– N contains the object standard names occurring in φ or ψ,

– n′ is a new object standard name not in N ,

then

RESnψ, φo =
∨
n∈N

�(y = n) ∧ RESn(ψy
n), φo

�
∨∧

n∈N

�(y , n) ∧ RESn(ψy
n′), φon

′

y
�
;

• if a is a free action variable in ψ and there is no free object variable in ψ,

– A contains the action function symbols occurring in φ or ψ,

– K is the maximal arity of the symbols in A,

– N contains the object standard names occurring in φ and ψ,

– N ′ = {n′1, . . . , n′K | n′i < N } contains K new object standard names that
neither occur in φ nor in ψ,

99

5 Actions and Belief Revision

– M = {A(n1, . . . , nk) | A ∈ A and ni ∈ N } is the set of action standard
names formed from the action symbols A and object standard names N ,

– M ′ = {A(n1, . . . , nk) | A ∈ A and ni ∈ N ∪ N
′} \ M is the set of action

standard names formed from the action symbols A that and the action
standard names N ∪N ′ but have at least one argument from N ′ that does
not occur in φ or ψ,

– A′ < A is a new action constant that neither occurs in φ nor in ψ,

– for n′ = A(n1, . . . , nk) ∈ M ′ we let (n′)n′1 ... n′Ky1 ... yK denote the result of replacing
in A(n1, . . . , nk) every occurrence of an object standard name n′i ∈ N

′

(which may occur zero or more times in n1, . . . , nk) with the variable yi ,

then

RESnψ, φo =
∨
n∈M

�(a = n) ∧ RESn(ψa
n), φo

�
∨∨

n′∈M′
∃y1 . . . ∃yK

�(a = (n′)n′1 ... n′Ky1 ... yK) ∧∧
1≤i≤K ,n′′∈N

(yi , n′′) ∧
∧

1≤i< j≤K
(yi , y j) ∧ RESn(ψa

n′), φon
′

a
�
∨

∧
A∈A
∀y1 . . .∀yk

�(a , A(y1, . . . , yk)) ∧ RESn(ψa
A′), φoA

′

a
�
.

Before we explain the new case for free action variables, note that the other two cases
are the same as in the representation theorem for BO. Like in Definition 4.8.1, the case
for a free object variable y tries all names from φ and ψ plus a new one, n′. Notice that
n′ is eventually replaced by y again, so that no new standard name is introduced by
RESnψ, φo.

Now consider the case when ψ has a free action variable a and there is no free object
variable in ψ. First, we remark that the condition that there shall be no free object
variable in ψ is merely a tie-breaker so that RES is well-defined; we could equally well
require analogously in the case for free object variables that there shall be no free action
variable in ψ.

The first and the last of the three large disjuncts in RES for action variables are similar
to the case for free object variables.M contains all action standard names that can be
formed from the symbols in φ and ψ, it thus corresponds to the set N in the case for
free object variables; all these names are tested explicitly. The new action constant A′

corresponds to n′ in the case for an objective variable; it is tested and then again replaced

100

5.9 Representation theorem

by a to avoid a new standard name in the result.
New is the middle disjunct of RES, that is, the disjunction over n′ ∈ M ′. It covers

the action names which are partially but not fully formed from symbols in φ or ψ. Let
us consider an example to illustrate how it works. Suppose φ or ψ mention a single
binary action function symbol A ∈ A and one object name n1 ∈ N . Then K = 2,
so N ′ = {n′1, n′2}; intuitively these object names represent all names which do not
occur in φ or ψ. Let us consider the subformula where n′ ∈ M ′ has the value A(n1, n′2).
After doing the substitution, the subformula begins with ∃y1∃y2

�(a = A(n1, y2))∧ (y1 ,

n1)∧ (y2 , n1)∧ (y1 , y2)∧RESnψa
A(n1,n′2), φo

A(n1,n′2)
a

�
. Imagine A(n1, n′′2) where n′′2 < N

substituted for a: then the formula is equivalent to RESnψa
A(n1,n′2), φo

A(n1,n′2)
A(n1,n′′2), that is,

A(n1, n′′2) is represented by A(n1, n′2). Intuitively this works because ψ cannot distinguish
between A(n1, n′2) and A(n1, n′′2), as n′1, n′′2 < N .

Besides this extended RESnψ, φo operator we also need to reflect forgetting of the
extended only-believing in our reduction. To this end, we add second-order quantifiers
to the language.

Definition 5.9.2 The set of well-formed formulas is the least set formed from the rules
from Definitions 5.2.1 and 5.6.1 and

• ∃Sα is a formula, where S is a finite set of object function or predicate symbols
and α is a formula.

Semantically these quantifiers are easily interpreted with ≈S from Definition 5.6.2.

Definition 5.9.3 The semantics of existential second-order variables is defined as fol-
lows:

ESB12. ~e,w |= ∃Sα iff for some w ′, ~e,w ′ |= α and w ≈S w ′.

We remark that this simple semantics of second-order quantifiers does not behave
well with quantifying-in. Lakemeyer and Levesque (2009, 2011) extend the semantics
with another parameter for variable maps where the extension of second-order variables
is memorized. As we use them for objective reasoning only, the simple semantics is
sufficient here.

An objective representation in ESB is defined analogously to objective representation
in BO (Definition 4.8.2).

Definition 5.9.4 Let Γ = {α1 ⇒ β1, . . . , αm ⇒ βm}. Let ~e |= OSΓ. An objective
representation ~γ of OSΓ is an infinite sequence of objective sentences γp such that
γp = {w | w |= ∃Sγp} for all p ∈ P. We write 〈γ1, . . . , γq〉 if γq = γp for all p ≥ q .

101

5 Actions and Belief Revision

The following lemma corresponds to a similar result for BO (Lemma 4.8.3).

Lemma 5.9.5 Let Γ = {φ1 ⇒ ψ1, . . . , φm ⇒ ψm} be objective and ~γ = 〈γ1, . . . , γm+1〉
be defined by γp =

∧
i:γ0 |=¬φi,...,γp−1 |=¬φi (φi ⊃ ψi). Then ~γ ′ = 〈∃Sγ1, . . . ,∃Sγm+1〉 is an

objective representation of OSΓ, and for every other objective representation ~γ ′′, for all
p ∈ P, |= γ ′p ≡ γ ′′p .
Proof. As argued for Lemma 4.8.3, ~γ is an objective representation of OΓ. Let ~e |= OΓ
and ~e ′ |= OSΓ. For all p ∈ P and for all w , w |= γ ′p iff w ′ |= γp for some w ′ ≈S w iff
w ′ ∈ ep for some w ′ ≈S w iff w ∈ (~eS)p iff w ∈ ep . �

We can now reduce belief projection problems OΓ |= [t1] . . . [tk]B(α ⇒ β) to static,
non-modal (even though in general second-order) logic, provided that Γ is objective.
The belief entailment obtained after eliminating the actions by means of regression or
progression is solved the same way as in BO (Definition 4.8.4). By Lemma 5.9.5, we
only need to consider a single objective representation of OSΓ which is moreover finite.
Then the very same procedure as in BO works to eliminate conditional belief operators
from the query.

Definition 5.9.6 A formula is belief-static if for every non-static subformula [t]α or
�α, α is objective. Let α be a belief-static formula without O and let ~γ = 〈γ1, . . . , γq〉
be objective sentences. Then ‖α‖~γ is defined inductively:

• ‖α‖~γ = α if α is an objective formula;

• ‖¬α‖~γ = ¬‖α‖~γ ;
• ‖(α1 ∨ α2)‖~γ = (‖α1‖~γ ∨ ‖α2‖~γ);
• ‖∃xα‖~γ = ∃x ‖α‖~γ ;
• ‖B(α ⇒ β)‖~γ = ∧q

p=1
��∧p−1

p′=1 RESn‖¬α‖~γ, γp′o
�
⊃ RESn‖(α ⊃ β)‖~γ, γpo

�
.

We use ‖α‖OSΓ as an abbreviation for ‖α‖~γ where ~γ is the objective representation of
OSΓ from Lemma 5.9.5.

The following theorem generalizes the representation theorem from BO (Theo-
rem 4.8.5) to ESB.

Theorem 5.9.7 Let Γ = {φ1 ⇒ ψ1, . . . , φm ⇒ ψm} be objective and α be belief-static
withoutO. ThenOSΓ |= α iff |= ‖α‖OSΓ.

The proof can be found in Appendix B.5. As a special case, we show the representation
theorem for BO there (Theorem 4.8.5).

102

5.9 Representation theorem

We could lift the belief-static restriction on α, which prohibits beliefs within the
scope of actions, by a regression-like procedure that transforms the α in belief-static
form by means of Theorems 5.5.4 and 5.5.5. Unlike regression, this procedure may leave
fluents unchanged and is thus does not require on a basic action theory. We skip such an
extended ‖ · ‖ operator here, and instead merely show that the representation theorem
works well with regression.

Corollary 5.9.8 Let Σdyn,Σbel be an S-free basic action theory and let α be a regressable
sentence. ThenOS(Σdyn,Σbel) |= α iff |= ‖R[α]‖OSΣbel .

As an alternative to the regression-like procedure sketched above, we could update
the objective representation to reflect the epistemic effect of actions. We saw however in
Section 5.7 how involved this can get with belief revision, and we do not investigate this
any further here. It is however easy to see that the representation theorem goes along
equally well with progression as with regression.

Corollary 5.9.9 Let Σdyn,Σbel be a basic action theory,S′ be the symbols newly introduced
by Σbel� n, and let α be a belief-static sentence withoutO.
ThenOS(Σdyn,Σbel) |= [n]α iff |= ‖α‖OS∪S′ (Σdyn,Σbel � n).

These corollaries are also shown in Appendix B.5. We conclude this section with an
example that, unlike Example 4.8.6, also involves nested beliefs and quantifying-in.

Example 5.9.10 Let us illustrate the representation theorem with query Q3 from
Example 5.4.2. With progression, the problem reduces to the static belief entailment

O(Σdyn,Σbel� dropbox� clink) |= B(InBox(gift) ∧ Broken(gift) ∧ ¬∃yBgift = y).

In Example 5.8.4, we already determined the progression by dropbox and clink, that is,
O{R,RInBox,RBroken}(Σdyn,Σbel� dropbox� clink), and its model ~e ′{R,RInBox,RBroken}. Reading
off from ~e ′ in Example 5.8.4 and simplifying it a little to eliminate the second-order
variables (which is easy here) yields the objective representation

γ1 = Σdyn ∧ ∀y (InBox(y) ≡ y = gift) ∧ Broken(gift) ∧ Fragile(gift);
γ2 = Σdyn ∧ ∀y (InBox(y) ⊃ y = gift ∧ Broken(gift) ∧ Fragile(gift));
γ3 = Σdyn ∧ ∀y (InBox(y) ⊃ y = gift ∧ (Broken(y) ≡ Fragile(y)));
γ4 = Σdyn ∧ ∀y (InBox(y) ∧ Fragile(y) ⊃ Broken(y)).

By Theorem 5.9.7, to prove the entailment problem it suffices to check the validity
of ‖B(InBox(gift) ∧ Broken(gift) ∧ ¬∃yBgift = y)‖~γ . The ‖α‖~γ operator works its

103

5 Actions and Belief Revision

way from the inside to the outside, so we begin with ‖Bgift = y‖~γ . This expands
to
∧4

p=1((
∧p−1

p′=1 RESn‖¬true‖~γ, γp′o) ⊃ RESn‖(true ⊃ gift = y)‖~γ, γpo), and since
6|= γp′ ⊃ ¬true for all p ′, this is equivalent to RESngift = y, γ1o. Neither γ1 nor gift = y
contain any object standard name, so we only need to plug in one arbitrary standard
name for y, say #7. Then RESngift = y, γ1o expands to RESngift = #7, γ1o#7

y , and since
6|= γ1 ⊃ gift = #7, this finally expands to is false.

The next step is to determine ‖B(InBox(gift)∧Broken(gift)∧¬∃yfalse)‖~γ . As in the
previous step, 6|= γp′ ⊃ ¬true for all p ′, that is, the first sphere is consistent, the formula
boils down to RESnInBox(gift) ∧ Broken(gift), γ1o, which is true because |= γ1 ⊃

InBox(gift)∧Broken(gift). That is, |= ‖B(InBox(gift)∧Broken(gift)∧¬∃yBgift = y)‖~γ
was eventually reduced to |= true. The query is thus proved.

5.10 Belief revision postulates

In this section we relate ESB to the most well known accounts of belief change: the
postulates for single revision by Alchourrón, Gärdenfors, and Makinson (1985) and
Gärdenfors (1988), often referred to by their initials AGM; the postulates for iterated
revision by Darwiche and Pearl (1997); and the alternative proposal by Nayak, Pagnucco,
and Peppas (2003). We will see that the AGM postulates are satisfied and a slight
weakening of the Darwiche–Pearl postulates hold. For strong revision furthermore all
but the first Nayak–Pagnucco–Peppas postulate are satisfied as well. The divergences
from these postulate systems only concern the special case of revision by an inconsistent
formula: our semantics provides no escape from the inconsistent epistemic state 〈{}〉
once it is reached.

We prove the postulates for semantic revision by objective sentences; the correspond-
ing results for theory revision follow by the theorems from Section 5.7. Our translation
of the postulates to ESB is similar to the one by Shapiro et al. (2011). Perhaps the
only notable translation is that belief expansion is modelled as material implication:
~e |= B(φ ⊃ ψ) represents that ψ is in the belief set after it is expanded with φ. For the
remainder of this section let φ, ψ, υ be objective sentences.

We begin with the translation of the original belief revision postulates by Alchourrón,
Gärdenfors, and Makinson (1985) to our formalism.

Definition 5.10.1 The Alchourrón–Makinson–Gärdenfors postulates in ESB are as
follows.

AGM1. If ~e ∗ φ |= Bψ and ~e ∗ φ |= B(ψ ⊃ υ), then ~e ∗ φ |= Bυ.

104

5.10 Belief revision postulates

AGM2. ~e ∗ φ |= Bφ.

AGM3. If ~e ∗ φ |= Bυ, then ~e |= B(φ ⊃ υ).
AGM4. If ~e 6|= B¬φ and ~e |= B(φ ⊃ υ), then ~e ∗ φ |= Bυ.

AGM5. If ~e 6|= K¬φ, then ~e ∗ φ 6|= Bfalse.

AGM6. If ~e |= K(φ ≡ ψ), then ~e ∗ φ |= Bυ iff ~e ∗ ψ |= Bυ for every υ.

AGM7. If ~e ∗ (φ ∧ ψ) |= Bυ, then ~e ∗ φ |= B(ψ ⊃ υ).
AGM8. If ~e ∗ φ 6|= B¬ψ and ~e ∗ φ |= B(ψ ⊃ υ), then ~e ∗ (φ ∧ ψ) |= Bυ.

Theorem 5.10.2 The Alchourrón–Makinson–Gärdenfors postulates are satisfied.

Proof. We suppose ep , {} for some p ∈ P, for otherwise the postulates hold trivially as
(~e ∗ δ)p = {} and thus ~e ∗ δ |= Bfalse. Since the postulates refer only to a single revision
and (~e ∗w δ)1 = (~e ∗s δ)1 by Lemma 5.3.7, the proof does not need to distinguish between
weak and strong revision.
AGM1. Follows from Property (iv) of Theorem 5.3.15.

AGM2. If there is no φ-world, (~e ∗ φ)p = {} for all p ∈ P; else for all w ∈ (~e ∗ φ)1 , {},
w |= φ. In either case, ~e ∗ φ |= Bφ.

AGM3. Let ~e ∗ φ |= Bυ. Suppose ~e 6|= B(φ ⊃ υ). Then for some w ∈ eb~e | truec , w |=
φ ∧ ¬υ. Then w ∈ (~e ∗ φ)1, and therefore ~e ∗ φ 6|= Bυ, which contradicts the assumption.
Thus ~e |= B(φ ⊃ υ).
AGM4. Let ~e 6|= B¬φ and ~e |= B(φ ⊃ υ). Then for some w ∈ eb~ec , w |= φ, and for all
w ∈ eb~ec , w |= φ ⊃ υ. Therefore (~e ∗ φ)1 ⊆ ep , and for all w ∈ (~e ∗ φ)1, w |= φ ∧ υ, so
~e ∗ φ |= Bυ.

AGM5. Let ~e 6|= K¬φ. Then for some w ∈ eb~ec , w |= φ. Hence (~e ∗ φ)1 , {}, so
~e ∗ φ 6|= Bfalse.

AGM6. Let ~e |= K(φ ≡ ψ). Then w |= φ iff w |= ψ for all p ∈ P and w ∈ ep . Thus
~e ∗ φ = ~e ∗ ψ.

AGM7. If there is no φ-world, ~e ∗ φ |= B(ψ ⊃ υ) holds trivially. Otherwise, consider
w ∈ (~e ∗ φ)1 with w |= ψ. Then w ∈ (~e ∗ (φ ∧ ψ))1 and by assumption, w |= υ. Hence
~e ∗ φ |= B(ψ ⊃ υ).
AGM8. Let ~e ∗ φ 6|= B¬ψ and ~e ∗ φ |= B(ψ ⊃ υ). Then for some w ∈ (~e ∗ φ)1, w |= ψ.
Therefore (~e ∗ (φ ∧ ψ))1 ⊆ (~e ∗ φ)1, and for all w ∈ (~e ∗ (φ ∧ ψ))1, w |= ψ ∧ (ψ ⊃ υ), and
so w |= υ. Hence ~e ∗ (φ ∧ ψ) |= Bυ. �

105

5 Actions and Belief Revision

The most popular postulate system iterated revision is due to Darwiche and Pearl
(1997). We slightly restrict them here by weakening the second postulate.

Definition 5.10.3 The restricted Darwiche–Pearl postulates in ESB are as follows.

DP1. If ~e |= K(ψ ⊃ φ), then (~e ∗ φ) ∗ ψ |= Bυ iff ~e ∗ ψ |= Bυ.

DP2. If ~e |= K(ψ ⊃ ¬φ) and ~e |= K¬φ ⊃ K¬ψ, then (~e ∗ φ) ∗ ψ |= Bυ iff ~e ∗ ψ |= Bυ for
every υ.

DP3. If ~e ∗ ψ |= Bφ, then (~e ∗ φ) ∗ ψ |= Bφ.

DP4. If ~e ∗ ψ 6|= B¬φ, then (~e ∗ φ) ∗ ψ 6|= B¬φ.

The restriction of DP2 concerns the special case of revision by an inconsistent formula.
Since ESB provides no escape from the empty epistemic state, DP2 holds in case the first
revision is by an inconsistent formula only if the second revision is by an inconsistent
formula as well. We hence require ~e |= K¬φ ⊃ K¬ψ in our variant of DP2. We remark
that the restricted postulate is still slightly stronger than NPP4 (see below).

Theorem 5.10.4 The restricted Darwiche–Pearl postulates are satisfied.

Proof. DP1. Let ~e |= K(ψ ⊃ φ). Then (~e | ψ)p ⊆ (~e | φ)p for all p ∈ P (*). Therefore
w ∈ ((~e ∗ φ) ∗ ψ)1 iff b~e ∗ φ | ψc , ∞ and w ∈ (~e ∗ φ | ψ)b~e ∗ φ | ψc iff (by (*)) b~e | ψc , ∞
and w ∈ (~e | ψ)b~e | ψc iff w ∈ (~e ∗ ψ)1.
DP2. The proof is very similar to DP1. Let ~e |= K(ψ ⊃ ¬φ) and ~e |= K¬φ ⊃ K¬ψ.
If b~e | ψc = ∞, then b~e ∗ φ | ψc = ∞, and therefore ~e ∗ ψ = (~e ∗ φ) ∗ ψ = 〈{}〉, so the
postulate holds. Now suppose b~e | ψc , ∞. By the second assumption, ~e 6|= K¬φ, so
b~e | φc , ∞. By the first assumption, w 6|= ψ for all w ∈ (~e | φ)p for all p ∈ P. Thus
(~e | φ)p ∩ (~e | ψ)p = {} (*), so neither weak nor strong revision by φ affects the relative
order of the ψ-worlds. Hence w ∈ ((~e ∗ φ) ∗ ψ)1 iff w ∈ (~e ∗ φ | ψ)b~e ∗ φ | ψc iff (by (*))
w ∈ (~e | ψ)b~e | ψc iff w ∈ (~e ∗ ψ)1.
DP3. Let ~e ∗ ψ |= Bφ. If b~e | φc = ∞, then ~e ∗ φ = (~e ∗ φ) ∗ ψ = 〈{}〉, so the pos-
tulate holds. If b~e | ψc = ∞, then b~e ∗ φ | ψc = ∞, and therefore (~e ∗ φ) ∗ ψ = 〈{}〉,
so the postulate holds. Now suppose b~e | φc , ∞ and b~e | ψc , ∞. By assumption,
(~e | ψ)b~e | ψc ⊆ (~e | φ)b~e | ψc . Therefore the most-plausible ψ-worlds remain most plausible
after weak or strong revision by φ, so (~e ∗ φ | ψ)b~e ∗ φ | ψc ⊆ (~e ∗ φ | φ)b~e ∗ φ | ψc . Thus, if
w ∈ ((~e ∗ φ) ∗ ψ)1, then w ∈ (~e ∗ φ | ψ)b~e ∗ φ | ψc , and w ∈ (~e ∗ φ | φ)b~e ∗ φ | ψc , so w |= φ.
DP4. Let ~e ∗ ψ 6|= B¬φ. Then b~e ∗ ψ | φc , ∞, and so b~e | φc , ∞ and b~e | ψc ,
∞. By assumption, for some (~e | ψ ∧ φ)b~e | ψc , {}. The φ-worlds among the most-
plausible ψ-worlds remain most plausible after weak or strong revision by φ, so we

106

5.11 Sensing in ESB

have (~e ∗ φ | ψ ∧ φ)b~e ∗ φ | ψc , {}. Hence there is some w ∈ (~e ∗ φ | ψ ∧ φ)b~e ∗ φ | ψc , and
therefore also w ∈ (~e ∗ φ | ψ)b~e ∗ φ | ψc . Thus w |= φ for some w ∈ ((~e ∗ φ) ∗ ψ)1. �

Finally, let us turn to the alternative proposal for iterated revision by Nayak, Pagnucco,
and Peppas (2003).

Definition 5.10.5 The Nayak–Pagnucco–Peppas postulates in ESB are as follows.

NPP1. If ~e |= Kfalse, then ~e ∗ φ |= O{true⇒ φ}.
NPP2. AGM1–AGM6 hold.

NPP3. If ~e 6|= K¬(φ ∧ ψ) then (~e ∗ φ) ∗ ψ |= Bυ iff ~e ∗ (φ ∧ ψ) |= Bυ for every υ.

NPP4. If ~e |= K(ψ ⊃ ¬φ) and ~e 6|= K¬φ, then (~e ∗ φ) ∗ ψ |= Bυ iff ~e ∗ ψ |= Bυ.

The Nayak–Pagnucco–Peppas postulates hold with two exceptions. For one thing, the
absurdity postulate NPP1 does not hold. NPP1 allows to recover from an inconsistent
revision: it says that after revising an inconsistent state by φ, φ shall be all that is believed.
In ESB, NPP1 would be counterintuitive because we would lose any indefeasible
knowledge we might have had already before reaching the inconsistent ~e (such as the
dynamic axioms of a basic action theory). Avoiding this would require additional book
keeping, which seems like a lot of effort for relatively little gain.

For another, the conjunction postulate NPP3 only holds for strong revision. NPP3
for weak revision is not satisfied because, unlike strong revision, weak revision by φ
does not preserve the relative ordering among the φ worlds. Hence, after revision by φ
the most-plausible ψ-worlds might actually not satisfy not φ.

Theorem 5.10.6 The Nayak–Pagnucco–Peppas postulates NPP2, NPP3 for strong revision,
and NPP4 are satisfied.

Proof. We only need to prove NPP3, as we have shown the AGM1–AGM6 in The-
orem 5.10.2 already and NPP4 is a special case of DP2. Suppose w ∈ ((~e ∗s φ) ∗s ψ)1.
Then w ∈ (~e ∗s φ)b~e ∗s φ | ψc . By assumption, b~e ∗s φ | ψc < b~e ∗s φ |¬φc, so w |= φ and,
since the revision by φ did not affect the relative ordering of the (φ ∧ ψ)-worlds, also
w ∈ eb~e | φ∧ψc . Thus w ∈ (~e ∗s φ ∧ ψ)1. Conversely, suppose w ∈ (~e ∗s φ ∧ ψ)1. Then
w ∈ eb~e | φ∧ψc . Therefore w ∈ (~e ∗s φ)b(~e ∗s φ) | ψc , and thus w ∈ ((~e ∗s φ) ∗s ψ)1. �

5.11 Sensing in ESB

ESB uses informing as a lightweight alternative to classical sensing, since sensing cannot
cope well with contradictory information as elaborated in Section 5.1. Informing is (or

107

5 Actions and Belief Revision

seems) weaker than sensing, as there is no ground truth to the information in general.
Nevertheless, as we shall see now, informing is expressive enough to mimic classical
sensing.

The idea is as follows. Suppose A should sense whether or not φ holds in the actual
world. We can simulate this with a strong-revision action A(ỹ), where ỹ takes a binary
value to represent whether φ holds in the real world (for example, ỹ = #1 iff φ is true),
and IF(A(ỹ)) is defined as φ or ¬φ depending on the value of ỹ. Then A(ỹ) informs the
agent about the real-world value of φ, and the revision promotes the worlds that accord
with this value and it is thus believed.

To show how it works, let us translate an ES projection problem to ESB. In ES,
the dynamic part of a basic action theory consists of successor-state axioms like in
Definition 5.4.1 plus two more axioms: �Poss(a) ≡ π for the action precondition and
a sensed-fluent axiom �SF(a) ≡ ϕ, where π and ϕ are fluent ES formulas (Lakemeyer
and Levesque 2011). Besides the dynamic axioms, a basic action theory contains a set
of fluent sentences about the initial situation. We use Λ to denote an ES basic action
theory; there is one for the real world and one for the agent’s knowledge. The projection
projection in ES is to decide an entailment

Λ1 ∧OΛ2 |=ES [A1(~t1)][A2(~t2)] . . . [Ak(~tk)]Kα.

For simplicity, let us only consider problems where α is fluent.
Doing an action n in ES tells the agent that Poss(n) holds and what the real-world

value of SF(n) is. Let A contain the action function symbols we are interested in; here,
the symbols of the ti suffice. Consider

�IF(a) ≡
∧
A∈A
∀~y∀ỹ (a = A(~y, ỹ) ⊃ Poss(a) ∧ (ỹ = #1 ≡ SF(a)));

�Outcome(a) ≡
∧
A∈A
∀~y∀ỹ (a = A(~y, ỹ) ⊃ (ỹ = #1 ≡ SF(a))).

The second axiom binds ỹ on the real-world value of SF, which is then used in IF to
revise by that value. Let Λ∗i be like Λi except that every action function symbol is
retrofitted with one additional dummy argument ỹ whose value shall have no effect.
Moreover, Λ∗1 shall contain the above Outcome axiom and Λ∗2 shall contain the IF
axiom.

The query in the above entailment problem can then be translated to ESB by
iteratively replacing every subformula of the form [Ai(~ti)]β with the new formula

108

5.12 Discussion

∃ỹi
�
Outcome(Ai(~ti, ỹi))∧[Ai(~ti, ỹi)]β

�
, where Ai shall be of sort strong-revision action.

That way, we obtain the ESB entailment

Λ
∗
1 ∧O{¬Λ∗2 ⇒ false} |=
∃ỹ1

�
Outcome(A1(~t1, ỹ1)) ∧
[A1(~t1, ỹ1)]∃ỹ2

�
Outcome(A2(~t2, ỹ2)) ∧
[A2(~t2, ỹ2)]∃ỹ3

�
Outcome(A3(~t3, ỹ3)) ∧ . . .

. . . [Ak−1(~tk−1, ỹk−1)]∃ỹk
�
Outcome(Ak(~tk, ỹk)) ∧
[Ak(~tk, ỹk)]Kα

�
. . .

��
.

Every action Ai(~ti, ỹi) revises by the information that Ai(~ti) senses in ES. If these
sensings are consistent, that is, Λ1 ∧OΛ2 6|=ES [A1(~t1)] . . . [Ak(~tk)]Kfalse, then after
doing the actions the possible worlds in ES correspond to the most-plausible worlds
in ESB (this follows from the NPP3 postulate from Theorem 5.10.6) – knowledge
after sensing in ES matches belief after informing in ESB then. If the sensings are
inconsistent, ES ends up in the empty epistemic state, whereas ESB tries to avoid this
by promoting less-plausible worlds to the first sphere.

This modelling is not limited to binary sensing. For instance, a sonar that senses a
distance to some obstacle can be represented with an action sonar(ỹ), where ỹ is the
sensed distance. When the basic action theory stipulates IF(sonar(ỹ)) ≡ distance = ỹ,
then ∃ỹ ((distance = ỹ)∧ [sonar(ỹ)]B(distance = ỹ)) holds, that is, the agent believes the
correct distance.

As noted before already, Bacchus, Halpern, and Levesque (1999) model noisy sensing
in a similar way: they use two artificial action parameters, one for the correct value
and another one for the nominal sensor reading. For example, in sonar(ỹ, y), ỹ would
represent the noisy distance reported by the sensor and y would be the actual distance
to the wall. Their framework accounts for the probability of the sensor reporting ỹ
when the real value is y.

5.12 Discussion

In this chapter we integrated the logic BO from Chapter 4 with actions in the spirit
of Reiter’s situation calculus. Just like ES can be seen as an offspring of OL and the
epistemic extension of Reiter’s situation calculus by Scherl and Levesque (2003), ESB
has its roots in BO and an epistemic extension of the situation calculus by Shapiro
et al. (2011) that supports belief change, albeit only to some extent. ES and ESB

109

5 Actions and Belief Revision

inherit only-knowing/only-believing and most of their semantics from OL and BO,
respectively, and adopt the idea to integrate actions with knowledge and belief from
(Scherl and Levesque 2003) and (Shapiro et al. 2011).

However, ESB has grown way beyond the proposal by Shapiro et al. (2011). For one
thing, (Shapiro et al. 2011) features no concept like only-believing, and conditionals are
only intended to determine the agent’s initial knowledge. It is hence quite cumbersome
to specify a knowledge base. In fact, it seems like in their approach specifying a ranking
of the possible situations by hand is often the easier way compared to finding the right
set of (possibly negated) conditionals to characterize the initial situation. For another,
the formalism by Shapiro et al. follows the classical sensing approach known from
ES and (Scherl and Levesque 2003); they do not use belief revision techniques like we
do. Instead, with every sensing they thin out the set of possible situations, and let the
remaining most-plausible situations define the current belief. As a consequence, they
cannot deal with contradicting information at all; belief that was discarded once cannot
be reinstated as it is lost forever in their approach.

Shapiro et al. (2011) argue that in their framework does not go along well with any
belief revision scheme because any modification of the plausibility ranking could lead to
counterintuitive results in introspective formulas. The anomalies they mentioned do not
occur in our logic because here a world’s plausibility is a property of that world alone
(and of the epistemic state), independent of the currently considered actual world. In
contrast, introspection and quantifying-in both do work as expected in our framework.

To replace classical sensing, we devised a concept called informing. Informing is weaker
than sensing, but useful to model unreliable sensors and contradictory information
(Section 5.1). As argued before, sensing as in (Lakemeyer and Levesque 2011; Scherl and
Levesque 2003; Shapiro et al. 2011) would be insufficient to deal with contradictory
information. It is interesting that despite its simplicity informing is still expressive
enough to capture the relevant part of sensing (Section 5.11).

On the semantic side, ESB integrates new information with the agent’s beliefs by
classical revision techniques, namely natural revision and lexicographic revision, which
we referred to as weak and strong revision. Such revision can be matched by syntactic
manipulation of the conditional knowledge base (Theorems 5.7.3 and 5.7.5). The
resulting theory is very complex, though, because we employ second-order logic for the
purposes of forgetting as in (Lin and Reiter 1994).

Perhaps the most important problem when reasoning about beliefs in the context of
actions is the belief projection problem (Definition 5.4.1), which refers to reducing a
dynamic belief entailment to a static one. We developed two solutions in this chapter.

110

5.12 Discussion

The first one is by regression, where the query is reduced to a formula about the
initial situation (Theorem 5.5.7). Extending Reiter’s regression operator to conditional
beliefs was straightforward thanks to two theorems about the relation between beliefs
before and after an action (Theorems 5.5.4 and 5.5.5). These results can be used for
belief regression similar to successor-state axioms for fluents. Similar theorems have
been used by van Benthem (2007) to reduce beliefs after revision to initial beliefs.

In the conclusion of the previous chapter we already argued that our semantics of
conditional belief greatly helped to generalize the representation theorem for conditional
beliefs. Similarly, the simplicity of our regression operator is in large part due to our
semantics of conditional belief. If we defined B(α ⇒ β) as Bα after revision by β,
like Boutilier (1993) does, Theorems 5.5.4 and 5.5.5 would have required an intricate
rewriting to push the actions inside all belief conditionals.

Our second solution of the belief projection problem is by progression, where the
effects of an action are applied to the knowledge base (Theorems 5.8.2 and 5.8.3). We
combined our findings on the revision of a conditional knowledge base with Lin–Reiter-
style progression for that purpose.

We also generalized BO’s representation theorem to ESB (Theorem 5.9.7). That
way, belief projection problems can be first reduced to static entailments by means of
regression or progression, and then reduced to non-modal reasoning. Care needs to
be taken to correctly handle free action variables (Definition 5.9.1), but otherwise the
extension is straightforward. This is in large parts due to our non-standard definition of
action standard names.

We emphasize that our action standard names do not cause, but actually solve a
problem here. Most variants of ES define action standard names atomically analogously
to object standard names, and require all possible worlds to agree with the actual world
on the interpretation of rigid terms (this constraint is added to the ' relation from
Definition 3.10.3). It is not clear how this semantic constraint should be considered
in the representation theorem for ES. For example, consider ((n = A) ⊃ K(n = A))
for an action standard name n and an action constant A in classical ES (Lakemeyer
and Levesque 2011). The sentence is valid since all reachable possible worlds map A
to the same standard name as the actual world. However, ‖((n = A) ⊃ K(n = A))‖{}
is just (n = A) ⊃ false since {} 6|= (n = A) in ES. The problem does not arise in our
semantics because A itself is a standard name and thus not subject to interpretation. An
alternative approach due to Claßen and Lakemeyer (2006) is to syntactically restrict
formulas to mention action functions only in equality expressions, which then get a
special treatment by the ‖ · ‖ operator.

111

5 Actions and Belief Revision

Future work on ESB especially concerns the questions of theory revision and pro-
gression. In this chapter we used second-order logic for both purposes. As for the
progression of physical actions, several classes of actions or theories are known which
do not require second-order logic (Lin and Reiter 1997; Liu and Lakemeyer 2009; Vassos,
Lakemeyer, and Levesque 2008). If similar classes could be found for the knowledge
base revision, these could probably be combined for first-order or even computable
progression. Schwering, Lakemeyer, and Pagnucco (2015) presented a first-order account
of weak (natural) revision in a slight variant of ESB; a similar result for lexicographic
revision appears to be much more difficult, though.

In our definition of basic action theories, the dynamic axioms are indefeasible knowl-
edge. Whether this assumption can be relaxed to defeasible axioms while retaining
properties like the regression theorem is an open question. Defeasible successor-state
axioms could be useful to represent the usual effects of an axiom.

Another avenue of future work are different revision operators, particularly ones based
on conditional ordinal functions (Spohn 1988), which is the predominant framework
in belief revision today. In particular c-revisions are an interesting candidate for their
connection to conditionals (Kern-Isberner 2001).

Many revision operators, however, bear the problem of exponential growth. For ex-
ample, every lexicographic revision doubles the number of spheres doubles (in the worst
case). By the argument from the proof of Lemma 4.5.2, the number of conditionals to
represent this must grow exponentially, too. This renders operators like lexicographic
revision impractical for long action sequences even if we had a first-order representation
of progression. Perhaps these issues could be addressed from the perspective of limited
reasoning. The next two chapters introduce effort-based limited semantics to approxi-
mate reasoning in BO. Extending this limited logic by a limited notion of revision and
progression is an interesting future challenge.

112

6 Limited Objective Reasoning

First-order logic is undecidable, which means no procedure can determine in general
whether a formula is satisfiable or not. The practical utility of first-order logic is
hence severely limited. In this chapter we introduce two non-standard, so called limited
semantics. Limited reasoning means to restrict the inference capabilities in order to
achieve decidability (for a specific class of entailment problems, at least). Typically,
completeness is sacrificed in favour of soundness and decidability. While we only look
at ordinary first-order logic here – that is, no beliefs or actions – this chapter lays the
foundation of the limited version of BO to be presented in the next chapter.

More precisely, we consider formulas of L without function symbols here; we call
the restricted language L−. The first semantics we introduce is sound but incomplete
with respect to the general semantics from Definition 3.3.3; the other semantics is
complete but unsound. The former is useful to determine sound inferences, while the
latter allows for a sound consistency check. We will see that for propositional formulas
both semantics can yield the same results as classical logic. Moreover, we devise decision
procedures for a certain class of knowledge bases. We also present a normal form useful
for limited reasoning.

Our work on limited reasoning is in line with the stream of research by Lakemeyer
and Levesque (2002, 2013, 2014, 2016), Liu (2006), and Liu, Lakemeyer, and Levesque
(2004) on the topic. The material presented in this and the following chapters is based
on (Schwering and Lakemeyer 2016). The limited sound semantics is a slightly restricted
version of a proposal by Lakemeyer and Levesque (2014). The long proofs are given in
Appendix C.

6.1 Why incomplete and unsound reasoning matter

First-order logic is a very expressive language and hence the tool of choice for many
tasks in knowledge representation (Lifschitz, Morgenstern, and Plaisted 2008). On the
downside, great expressivity brings great computational demands, and in case of first-
order logic even undecidability. Corollary 3.4.2 shows that validity in L is undecidable,

113

6 Limited Objective Reasoning

and by extension this holds for OL, BO, ES, and ESB as well. This is bad news for
knowledge representation where we are typically interested in checking whether or not
a certain implication is valid or not. It is hence clear that unless we are willing to give
up much expressivity, unsound or incomplete reasoning is the best we can do.

On the other hand, first-order validity is semidecidable, that is, the (infinitely many)
valid formulas can be enumerated. So we could try to prove a logical implication by
enumerating valid formulas for a while and checking if the implication in question is
among them; this procedure would be aborted if it does not come up with an affirmative
answer in a certain period of time. The timeout specifies the maximum effort the
reasoner may spend on trying to prove the implication. The approach is sound but
obviously incomplete.

Simple as it may be, a timeout-based approach is unsatisfactory because there is no
semantic justification to it; it is hard to understand why a particular implication is
proved and another is not. Lakemeyer and Levesque (2013, 2014, 2016), Liu (2006), and
Liu, Lakemeyer, and Levesque (2004) essentially adopt the idea of limiting the reasoning
effort the system may spend on proving a formula. But instead of measuring the effort
in time, they encode it as the number of case splits. Case splits are intuitive from a
human perspective. For example, in Example 4.5.5 we considered the cases where the
guest is a vegetarian and where the opposite is true, and in either case we showed her to
be presumably not Australian. Moreover, case splits are a semantically perspicuous way
to capture reasoning effort, independent from implementation details or computing
power.

However, no sort of incomplete reasoning alone can suffice to determine conditional
beliefs soundly. Evaluating a conditional “if α, then presumably β” requires to determine
the plausibility of α first, that is, to find the most-plausible sphere consistent with α.
Only then sound inference can be applied to evaluate (α ⊃ β) in this sphere. With
limited reasoning, we can of course only approximate the plausibility of α. And to
preserve soundness, we need to approximate it from above, not below: if we picked a too-
plausible sphere, which is actually inconsistent with α, the material implication (α ⊃ β)
and thus also the conditional in question could come out true even though it should not.
Hence, soundly evaluating a conditional belief requires both sound consistency checks
and sound inference. Consistency checking boils down to disproving a formula, and to
do that soundly, we need a complete (but perhaps unsound) semantics. Therefore, we
believe, not only sound but also complete limited reasoning needs to be investigated, if
only for the sake of conditional beliefs.

114

6.2 The language L−

6.2 The language L−

The language we consider in this chapter is a stripped-down version of L from Defini-
tion 3.2.3.

Definition 6.2.1 The symbols of L− are the same as for L (Definition 3.2.1) minus
function symbols. The set of terms of L− is the least set which includes all variables and
standard names. The formulas of L− is the least set such that

• P (t1, . . . , tk) is a formula where P is a predicate symbol and the ti are terms;

• (t1 = t2) is a formula where t1 and t2 are terms;

• ¬α, (α∨ β), and ∃xα are formulas where α and β are formulas and x is a variable.

A literal is an atom P (t1, . . . , tk), an equality atom (t1 = t2), or their negation. The
complement ` of a literal ` is defined as ¬a if ` is an (equality) atom a, and as a if `
is a negated (equality) atom ¬a. A clause is a set of literals [`1, . . . , `k] (we use square
brackets to ease readability). The empty clause is written as []. Every non-empty clause
[`1, . . . , `k] corresponds to the disjunction (`1 ∨ . . . ∨ `k) (with arbitrary brackets and
order).

It is immediate that any formula of L− is also a formula of L. Conversely, however,
L formulas that mention function symbols are not part of the language L−.

6.3 Setups, unit propagation, and subsumption

As in (Liu, Lakemeyer, and Levesque 2004) and its relatives, our semantics from this
chapter are based on three concepts: setups, unit propagation, and subsumption.

Definition 6.3.1 A setup is a set of ground clauses.

A setup can be thought of as representing the agent’s explicit knowledge. In general,
it is not closed under logical deduction. This sets setups apart from other ways to
express incomplete knowledge, such as sets of possible worlds, and is foundational to
the decidability results. Two simple rules of inference are used to draw inferences from a
setup: unit propagation and subsumption.

Definition 6.3.2 The unit propagation inference rule is the operation of passing from
two clauses [`] and [`] ∪ c to the clause c .

For example, from [Aussie, Italian] and [¬Italian] we infer by unit propagation that
[Aussie]. Unit propagation is related to the classical modus (tollendo) ponens inference

115

6 Limited Objective Reasoning

Table 6.1: The turnstile symbols used in this chapter.

|= satisfaction and entailment in L (Definition 3.3.3)
|•◦≈ satisfaction in sound limited semantics of L− (Definition 6.4.2)
|•◦≈ satisfaction in complete limited semantics of L− (Definition 6.6.3)

rule, which allows to pass from (α∨ β) and ¬α to β for arbitrary formulas α, β. Clearly,
unit propagation is weaker than modus ponens, as it only refers to clauses and the
premise even needs to be a unit clause.

Setups will be closed under unit propagation to draw easy, obvious inferences. More
inferences will be obtained by augmenting setups with new unit clauses to trigger
unit propagation. Besides unit propagation, subsumption allows for other immediate
inferences.

Definition 6.3.3 The subsumption inference rule is the operation of passing from a
clause c to a clause c ∪ c ′ for arbitrary c ′.

For example, from [Aussie] we can infer by subsumption that [Aussie,Veggie]. Sub-
sumption is a special case of the classical inference rule of disjunction introduction,
which allows to infer (α ∨ β) from α for arbitrary sentences α, β.

We are going to present two limited semantics for L−, denoted by |•◦≈ and |•◦≈. They
are sound and complete, respectively, in the following sense: given a setup s and an L−

formula φ,

• if s satisfies φ in the sound semantics |•◦≈, then s classically entails φ, which is to say
that every world that satisfies all c ∈ s also satisfies φ in L;

• if s classically entails φ, then s satisfies φ in the complete semantics |•◦≈.
In particular, this means that if φ is valid in |•◦≈, then it is valid in L, and conversely if
φ is valid in L, then it is valid in |•◦≈. We use |= to refer to the usual, unlimited truth
relation and entailment relation of L as introduced in Definition 3.3.3. In particular,
when we write s |= φ to mean that the set of clauses s logically implies φ in the ordinary
semantics of L−, that is, w |= φ for all w with w |= c for all c ∈ s .

The next definition is fundamental for the semantics to come. In particular, it makes
precise the notions of unit propagation and subsumption on a setup. Note the special
treatment of equality. The rationale behind that is that full knowledge about equality of
standard names is assumed, similarly to how it is treated in L.

116

6.4 A sound semantics of L−

Definition 6.3.4 For a setup s , we define the following expressions:

s− = {c ∈ s | for all c ′ (c , c ′ < s};
s+ = {c | for some c ′ ⊆ c , c ′ ∈ s};
EQ = {[(n = n)], [(n , n′)] | distinct names n, n′};
UP(s) = closure of EQ ∪ s under unit propagation.

To ease readability, we usually write UP−(s) for UP(s)−, and similarly UP+(s) for
UP(s)+. The following lemma states that doing unit resolution or adding or removing
subsumed clauses preserves equality in L.

Lemma 6.3.5 For any world w and setup s, the following are equivalent:

(i) w |= c for all c ∈ s;

(ii) w |= c for all c ∈ s−;

(iii) w |= c for all c ∈ s+;

(iv) w |= c for all c ∈ UP(s).
Proof. The only-if direction of (i) iff (ii) is trivial. Conversely, suppose (ii) and c ∈ s . If
c ′ < s for all c ′ (c , then c ∈ s−, and by assumption w |= c . If c ′ ∈ s for some c ′ (c ,
and without loss of generality c ′′ < s for all c ′′ (c ′, then c ′ ∈ s−, and by assumption
w |= c ′, and by subsumption w |= c .

The if direction of (i) iff (iii) is trivial. Conversely, suppose (i) and c ∈ s+. Then
c ⊇ c ′ for some c ′ ∈ s . By assumption w |= c ′, and by subsumption w |= c .

The if direction of (i) iff (iv) is trivial. Conversely suppose (i) and c ∈ UP(s). We show
by induction on the length of the derivation of c that w |= c . The base case c ∈ EQ ∪ s
is trivial. For the induction step, let c ∈ UP(s) be the resolvent of c ∪ [`], [`] ∈ UP(s).
By induction, w |= c ∨ ` and w |= `. Thus w |= c . �

6.4 A sound semantics of L−

We now define s, k |•◦≈ φ for a setup s , a natural number k ∈ {0, 1, 2, . . .}, and an L−

formula φ. Intuitively, k indicates how much effort may be put into proving that φ is
true. The effort is measured in how many times the setup is extended with new unit
clauses.

117

6 Limited Objective Reasoning

Recall that the semantics ought to be sound, that is,

if s |= φ, then s, k |•◦≈ φ.

To preserve soundness, we may not simply add some unit clause [`] to the setup, but
we always must also consider the case where [`] is added. To ease notation, we use the
following abbreviation.

Definition 6.4.1 For a setup s and a ground clause `, we write s] ` for s ∪ {[`]}.
Effort k then means that we may split k times on literals, that is, consider s] ` and

s]`. The rationale is that when the literals to be split are chosen smartly, they hopefully
set off a cascade of unit propagations that leads to many new clauses. The principle was
probably first used by Davis, Logemann, and Loveland (1962) and Davis and Putnam
(1960) in their DPLL algorithm to decide validity of propositional formulas.

Definition 6.4.2 The sound truth relation |•◦≈ is defined with respect to a setup s and
k ∈ {0, 1, 2, . . .}:
L•◦1. s, k + 1 |•◦≈ φ iff s] `, k |•◦≈ φ and s] `, k |•◦≈ φ for some ground literal `;

L•◦2. if c is a clause:
s, 0 |•◦≈ c iff c ∈ UP+(s);

L•◦3. if (φ ∨ ψ) is not a clause:
s, 0 |•◦≈ (φ ∨ ψ) iff s, 0 |•◦≈ φ or s, 0 |•◦≈ ψ;

L•◦4. s, 0 |•◦≈ ¬(φ ∨ ψ) iff s, 0 |•◦≈ ¬φ and s, 0 |•◦≈ ¬ψ;

L•◦5. s, 0 |•◦≈ ¬¬φ iff s, 0 |•◦≈ φ;
L•◦6. s, 0 |•◦≈ ∃xφ iff s, 0 |•◦≈ φx

n for some name n;

L•◦7. s, 0 |•◦≈ ¬∃xφ iff s, 0 |•◦≈ ¬φx
n for all names n.

Observe that the split rule, Rule L•◦1, branches on the truth value of some ground
literal. This semantics is well-defined for L− formulas as can be seen easily by induction
on the length of φ: the cases for an atom, disjunction, or existential are covered by Rules
L•◦2, L•◦3, L•◦6, and for ¬φ the cases for atom, disjunction, negation, or existential are
covered by Rules L•◦2, L•◦4, L•◦5, L•◦7.

Notice that while it is perfectly legal to split equality literals, it gains no new knowl-
edge since EQ ⊆ UP(s): on the one hand, UP(s] (n = n)) = UP(s) remains unchanged,
on the other hand, UP(s] (n , n)) = {[]}+ satisfies anything; analogously for (n , n′).

118

6.4 A sound semantics of L−

We illustrate |•◦≈ with the kangaroo example introduced in Example 4.1.1 and formal-
ized in Example 4.2.2.

Example 6.4.3 Let sµ = {[Meat(roo)], [¬Meat(n),¬Eats(n),¬Veggie] | for all names n}
and s1 = {[¬Aussie,¬Italian], [¬Aussie,Eats(roo)], [Italian,Veggie], [Italian,Aussie]} ∪
sµ. This setup corresponds to the first sphere e1 from Example 4.5.5. There we argued
that it is inconsistent with Aussie, that is, s1 |= ¬Aussie. How can be obtain the same
result in the limited semantics, that is, s1, k |•◦≈ ¬Aussie?

Split level 0 is clearly not sufficient: we have [¬Aussie] < UP+(s1), so s1, 0 •◦6|≈ ¬Aussie.
A single split is enough, though: adding [Veggie] to s1 triggers unit propagation that first
yields [¬Meat(roo),¬Eats(roo)], then [¬Eats(roo)], and then [¬Aussie]; on the other
hand, adding [¬Veggie] yields [Italian] and then again [¬Aussie]. Thus, s1, 1 |•◦≈ ¬Aussie.

Therefore, s1, k |•◦≈ ¬Aussie iff k ≥ 1. Analogously we can argue that s1, k |•◦≈ Italian iff
k ≥ 1.

Before we investigate the properties of |•◦≈, let us briefly discuss its relation to the
limited semantics from (Lakemeyer and Levesque 2014). The most striking difference is
that our semantics is phrased as if-and-only-if rules, whereas Lakemeyer and Levesque
define it as least relation that satisfies a set of if-then rules. Besides the general appeal
of if-and-only-if rules, the advantage of our definition is that it closely corresponds to
the complete satisfaction relation presented in Section 6.6. (Defining that complete
semantics with if-then rules appears to be cumbersome.)

On the downside, our if-and-only-if rules do not allow to split literals as freely as
Lakemeyer and Levesque’s semantics, where the formula may be (partially) decomposed
first before splitting literals. Our semantics only allows splits in the beginning, which
in a sense keeps the semantics deterministic. A drawback of this simplification is that
our eventual completeness result in the next section is weaker than Lakemeyer and
Levesque’s: ours only holds for quantifier-free formulas, theirs also with leading universal
quantifiers.

Another minor difference is our treatment of equality literals as part of setups instead
of semantic rules. If we followed Lakemeyer and Levesque in adding semantic rules for
(n1 = n2) and (n1 , n2), it would not suffice to merely check if n1 and n2 are identical
or distinct, but another check to see whether the empty clause is in the setup would be
necessary, because in this case even classically invalid equality expressions like (n , n)
should come out true. Lakemeyer and Levesque handle this case with a catch-all rule
that says anything is satisfied by a setup that contains the empty clause. We avoided this
by making the valid equality literals part of UP(s) and otherwise treating them like any
other literal.

119

6 Limited Objective Reasoning

6.5 Soundness and eventual completeness

The following theorem establishes the aforementioned soundness of |•◦≈ with respect
to classical logic. Roughly, it holds because the inference rules unit propagation and
subsumption are sound in classical logic.

Theorem 6.5.1 If s, k |•◦≈ φ, then s |= φ.
Proof. By induction on k and subinduction on the length of φ. (This is a recurring proof
scheme for limited reasoning.) For a clause, s, 0 |•◦≈ c iff c ∈ UP+(s) only if UP+(s) |= c
iff (by Lemma 6.3.5) s |= c . For a non-clausal disjunction, s, 0 |•◦≈ (φ ∨ ψ) iff s, 0 |•◦≈ φ or
s, 0 |•◦≈ ψ only if (by subinduction) s |= φ or s |= ψ only if s |= (φ ∨ ψ). For a negated
disjunction, s, 0 |•◦≈ ¬(φ∨ψ) iff s, 0 |•◦≈ ¬φ and s, 0 |•◦≈ ¬ψ only if (by subinduction) s |= ¬φ
and s |= ¬ψ iff s |= (¬φ ∧ ¬ψ) iff s |= ¬(φ ∨ ψ). For a double negation, s, 0 |•◦≈ ¬¬φ iff
s, 0 |•◦≈ φ only if (by subinduction) s |= φ iff s |= ¬¬φ. For an existential, s, 0 |•◦≈ ∃xφ
iff s, 0 |•◦≈ φx

n for some n only if (by subinduction) s |= φx
n for some n only if s |= ∃xφ.

For a negated existential, s, 0 |•◦≈ ¬∃xφ iff s, 0 |•◦≈ ¬φx
n for all n only if (by subinduction)

s |= ¬φx
n for all n iff s |= ∀x .¬φ iff s |= ¬∃xφ. This completes the subinduction.

Now suppose the lemma holds for k for the main induction step. Let w |= c for all
c ∈ s , and s, k + 1 |•◦≈ φ. By the split rule, for some `, s] `, k |•◦≈ φ and s] `, k |•◦≈ φ. By
induction, s] ` |= φ and s] ` |= φ. Therefore, since either w |= ` or w |= `, we have
w |= φ. Hence s |= φ. �

Another interesting property is the so-called eventual completeness for propositional
formulas, which we prove in Theorem 6.5.5. Intuitively, it says that every classically
valid propositional formula can also be proved in |•◦≈ for large enough effort.

Lemma 6.5.2 Let s ⊆ s ′. Then UP+(s) ⊆ UP+(s ′).
Proof. We first show that if c ∈ UP(s) then c ∈ UP(s ′) by induction on the length of the
derivation of c . If c ∈ EQ∪ s , then c ∈ EQ∪ s ′. If c ∪ [`], [`] ∈ UP(s), and by induction,
c ∪ [`], [`] ∈ UP(s ′), so c ∈ UP(s ′). Finally, if c ∈ UP+(s), then c ′ ∈ UP(s) for some
c ′ ⊆ c . By the above, c ′ ∈ UP(s ′), and thus c ∈ UP+(s ′). �

Lemma 6.5.3 Let UP+(s) ⊆ UP+(s ′). If s, k |•◦≈ φ, then s ′, k |•◦≈ φ.
Proof. By induction on k and subinduction on the length of φ. For a clause, s, 0 |•◦≈ c
iff c ∈ UP+(s) only if (by Lemma 6.5.2) c ∈ UP+(s ′) iff s ′, 0 |•◦≈ c . The subinduction
steps are trivial. For the induction step suppose the lemma holds for k and s, k + 1 |•◦≈ φ.
By the split rule, for some `, s] `, k |•◦≈ φ and s] `, k |•◦≈ φ. By the main induction,
s ′] `, k |•◦≈ φ and s ′] `, k |•◦≈ φ. By the split rule, s ′, k + 1 |•◦≈ φ. �

Lemma 6.5.4 If s, k |•◦≈ φ, then s, k + 1 |•◦≈ φ.

120

6.6 A complete semantics of L−

Proof. Suppose s, k |•◦≈ φ. By the split rule, s, k + 1 |•◦≈ φ iff for some `, s] `, k |•◦≈ φ and
s] `, k |•◦≈ φ, which hold by Lemmas 6.5.2 and 6.5.3 and by assumption. �

Theorem 6.5.5 Let s be finite and φ be propositional.
Then for some k ′ and for all k ≥ k ′, s |= φ iff s, k ′ |•◦≈ φ.
Proof. The if direction follows from Theorem 6.5.1. Conversely, suppose s |= φ. Let
w be an arbitrary world. Then either w 6|= c for some c ∈ s , or w |= φ. Let ` ∈ L iff
w |= ` and ` or ` occurs in s or φ. Clearly, L is finite. We write s] {`1, . . . , ` j} for
s] `1] . . .] ` j . We show that s] L, 0 |•◦≈ φ. If w 6|= c for some c ∈ s , then ` ∈ L for all
` ∈ c , and thus [] ∈ UP+(s]L), so s]L, 0 |•◦≈ φ as can be shown by a trivial induction on
the length of φ. If w |= c for all c ∈ s , we show s] L, 0 |•◦≈ φ by induction on the length
of φ. For a clause, w |= c ′ iff w |= ` for some ` ∈ c ′ iff ` ∈ L only if c ′ ∈ UP+(s] L) iff
s] L, 0 |•◦≈ c ′. The induction steps are trivial. Since w was arbitrary, we have that for all
truth assignments L of the atoms from s and φ, s] L |•◦≈ φ. Thus splitting these atoms
obtains φ, that is, s, k |•◦≈ φ where k = |L|. By Lemma 6.5.4, s, k ′ |•◦≈ φ for all k ′ ≥ k. �

In (Lakemeyer and Levesque 2014), the eventual completeness also holds true for
sentences ∀~xφ where φ is quantifier-free. As discussed in the previous section, the reason
is that they can first handle the quantifiers by substituting some ~n for ~x , and then split
depending on ~n.

6.6 A complete semantics of L−

Now we turn to s, l |•◦≈ φ for a setup s , a natural number l ∈ {0, 1, 2, . . .}, and an L−

formula φ. Recall that this semantics ought to be complete, that is,

if s, l |•◦≈ φ, then s |= φ.

In |•◦≈, it is often more intuitive to consider the task of disproving that s satisfies φ.
Accordingly, we often express completeness by the contrapositive:

if s 6|= φ, then s, l •◦6|≈ φ.

Again, l specifies the reasoning effort. In s, k |•◦≈ φ one (roughly) shows that for some
atoms, φ obviously comes out true in s under any truth assignment of these atoms
(where “obvious” means after unit propagation and subsumption). By contrast, in
s, l •◦6|≈ φ we need to show that after adding certain atoms to s , the resulting setup
obviously disproves φ.

121

6 Limited Objective Reasoning

In particular, this requires to detect whether the setup might be inconsistent. For that,
we use a very simple heuristic: whenever the setup mentions some literal both positively
and negatively after removing all subsumed clauses, it is deemed possibly-inconsistent.
While this is of course not sophisticated, the naivete of this test can be compensated by
increasing l , that is, by more reasoning effort.

Definition 6.6.1 For a setup s , a (perhaps non-ground) clause c , and a (perhaps non-
ground) literal `, we define the following expressions:

XP(s) = UP({[`] | for some c , c ∪ [`] ∈ UP−(s)});
gnd(c) = {c x1 ... xk

n1 ... nk | n1, . . . , nk are standard names};
L(`, s) = {[` ′] ∈ gnd([`]) | [` ′] < UP+(s)};
s ⊗ ` = s ∪ L(`, s).

The motivation behind XP(s) is to facilitate a simple consistency check of s . XP(s)
contains the unit clause of every literal that occurs in UP+(s), and closes this set under
unit propagation. As a consequence, if [] < XP(s), then s is classically consistent. For
example, [] ∈ XP({[P ,Q], [P ,¬Q]}) because of the occurrence of Q and ¬Q , but
[] < XP({[P], [P ,Q], P ,¬Q]}) because [P] subsumes the clauses with Q and ¬Q .

The operator gnd(c) grounds a clause by substituting standard names for variables.
For example, gnd([P (x1),Q(x2)]) = {[P (n1),Q(n2)] | n1, n2 are standard names}.

The idea behind L(`, s) is to determine all ground instances of ` which are not
obviously inconsistent with s . That is, L(`, s) contains every instance of ` whose
negation does not occur as a unit clause in UP+(s). For example, L(P (x), {[P (#1)]}) =
{[P (n)] | n is a standard name other than #1}. Therefore, s ⊗ ` in a sense applies a
closed-world assumption for all instances of `, except for those whose negation is already
known. The rationale is that often a setup may contain infinitely many instances of
some predicate, and all of them should be fixed to the same truth value. Observe the
differences between s ⊗ ` and s] ` ′: the former is also defined for non-ground ` and
only adds instances of [`] that do not lead immediately to the empty clause; the latter
adds the ground unit clause [` ′] to the setup no matter what.

Lemma 6.6.2 If [] < XP(s), then for some w, for all c ∈ s, w |= c .

Proof. Let [] < XP(s) and let w |= ` iff [`] ∈ XP(s), which exists as [`] < XP(s) or
[`] < XP(s). By subsumption, w |= c for all c ∈ UP−(s). By Lemma 6.3.5, w |= c for all
c ∈ s . �

Definition 6.6.3 The complete truth relation |•◦≈ is defined with respect to a setup s and

122

6.7 Completeness and eventual soundness

l ∈ {0, 1, 2, . . .}:
L•◦1. s, l + 1 |•◦≈ φ iff s ⊗ `, l |•◦≈ φ for all literals `;

L•◦2. if c is a clause:
s, 0 |•◦≈ ¬c iff [] ∈ XP(s) or c < UP+(s);

L•◦3. s, 0 |•◦≈ (φ ∨ ψ) iff s, 0 |•◦≈ φ or s, 0 |•◦≈ ψ;

L•◦4. if (φ ∨ ψ) is not a clause:
s, 0 |•◦≈ ¬(φ ∨ ψ) iff s, 0 |•◦≈ ¬φ and s, 0 |•◦≈ ¬ψ;

L•◦5. s, 0 |•◦≈ ¬¬φ iff s, 0 |•◦≈ φ;
L•◦6. s, 0 |•◦≈ ∃xφ iff s, 0 |•◦≈ φx

n for some name n;

L•◦7. s, 0 |•◦≈ ¬∃xφ iff s, 0 |•◦≈ ¬φx
n for all names n.

Notice that Rule L•◦1, the so called add rule, allows the literal to be non-ground.
This semantics is well-defined for formulas of L−, just like |•◦≈, except that the case for a
positive literal ` is not as obvious: s, 0 |•◦≈ ` iff (by Rule L•◦5) s, 0 |•◦≈ ¬¬` iff (by Rule L•◦2)
s, 0 |•◦≈ ¬` where ¬` is taken as negated clause ¬c .

Let us illustrate how |•◦≈ works with the kangaroo example.

Example 6.6.4 Consider s1 from Example 6.4.3, and let us see whether it is consis-
tent with Italian, that is, s1, l •◦6|≈ ¬Italian for certain l . Clearly, s1, 0 |•◦≈ ¬Italian, since
UP−(s1) mentions, for example, Italian and ¬Italian in clauses, and thus [] ∈ XP(s1).
For l ≥ 1, however, we are allowed to add some literal to s1 so as to build a counter-
model that clearly disproves ¬Italian. Indeed, adding, for example, [¬Aussie] does the
job: UP−(s1 ⊗ ¬Aussie) = {[¬Aussie], [Italian]} ∪ {[Meat(roo)], [¬Eats(roo),¬Veggie],
[¬Meat(n),¬Eats(n),¬Veggie] | for all names n , roo} ∪ EQ is obviously consistent,
that is, [] < XP(s1), and moreover [Italian] ∈ UP+(s1 ⊗ ¬Aussie). So by adding ¬Aussie,
we have shown that s1 can falsify ¬Italian. Thus, s1, l •◦6|≈ ¬Italian iff l ≥ 1.

6.7 Completeness and eventual soundness

To relate |•◦≈ to classical logic, we show that it is complete and eventually sound. Since |•◦≈
is sound and eventually complete, both limited semantics complement each other.

The intuitive argument for the completeness for |•◦≈ is this: if [] < XP(s) and c ∈ UP(s),
then s must be classically consistent and s |= c , and therefore s 6|= ¬c .
Theorem 6.7.1 If s |= φ, then s, l |•◦≈ φ.

123

6 Limited Objective Reasoning

Proof. By induction on l . Suppose s, 0 •◦6|≈ φ. Then [] < XP(s). By Lemma 6.6.2, there
is a w such that w |= c for all c ∈ s (*). We first show that w 6|= φ by subinduction on
the length of φ. For a negated clause, s, 0 •◦6|≈ ¬c iff [] < XP(s) and c ∈ UP+(s) only if
(by (*) and Lemma 6.3.5) w |= c iff w 6|= ¬c . For a literal, s, 0 •◦6|≈ ` iff s, 0 •◦6|≈ ¬` only
if (by the same argument as for negated clauses) w 6|= ¬` iff w 6|= `. For a disjunction,
s, 0 •◦6|≈ (φ ∨ ψ) iff s, 0 •◦6|≈ φ and s, 0 •◦6|≈ ψ only if (by subinduction) w 6|= φ and w 6|= ψ iff
w |= (¬φ∧¬ψ) iff w 6|= (φ∨ψ). For a negated non-clausal disjunction, s, 0 •◦6|≈ ¬(φ∨ψ) iff
s, 0 •◦6|≈ ¬φ or s, 0 •◦6|≈ ¬ψ only if (by subinduction) w 6|= ¬φ or w 6|= ¬ψ iff w |= (φ ∨ψ) iff
w 6|= ¬(φ ∨ ψ). For a double negation, s, 0 •◦6|≈ ¬¬φ iff s, 0 •◦6|≈ φ only if (by subinduction)
w 6|= φ iff w 6|= ¬¬φ. For an existential, s, 0 •◦6|≈ ∃xφ iff s, 0 •◦6|≈ φx

n for all n only if (by
subinduction) w 6|= φx

n for all n iff w |= ∀x¬φ iff w 6|= ∃xφ. For a negated existential,
s, 0 •◦6|≈ ¬∃xφ iff s, 0 •◦6|≈ ¬φx

n for some n only if (by subinduction) w 6|= ¬φx
n for some n

iff w |= ∃xφ iff w 6|= ¬∃xφ. This completes the subinduction.
Now suppose the lemma holds for l for the main induction step. Let s, l + 1 •◦6|≈ φ.

Then s ⊗ `, l •◦6|≈ φ for some `. By induction, s ⊗ ` 6|= φ. By monotonicity, s 6|= φ. �

In the propositional case |•◦≈ is eventually sound, that is, all invalid inferences can be
detected for large enough l .

Lemma 6.7.2 If s, l •◦6|≈ φ, then s, l + 1 •◦6|≈ φ.
Proof. By induction on l and subinduction on the length of φ. For a negated clause,
s, 0 •◦6|≈ ¬c iff (since L((x , x), s) = {}) iff s ⊗ (x , x), 0 •◦6|≈ ¬c only if s, 1 •◦6|≈ ¬c . The
other cases for the subinduction are trivial. Now suppose the lemma holds for l − 1 for
the main induction step. Let s, l •◦6|≈ φ. Then s ⊗ `, l − 1 •◦6|≈ φ for some `. By induction,
s ⊗ `, l •◦6|≈ φ. Thus s, l + 1 •◦6|≈ φ. �

Theorem 6.7.3 Let s be finite and φ be propositional.
Then for some l ′ and for all l ≥ l ′, s |= φ iff s, l ′ |•◦≈ φ.
Proof. The only-if direction follows from Theorem 6.7.1. Conversely, suppose s 6|= φ.
Then for some w , w |= c for all c ∈ s , and w 6|= φ. Let ` ∈ L iff w |= ` and ` or ` occurs
in s or φ. Clearly, L is finite. We write s] {`1, . . . , ` j} for s]`1] . . .]` j . Since w exists,
[] < UP(s) by Lemma 6.3.5, and so UP−(s] L) = L, and thus [] < XP(s] L) (*). We
show that s] L, 0 •◦6|≈ φ by induction on the length of φ. For a negated clause, w 6|= ¬c iff
w |= ` for some ` ∈ c only if ` ∈ L for some ` ∈ c only if (by (*)) [] < XP(s] L) and
c ∈ UP+(s] L) iff s] L, 0 •◦6|≈ ¬c . The other cases for the induction are trivial. Note that
L is finite. Hence, s] L, 0 •◦6|≈ φ only if s, l •◦6|≈ φ where l = |L|. By Lemma 6.7.2, s, l ′ •◦6|≈ φ
for all l ′ ≥ l . �

124

6.8 Decision procedures for proper+knowledge bases

6.8 Decision procedures for proper+knowledge bases

The big advantage of the limited semantics |•◦≈ and |•◦≈ over the full semantics is that,
for a specific class of knowledge bases at least, reasoning is decidable. In this section
we investigate decision procedures for so-called proper+knowledge bases. These will
be foundational to our decision procedure for limited conditional beliefs in the next
chapter.

There are two key ingredients for these results. For one thing, proper+ formulas
determine a canonical model, so that entailment reduces to model checking for this
single setup. For another, standard names which do not occur in the knowledge base
or query cannot be distinguished. Hence only a finite number of them needs to be
considered: those from the knowledge base and query, plus one for every quantifier,
multiplied with k and l (roughly).

Definition 6.8.1 A sentence π is proper+when it is of the form
∧

j ∀~x j c j for clauses c j .
Then we let gnd(π) = ⋃ j gnd(c j). A setup s is UP+-minimal with s, k |•◦≈ φ iff there is
no s ′ with UP+(s ′) (UP+(s) and s ′, k |•◦≈ φ.

It appears plausible that gnd(π) is the canonical model of π. The following The-
orem 6.8.4 confirms this intuition. First we need two lemmas, which are also used
frequently in the decidability proofs.

Lemma 6.8.2 Let f ∈ {UP+,UP−,XP}.
Then f (s ∪ s ′) = f (s− ∪ s ′) = f (s+ ∪ s ′) = f (UP(s) ∪ s ′).
Proof. We first show the lemma for UP+.

First consider UP+(s∪ s ′) = UP+(s−∪ s ′). The ⊇ direction follows from Lemma 6.5.2
since s ∪ s ′ ⊇ s− ∪ s ′. Conversely, suppose c ∈ UP+(s ∪ s ′). Then c ⊇ c ′ for some
c ′ ∈ UP(s ∪ s ′). Let c ′ be minimal, that is, c ′′ < UP(s ∪ s ′) for all c ′′ (c ′. We
show by induction on the length of the derivation of c ′ that c ′ ∈ UP(s− ∪ s ′), which
implies c ∈ UP+(s− ∪ s ′). If c ′ ∈ EQ ∪ s ∪ s ′, then c ′ ∈ EQ ∪ s− ∪ s ′. Otherwise,
c ′∪[`], [`] ∈ UP(s∪ s ′), and c ′∪[`], [`] are minimal among the clauses of that derivation
length, that is, the derivation of all c ′′ ∈ UP(s ∪ s ′) with c ′′ (c ′ ∪ [`] or c ′ ([`] is
longer than those of c ′ ∪ [`] and [`]. Then by induction c ′ ∪ [`], [`] ∈ UP(s− ∪ s ′) and
thus c ′ ∈ UP(s− ∪ s).

Now consider UP+(s ∪ s ′) = UP+(s+ ∪ s ′). The ⊆ direction holds by Lemma 6.5.2
since s ∪ s ′ ⊆ s+ ∪ s ′. Conversely, suppose c ∈ UP+(s+ ∪ s ′). Then c ⊇ c ′ for some
c ′ ∈ UP(s+ ∪ s ′). We show by induction on the length of the derivation of c ′ that
c ′′ ∈ UP(s ∪ s ′) for some c ′′ ⊆ c ′, which implies c ∈ UP+(s ∪ s ′). If c ′ ∈ EQ ∪ s+ ∪ s ′,
then c ′′ ∈ EQ ∪ s ∪ s ′ for some c ′′ ⊆ c ′. Otherwise, c ′ ∪ [`], [`] ∈ UP(s+ ∪ s ′), and

125

6 Limited Objective Reasoning

by induction, c ′′1 , c
′′
2 ∈ UP(s+ ∪ s ′) for some c ′′1 ⊆ c ′ ∪ [`] and c ′′2 ⊆ [`]. If ` < c ′′1 or

` < c ′′2 , then c ′′ ∈ UP(s ∪ s ′) for some c ′′ ⊆ c ′, and otherwise c ′′1 \ [`] ∈ UP(s ∪ s ′) and
c ′′1 \ [`] ⊆ c ′.

Now consider UP+(s ∪ s ′) = UP+(UP(s)∪ s ′). The ⊆ direction holds by Lemma 6.5.2
since s ∪ s ′ ⊆ UP(s) ∪ s ′. Conversely, suppose c ∈ UP+(UP(s) ∪ s ′). Then c ⊇ c ′

for some c ′ ∈ UP(UP(s) ∪ s ′). We show by induction on the length of the derivation
of c ′ that c ′ ∈ UP(s ∪ s ′), which implies c ∈ UP+(s ∪ s ′). If c ′ ∈ s ′, then trivially
c ′ ∈ UP(s ∪ s ′). If c ′ ∈ UP(s), then either c ′ ∈ s , in which case c ′ ∈ UP(s ∪ s ′) is
again trivial, or c ′ ∪ [`], [`] ∈ UP(s), so c ′ ∪ [`], [`] ∈ UP(s ∪ s ′) by Lemma 6.5.2, and
hence c ′ ∈ UP(s ∪ s ′). Otherwise, c ′ ∪ [`], [`] ∈ UP(UP(s) ∪ s ′), and by induction,
c ′ ∪ [`], [`] ∈ UP(s ∪ s ′), so c ′ ∈ UP(s ∪ s ′).

The lemma for UP− follows from the above since (s+)− = s− for arbitrary s . This in
turn immediately gives the lemma for XP. �

Lemma 6.8.3 Let f ∈ {UP,UP+,UP−}.
(i) s ∪ s ′, k |•◦≈ φ iff f (s) ∪ s ′, k |•◦≈ φ;
(ii) s ∪ s ′, l |•◦≈ φ iff f (s) ∪ s ′, l |•◦≈ φ.

Proof. By Lemma 6.8.2, which also gives that L(`, s ∪ s ′) = L(`, f (s) ∪ s ′), both claims
follow by a simple induction on k or l and subinduction on the length of φ. �

Theorem 6.8.4 (Lakemeyer and Levesque 2013) Let π be proper+.
Then s is UP+-minimal with s, 0 |•◦≈ π iff UP+(s) = UP+(gnd(π)).
Proof. For the only-if direction let s be UP+-minimal with s, 0 |•◦≈ π. Then s, 0 |•◦≈ c for
every c ∈ gnd(π), and thus c ∈ UP+(s). Thus gnd(π) ⊆ UP+(s). Hence UP+(gnd(π)) ⊆
UP+(UP+(s)), and by Lemma 6.8.2, UP+(gnd(π)) ⊆ UP+(s). Moreover, gnd(π), 0 |•◦≈ π
and by assumption s is UP+-minimal with s, 0 |•◦≈ π, so UP+(s) ⊆ UP+(gnd(π)).

Conversely, let UP+(s) = UP+(gnd(π)). Clearly gnd(π), 0 |•◦≈ π, and by applying
Lemma 6.8.3 twice, s, 0 |•◦≈ π. Now consider an s ′ with UP+(s ′) (UP+(s). Then there
is a c ∈ gnd(π) such that c < UP+(s ′). Hence s ′, 0 •◦6|≈ c and so s ′, 0 •◦6|≈ π. Thus s is
UP+-minimal with s, 0 |•◦≈ π. �

Together with Lemma 6.5.3, this theorem reduces the consequences of proper+

knowledge bases to model checking. This property will be fundamental especially in the
next chapter in the context of only-believing. For now, let us investigate how to decide
which formulas are satisfied by gnd(π).
Definition 6.8.5 We let the width |φ |w of φ be the maximum of

• the highest arity of any predicate symbol in φ other than =, and

126

6.8 Decision procedures for proper+knowledge bases

• the largest number of free variables in any subformula of φ.

For any set of names N , we let

gndN (c) = {c x1 ... xk
n1 ... nk | n1, . . . , nk ∈ N };

LN (`, s) = {[` ′] ∈ gndN ([`]) | [` ′] < UP+(s)};
s ⊗N ` = s ∪ LN (`, s).

As we shall see, considering all names that occur in the knowledge base π or the
query φ plus (k + 1) ·max{|π |w, |φ |w} more names is sufficient to decide gnd(π), k |•◦≈ φ,
and analogously for gnd(π), l |•◦≈ φ. We begin with the decision procedure for the sound
semantics.

Definition 6.8.6 The decision procedure S[N , s, k, φ] ∈ {0, 1} for s, k |•◦≈ φ is defined as
follows:

• S[N , s, k + 1, φ] = 1 iff S[N , s] `, k, φ] = S[N , s] `, k, φ] = 1 for some ground
` whose symbol occurs in s or φ and whose names are from N ;

• if c is a clause:
S[N , s, 0, c] = 1 iff c ∈ UP+(s);

• if (φ ∨ ψ) is not a clause:
S[N , s, 0, (φ ∨ ψ)] = max{S[N , s, 0, φ],S[N , s, 0, ψ]};

• S[N , s, 0,¬(φ ∨ ψ)] = min{S[N , s, 0,¬φ],S[N , s, 0,¬ψ]};
• S[N , s, 0,¬¬φ] = S[N , s, 0, φ];
• S[N , s, 0,∃xφ] = max{S[N , s, 0, φx

n] | n ∈ N };
• S[N , s, 0,¬∃xφ] = min{S[N , s, 0,¬φx

n] | n ∈ N }.
Theorem 6.8.7 Let π be proper+and let N contain the names from π and φ plus k · v + v
names for v ≥ |π |w and v ≥ |φ |w. Then gnd(π), k |•◦≈ φ iff S[N , gndN (π), k, φ] = 1.

The proof is given in Appendix C.1. Two key results need to be established. Firstly, as
sketched above, quantification and grounding can be restricted to the finite set of names
N . Secondly, relevant split literals are only those whose symbol occurs in π or φ and
whose names are from N . The proof is then by induction on k and subinduction on the
length of φ.

Analysing the complexity of the decision procedure obtains that it grows exponen-
tially in the effort k and in the widths |π |w and |φ |w.

127

6 Limited Objective Reasoning

Theorem 6.8.8 Let π be proper+. Then gnd(π), k |•◦≈ φ can be decided in time
O((|π | + k)k+1 · |φ |k+1 · (max{|π |w, |φ |w} · (|π | + |φ | + k + 1))(|π |w+|φ |w)·(k+1) · 2k).

The proof is given in Appendix C.1. The third factor in the complexity bound
represents the blowup due to names that need to be substituted for variables. For one
thing, these names lead to larger setups, and for another to a large set of possibly relevant
split literals. In the propositional case, this complexity disappears and we obtain the
following corollary.

Corollary 6.8.9 Let π be proper+and propositional, and let φ also be propositional. Then
gnd(π), k |•◦≈ φ can be decided in time O((|π | + k)k+1 · |φ |k+1 · 2k).

Very similar bounds on the complexity were established for an ancestor of our
semantics in (Liu 2006; Liu, Lakemeyer, and Levesque 2004). In their formalism, only
clauses occurring already in the setup are split.

Next, we turn to the complete semantics for which we provide analogous results.

Definition 6.8.10 The decision procedure C[N , s, l , φ] ∈ {0, 1} for s, l |•◦≈ φ is defined
as follows:

• C[N , s, l + 1, φ] = 1 iff C[N , s ⊗N `, l , φ] = 1 for all (perhaps non-ground) `
whose symbol occurs in s or φ and whose names are from N ;

• if ` is a positive literal:
C[N , s, 0, `] = C[N , s, 0,¬`];

• if c is a clause:
C[N , s, 0,¬c] = 1 iff [] ∈ XP(s) or c < UP+(s);

• C[N , s, 0, (φ ∨ ψ)] = max{C[N , s, 0, φ],C[N , s, 0, ψ]};
• if (φ ∨ ψ) is not a clause:

C[N , s, 0,¬(φ ∨ ψ)] = min{C[N , s, 0,¬φ],C[N , s, 0,¬ψ]};
• if ¬φ is not a clause:

C[N , s, 0,¬¬φ] = C[N , s, 0, φ];
• C[N , s, 0,∃xφ] = max{C[N , s, 0, φx

n] | n ∈ N };
• C[N , s, 0,¬∃xφ] = min{C[N , s, 0,¬φx

n] | n ∈ N }.
Theorem 6.8.11 Let π be proper+and let N contain the names from π and φ plus l ·v +v
names for v ≥ |π |w and v ≥ |φ |w. Then gnd(π), l |•◦≈ φ iff C[N , gndN (π), l , φ] = 1.

128

6.9 A normal form

The proof is also in Appendix C.1. Analogously to Theorem 6.8.7, only a finite
number predicate symbols and standard names is relevant.

The complexity of deciding gnd(π), l |•◦≈ φ is essentially the same as for gnd(π), k |•◦≈ φ.
Theorem 6.8.12 Let π be proper+. Then gnd(π), l |•◦≈ φ can be decided in time
O((|π | + l)l+1 · |φ |l+1 · (max{|π |w, |φ |w} · (|π | + |φ | + l + 2))(max{|π |w,|φ |w}+|φ |w)·(l+1)).

The proof can be found in Appendix C.1. There are two differences to the complexity
of deciding gnd(π), k |•◦≈ φ from Theorem 6.8.8: the factor 2k disappears since there is
no splitting in |•◦≈, but the third factor grows since the space of relevant (non-ground)
literals by which the setup is augmented is larger. In the propositional case, this third
factor disappears.

Corollary 6.8.13 Let π be proper+and propositional, and let φ also be propositional. Then
gnd(π), l |•◦≈ φ can be decided in time O((|π | + l)l+1 · |φ |l+1).

6.9 A normal form

In many cases, some syntactic manipulation can help (dis)prove formulas in |•◦≈ and |•◦≈.
For example, clearly {[P ,Q]}, 0 |•◦≈ (P ∨Q) holds by subsumption, but {[P ,Q]}, 0 •◦6|≈
(P ∨ ¬¬Q). Generally, |•◦≈ prefers clauses, and hence a straightforward way to obtain
more inferences is to eliminate double negations and pull quantifiers out of clauses.
Analogously, |•◦≈ prefers negated clauses. We hence propose a normal form that is similar
to prenex negation negation normal form, but does not push negations inside clauses or
pull quantifiers out of non-clauses.

Definition 6.9.1 We let NF[φ] denote the result of eliminating all double negations in
φ and pulling all quantifiers out of disjunctions. More precisely, first φ is rewritten in a
preprocessing step so that every variables is bound by only one quantifier. For φ of this
form, NF[φ] is defined as follows, where ` ranges over literals and c over clauses:

• NF[`] = `;

• NF[(φ1 ∨ φ2)] =




§~x1 §~x2 (c1 ∨ c2) if §~x i is a word over {¬,∃x i1,∃x i2, . . .}
with an even number of ¬, and

– NF[φi] = §~x i ci , or
– NF[φi] = §′~x i ai where
§~x i = §′~x i ¬ and ci = [¬ai]
for some atom ai ;

(NF[φ1] ∨ NF[φ2]) otherwise;

129

6 Limited Objective Reasoning

• NF[¬(φ1 ∨ φ2)] = ¬NF[(φ1 ∨ φ2)];
• NF[¬¬φ] = NF[φ];
• NF[∃xφ] = ∃xNF[φ];
• NF[¬∃xφ] = ¬∃xNF[φ].

The intuition behind the first case for (φ1 ∨ φ2) is to pull out quantifiers out of
clauses. We need to make sure the quantifiers involve an even number of negations.
Otherwise we would negate the other disjunct. An exception is when an odd number
of quantifiers is followed by an atom; then we can simply append a negation to the
sequence of quantifiers to make it even, and negate the atom, which still is clause.

For example, NF[(∃x P (x) ⊃ ∀x ′Q(x ′))] stands for NF[(¬∃x P (x) ∨ ¬∃x ′¬Q(x ′))]
after expanding the abbreviations ⊃ and ∀. The disjuncts are already in normal form,
that is, NF[¬∃x P (x)] = ¬∃x P (x) and NF[¬∃x ′¬Q(x ′)] = ¬∃x ′¬Q(x ′). The prefix
¬∃x ′¬ can be pulled out of the disjunction as is because it mentions an even number of
negations. As for ¬∃x , NF intuitively introduces a double negation as in ¬∃x¬¬P (x),
and pulls out ¬∃x¬ but leaves ¬P (x) inside the disjunction. Therefore, the result
is ¬∃x¬¬∃x ′¬(¬P (x) ∨ Q(x ′)), or using the abbreviation for universal quantifiers,
∀x∀x ′(¬P (x) ∨Q(x ′)).

As shown by the following theorems, this normal form preservers classical equiva-
lence, and leads to “better” results in both limited semantics, that is, more proofs in |•◦≈
and more disproofs in |•◦≈.
Theorem 6.9.2 |= φ ≡ NF[φ].
Proof. By simple induction on the length of φ. �

Theorem 6.9.3

(i) If s, k |•◦≈ φ, then s, k |•◦≈ NF[φ].
(ii) If s, l •◦6|≈ φ, then s, l •◦6|≈ NF[φ].
The proof involves multiple long inductions, including double subinductions. We

give it in Appendix C.2.

6.10 Discussion

In this chapter we introduced two limited semantics for the fragment of L without
functions, called L−. They complement each other in that one of them is sound and the

130

6.10 Discussion

other is complete. The former allows to draw sound inferences, and the latter facilitates
sound consistency check.

In contrast to the other semantics in this thesis, the limited ones are not based on
(sets of) worlds as semantic primitives. Instead, they employ sets of ground clauses,
called setups, to represent explicit belief, which is not closed under logical consequence.
Reasoning is done by augmenting the setup with new unit clauses and doing unit
propagation.

Our approach is in line with the work on limited reasoning by Lakemeyer and
Levesque (2002, 2013, 2014, 2016), Liu (2006), and Liu, Lakemeyer, and Levesque (2004).
In particular, the sound semantics |•◦≈ is largely based on (Lakemeyer and Levesque 2014).
The complete semantics |•◦≈ is designed in the same spirit in order to complement |•◦≈.

The fundamental results from this section are soundness and completeness proofs
for |•◦≈ and |•◦≈, respectively (Theorems 6.5.1 and 6.7.1), and the decision procedures for
proper+ knowledge bases (Theorems 6.8.7 and 6.8.11). In the propositional case and
for fixed effort parameters, these procedures are tractable (Corollaries 6.8.9 and 6.8.13).
We also showed that the semantics are eventually complete and eventually sound for
propositional formulas (Theorems 6.5.5 and 6.7.3), which means that for large enough
effort parameters they agree with classical propositional logic.

Recently, Lakemeyer and Levesque (2016) extended the idea from (Lakemeyer and
Levesque 2014) to accommodate functions. This is a considerable gain in expressivity
for proper+knowledge bases: while predicates can be easily expressed with functions,
the converse does not hold in proper+knowledge bases because it needs an existential
quantifier to say that there always is a return value. Moreover, Skolemization can be
used to express existentials. It hence seems worthwhile to investigate if our complete can
be extended to the case of functions in a similar way to (Lakemeyer and Levesque 2016).

131

7 Limited Conditional Belief

Conditional belief inBO is closed under logical consequence. This reasoning power bears
problems from both a practical and a philosophical standpoint. For one thing, the first-
order features of the language make reasoning undecidable, and even the propositional
fragment is intractable. The practical applicability of BO is hence limited, at best. For
another, bearing human reasoning in mind, closing belief under logical consequence,
which for example includes all tautologies, is just unrealistic. Philosophers refer to this as
the problem of logical omniscience, typically associated with possible-worlds semantics
(Hintikka 1975). In this chapter we develop a logic of limited conditional belief, called
BOL, to address both issues.

From a knowledge representation perspective, a particularly interesting class of
problems in BO are belief entailments of the form OΓ |= B(φ ⇒ ψ). Such an entailment
problem represents the task of querying the conditional knowledge base Γ whether the
conditional φ ⇒ ψ is believed. In the limited variant of this problem, the operators O
and B are decorated with parameters to specify the maximum allowed reasoning effort.
At this point, the limited semantics from Chapter 6 comes into play.

Belief entailments in BOL are sound with respect to BO for a certain class of condi-
tional knowledge bases, namely, a generalization of proper+ to conditionals. Moreover,
at the cost of completeness, we can give a decision procedure for limited entailment prob-
lems. We hence provide the foundation to develop a reasoning service for conditional
beliefs in this chapter.
BOL stands in the tradition of the logics of limited knowledge by Liu, Lakemeyer, and

Levesque (Lakemeyer and Levesque 2002, 2013, 2014, 2016; Liu 2006; Liu, Lakemeyer,
and Levesque 2004). Like the objective limited semantics from Chapter 6, this chapter’s
content is based on (Schwering and Lakemeyer 2016). Most of the proofs for this chapter
are quite technical; we defer them until Appendix D for that reason.

133

7 Limited Conditional Belief

7.1 Approximating plausibilities and spheres

The semantics of conditional belief is more elaborate than that of indefeasible knowledge.
Namely, conditional belief relies on an additional notion of plausibility, represented in
BO by the arrangement of possible worlds in spheres. As it turns out, it is essential for
limited reasoning to approximate plausibilities.

To begin with, consider the conditional belief B(φ ⇒ ψ). Given an epistemic state
as depicted in Figure 7.1a, the belief holds when the most-plausible sphere consistent
with φ satisfies (φ ⊃ ψ). As locating the right sphere is already an undecidable problem,
limited conditional belief cannot work with exact plausibilities.

Hence the best we can do is approximate the plausibility of φ (in a decidable way).
Here, it is crucial not to underestimate, for then we would select a too-narrow sphere
and obtain false beliefs as a result. As an example, suppose e2 is the most-plausible sphere
consistent with φ. If the approximation underestimates and selects e1, then the belief
always comes out true (since all worlds in e1 satisfy ¬φ and hence also (φ ⊃ ψ)). By
contrast, approximating from above is sound: we might select the sphere e3, and if all
worlds from e3 satisfy (φ ⊃ ψ), then it also holds in e2 ⊆ e3.

Plausibilities are also fundamental for only-believing O{φ1 ⇒ ψ1, . . . , φm ⇒ ψm}. In
the objective case only-believing uniquely determines an epistemic state, but generating
this model is still far from trivial, as illustrated by Example 4.5.5. Namely, to determine
the pth sphere of the corresponding epistemic state we need to decide for which i the
plausibility of φi is ≥ p. Approximating plausibilities from above does not help with
that task. For instance, if we overapproximate the plausibility of φi , only-believing
would assert (φi ⊃ ψi) in spheres where it should not necessarily hold, which in turn
could distort the plausibilities of other φ j and thus eventually lead to a skewed system
of spheres. The same problem arises with approximations from below.

For only-believing we hence need both, approximations from below and above: when
the approximations from below and above agree on the plausibility of φi being ≥ p or
< p, then we know whether (φi ⊃ ψi) should be asserted in the pth sphere or not. As
long as both bounds agree for every i, we can faithfully represent the pth sphere in the
approximation.

When the bounds are inconsistent, though, it is not clear what the pth sphere looks
like. The idea is then to skip to the last sphere. In the unlimited case, the last sphere is
represented by the maximal set of (φi ⊃ ψi) which taken together are inconsistent with
the φi , that is, all have plausibility ∞. This set is approximated from below using the
plausibility approximations from below.

134

7.2 The language BOL

e3e2e1

(a) An epistemic state.

s2s1

(b) An approximation.

s ′3s ′2s ′1

(c) A better approximation.

Figure 7.1: An epistemic state and two approximations. Each ellipse represents the
scenarios considered possible in that sphere. The most-plausible spheres
e1, s1, s ′1 correspond to each other; and so do e2, s ′2. The outermost spheres s2
and s ′3, by contrast, are merely approximations of e3.

Two such approximative systems of spheres are depicted in Figure 7.1: in Figure 7.1b
the bounds are inconsistent already for the second sphere; Figure 7.1c faithfully repre-
sents the first two spheres, but is pessimistic about the outermost ones, that is, considers
too many scenarios. It is important that the last sphere is not optimistic, for otherwise
it might satisfy formulas that the last sphere of the ~e does not.
BOL employs the limited semantics from Chapter 6 and uses setups instead of sets

of worlds to represent spheres semantically. Plausibilities are approximated from below
and above with the sound semantics |•◦≈ and the complete semantics |•◦≈, respectively.
The limited belief operators B and O are decorated with sub- and superscripts k, l ∈
{0, 1, 2, . . .} to specify the reasoning efforts for |•◦≈ and |•◦≈.

7.2 The language BOL

BOL makes a few restrictions compared to the full logic BO. For one thing, to simplify
the technical treatment it does not allow predicates to occur outside of belief operators,
and no nested beliefs. For another, like L−, BOL allows no function symbols.

Definition 7.2.1 The symbols of BOL are the same as for L− (Definition 6.2.1) plus
curly braces,⇒, B, O, and natural numbers 0, 1, 2, . . ., written schematically as k, l . The
terms are the same as in L− (Definition 6.2.1). The set of formulas is the least set such
that

• (t1 = t2) is a formula where t1 and t2 are terms;

• ¬α, (α∨ β), and ∃xα are formulas where α and β are formulas and x is a variable;

135

7 Limited Conditional Belief

• Bl
k(φ1 ⇒ ψ1) and Ol

k{φ1 ⇒ ψ1, . . . , φm ⇒ ψm} are formulas if φi, ψi are formulas
of L− and k, l ∈ {0, 1, 2, . . .}.

It is easy to see that every BOL formula after stripping the effort parameters from
B and O is a formula of BO (Definition 4.2.1). The converse does not hold, because
in BOL we only consider formulas of BO which are subjective and contain no nested
beliefs and no function symbols. Nevertheless BOL is a meaningful fragment of BO. In
particular, it allows us to express problems like “does Ol

kΓ entail Bl ′
k′(φ ⇒ ψ)?”

7.3 The semantics of BOL

As mentioned before, in BOL setups take the place of sets of worlds in BO. Recall that
a setup is a set of (ground) clauses. Intuitively, a setup represents explicit knowledge,
which is not closed under logical consequence. Nevertheless every setup corresponds to
the set of compatible worlds, namely those worlds which satisfy all of its clauses.

Mind the antithetical behaviour of sets of worlds and setups when new information is
added: the set of possible world shrinks, the setup grows. In light of the correspondence
between setups and sets of worlds, this behaviour is not surprising: a bigger setup has
fewer compatible worlds.

Definition 7.3.1 A limited epistemic state ~s is an infinite sequence of setups (Defini-
tion 6.3.1) sp , p ∈ P, that

• is concentric, that is, UP+(sp) ⊇ UP+(sp+1) for all p ∈ P;

• converges, that is, sq = sp for some q ∈ P and all p ≥ q .

We use 〈s1, . . . , sq〉 as a short notation for ~s when it converges at level q or earlier.

Note that the concentricity constraint in this definition uses the reverse subset relation
as opposed to Definition 4.3.1. The reason is that, as described above, smaller setups
represent less information just like bigger sets of worlds do.

Definition 7.3.2 Plausibility approximations from below and above are defined by

b~s, k |•◦ φc = min{p | p = ∞ or sp, k •◦6|≈ ¬φ};
b~s, l |•◦ φc = min{p | p = ∞ or sp, l •◦6|≈ ¬φ}.

We say ~s is l
k -bound-consistent at p with respect to φ1, . . . , φm iff for all i, b~s, k |•◦ φic ≥ p

iff b~s, l |•◦ φic ≥ p. We omit “with respect to φ1, . . . , φm” when it is clear from context.

136

7.3 The semantics of BOL

Table 7.1: The turnstile symbols used in this chapter.

|= satisfaction and entailment in BO (Definition 4.3.2)
|≈ satisfaction and entailment in BOL (Definition 7.3.4)
|•◦≈ satisfaction in sound semantics of L− (Definition 6.4.2)
|•◦≈ satisfaction in complete semantics of L− (Definition 6.6.3)

We define the l
k -approximation with respect to φ1, . . . , φm of ~s = 〈s1, . . . , sq〉 as

~s |lk =



〈s1, . . . , sp, sq〉 if ~s is l
k -bound-consistent at 1, . . . , p but not at p + 1;

~s otherwise.

The approximation from below (b~s, k |•◦ φc) and above (b~s, l |•◦ φc) use the sound
(|•◦≈) and complete (|•◦≈) semantics from Chapter 6. For the intuition behind l

k -bound-
consistency and ~s |lk recall our sketch of how a system of spheres could be approximated:
as long as the approximation from below and above agree on whether the plausibilities
of φi are ≥ p or < p, the pth sphere can genuinely represent the pth sphere of the
reference system of spheres in BO; once we are beyond this point, the approximative
system of spheres needs to skip to the last sphere. Assuming ~s was constructed in a
fashion analogous to Rule BO7, ~s |lk captures the idea of taking all spheres for which
l
k -bound-consistency is given but thereafter skipping to the end.

The following lemma tells us that the plausibilities are well-behaved: increasing the
effort does not worsen their quality. In particular, it means that l

k -bound-consistency
always implies l ′

k′-bound-consistency for larger effort k ′ ≥ k, l ′ ≥ l .

Lemma 7.3.3 Let φ be a formula of L−.
Then b~s, k |•◦ φc ≤ b~s, k + 1 |•◦ φc ≤ b~s, l + 1 |•◦ φc ≤ b~s, l |•◦ φc.
Proof. For the first inequality, suppose sp, k + 1 •◦6|≈ ¬φ. By Lemma 6.5.4, sp, k •◦6|≈
¬φ. For the second inequality, suppose sp, l + 1 •◦6|≈ ¬φ. By Theorem 6.7.1, sp 6|= ¬φ.
By Theorem 6.5.1, s, k + 1 •◦6|≈ ¬φ. For the third inequality, suppose sp, l •◦6|≈ ¬φ. By
Lemma 6.7.2, sp, l + 1 •◦6|≈ ¬φ. �

Now we can define the semantics of BOL. To distinguish it from the semantics of
unlimited BO, we denote the satisfaction relation by |≈. Recall that a setup that satisfies
a certain formula is UP+-minimal iff there is no smaller (modulo UP+) model of that
formula (Definition 6.8.1).

Definition 7.3.4 The truth relation |≈ of BOL is defined with respect to a limited

137

7 Limited Conditional Belief

epistemic state ~s :

BOL1. ~s |≈ (n1 = n2) iff n1 and n2 are identical names;

BOL2. ~s |≈ (α ∨ β) iff ~s |≈ α or ~s |≈ β;

BOL3. ~s |≈ ¬α iff ~s 6|≈ α;

BOL4. ~s |≈ ∃xα iff ~s |≈ αx
n for some name n;

BOL5. ~s |≈ Bl
k(φ ⇒ ψ) iff for all p ∈ P, if p ≤ b~s, l |•◦ φc, then sp, k |•◦≈ (φ ⊃ ψ);

BOL6. ~s |≈ Ol
k{φ1 ⇒ ψ1, . . . , φm ⇒ ψm} iff

for all p ∈ P, s ′p is UP+-minimal with s ′p, 0 |•◦≈ NF[∧i:b~s ′,k |•◦φi c≥p(φi ⊃ ψi)], and
~s ′ |lk = ~s for some ~s ′.

Rule BOL5 approximates the plausibility of φ from above, which prevents us from
selecting a too-plausible spheres that is actually inconsistent with φ, and then applies
sound inference. That way, Bl

k(φ ⇒ ψ) is a conservative variant of BO’s conditional
belief operator B(φ ⇒ ψ).

The spirit behind Rule BOL6 is the same. The intuition is to build up the system of
spheres as long as the lower and upper bound of all plausibilities are consistent. Once
they are not, it is unclear how the next sphere should look like, so we skip to the last
one. That last sphere is determined by conditionals which (mutually) contradict their
premises, so there is no scenario where any of them could be true. The parameters k and
l determine how much effort is put into checking the plausibility bound-consistency.
Note that there may be conditionals in Γ with unsatisfiable antecedents which do not
occur in the last sphere: we only take those conditionals whose antecedents can be
proved unsatisfiable by sound reasoning; otherwise the outermost sphere could be too
strong. Figure 7.1 illustrates such approximations: when ~e |= OΓ and ~s |≈ Ol

kΓ, then
the first spheres of ~s correspond to the respective spheres of ~e , but the last sphere of ~s
is possibly weaker than the last sphere of ~e , and between these some spheres of ~e may
have no counterpart in ~s for they were skipped due to l

k -bound-inconsistency.
Notice that Rule BOL6 converts the formula to NF from Definition 6.9.1. The

rationale is that |•◦≈ is particularly good at dealing with clauses, and often simple symbol
pushing can increase the number of clauses in

∧
i(φi ⊃ ψi). For example, (∃x P (x) ⊃

∀x ′Q(x ′)) clearly is not a clause, but the NF of this formula is ∀x∀x ′(¬P (x) ∨Q(x ′)).

138

7.4 Soundness for proper+knowledge bases

7.4 Soundness for proper+knowledge bases

From a knowledge representation perspective, belief implications Ol
kΓ |≈ Bl ′

k′(φ ⇒ ψ)
are perhaps the most important class of reasoning problems in BOL. In this section we
prove a couple of useful properties of belief implications for proper+knowledge bases.
Most notably, this includes a soundness result with respect to the unlimited BO.

Proper+ sentences are required to be in clausal form and mention no existentials
(Lakemeyer and Levesque 2002). First, we generalize our original Definition 6.8.1 to
belief conditionals.

Definition 7.4.1 A set of conditionals Γ = {φ1 ⇒ ψ1, . . . , φ1 ⇒ ψm} is proper+when
NF[∧i(φi ⊃ ψi)] is proper+ in the sense of Definition 6.8.1.

Applying NF (Definition 6.9.1) to
∧

i(φi ⊃ ψi) significantly expands the class of
proper+knowledge bases. For example, ((P ∧Q) ⊃ R) abbreviates ¬¬(¬P ∨ ¬Q) ∨ R,
which clearly is not proper+. By contrast, NF[¬¬(¬P ∨ ¬Q) ∨ R] eliminates the double
negation and yields the clause ((P ∨Q) ∨ R). That is, {(P ∧Q) ⇒ R} would not be
proper+ it it wasn’t for NF.

We now examine proper+knowledge bases. To begin with, the unique-model property
from BO carries over to BOL for proper+knowledge bases.

Theorem 7.4.2 Let Γ = {φ1 ⇒ ψ1, . . . , φm ⇒ ψm} be proper+. Then there is an ~s =
〈s1, . . . , sm+1〉 such that ~s |= Ol

kΓ, and for all ~s
′ |≈ Ol

kΓ, UP+(sp) = UP+(s ′p) for all p.
The argument is similar to the one for the original unique-model property for BO;

additionally, it needs Theorem 6.8.4. We give the full proof in Appendix D.1.
It is also not surprising that the effort in belief entailments is monotonic, that is,

beliefs are retained when we increase the reasoning effort k or l .

Theorem 7.4.3 Let Γ = {φ1 ⇒ ψ1, . . . , φm ⇒ ψm} be proper+.
IfOl

kΓ |≈ Bl ′
k′(φ ⇒ ψ), thenOl̃

k̃
Γ |≈ Bl̃ ′

k̃′
(φ ⇒ ψ) for all k̃ ≥ k, l̃ ≥ l , k̃ ′ ≥ k ′, l̃ ′ ≥ l .

The proof can be found in Appendix D.2. The following theorem states the main
result of this section, namely that belief implications in BOL for proper+knowledge
bases are sound with respect to BO.

Theorem 7.4.4 Let Γ = {φ1 ⇒ ψ1, . . . , φm ⇒ ψm} be proper+.
IfOl

kΓ |≈ Bl ′
k′(φ ⇒ ψ), thenOΓ |= B(φ ⇒ ψ).

We prove this correctness result in Appendix D.3. The intuition is as follows. By
Theorem 7.4.2, we only need to consider a single model of s |≈ Ol

kΓ. All spheres of
~s except the last one faithfully match the corresponding spheres of ~e |= OΓ, and the
final sphere of ~s is weaker than the last sphere of ~e , as depicted in Figure 7.1. Hence,

139

7 Limited Conditional Belief

everything that can be inferred from a sphere of ~s by sound inference can also be inferred
from the same corresponding sphere of ~e . Since |•◦≈ is sound, the claim follows.

Before we turn to decidability of BOL, let us illustrate its workings with the condi-
tionals from Example 4.2.2.

Example 7.4.5 Note that Γ from Example 4.2.2 is proper+. Let k ≥ 1 and l ≥ 1,
and let s1 and sµ be as in Example 6.4.3. Then s1 is the first sphere of ~s |≈ Ol

kΓ. To
determine the next sphere, we first need to see whether ~s is k

l -bound-consistent at 2,
that is, b~s, k |•◦ φc ≥ 2 iff b~s, l |•◦ φc ≥ 2 for all φ ⇒ ψ ∈ Γ. We can reuse our results
from Examples 6.4.3 and 6.6.4. For example, we have shown in Example 6.6.4 that
s1, l •◦6|≈ ¬Italian, so we have b~s, l |•◦ Italianc = 1. Similarly, in Example 6.4.3 we have
shown s1, k |•◦≈ ¬Aussie, so b~s, k |•◦ Aussiec ≥ 2. That way and with Lemma 7.3.3, we
obtain

• b~s, k |•◦ Italianc = 1 and b~s, l |•◦ Italianc = 1;

• b~s, k |•◦ Aussiec ≥ 2 and b~s, l |•◦ Aussiec ≥ 2;

• b~s, k |•◦ truec = 1 and b~s, l |•◦ truec = 1;

• b~s, k |•◦ ¬Italianc ≥ 2 and b~s, l |•◦ ¬Italianc ≥ 2.

The plausibilities of the last two conditionals in Example 4.2.2 are omitted, as they are
vacuously∞. Hence, ~s is k

l -bound-consistent at 2. The conditionals with plausibility ≥ 2
determine the second sphere, so we obtain

UP+(s2) = UP+({[¬Aussie,¬Italian], [¬Aussie,Eats(roo)], [Italian,Aussie]} ∪ sµ).

It is easy to see that b~s, k |•◦ Aussiec = b~s, k |•◦ ¬Italianc = 2. Moreover b~s, l |•◦ Aussiec =
b~s, l |•◦ ¬Italianc = 2 can be shown by adding Aussie to the setup. So for the final sphere
s3 we have

UP+(s3) = UP+(sµ).

Having the model of Ol
kΓ, we can easily prove the entailment Ol

kΓ |≈ Bl ′
k′(¬Italian⇒

¬Veggie) for k ′ ≥ 1, l ′ ≥ 1: since b~s, l ′ |•◦ ¬Italianc = 2, we only need to show s2, k ′ |•◦≈
Italian ∨ ¬Veggie, which is easy by splitting Italian.

Note that for k = 0 or l = 0, the model of Ol
kΓ would have consisted of s1 followed

immediately by sµ, because of l
k -bound-inconsistency at 2. In this case, no k ′ or l ′ would

have been large enough to show Bl ′
k′(φ ⇒ ψ).

140

7.5 Decision procedure for proper+knowledge bases

7.5 Decision procedure for proper+knowledge bases

In Chapter 6 we saw that reasoning in |•◦≈ and |•◦≈ is decidable and in the propositional
case even tractable for so-called proper+knowledge bases. As it turns out, these results
carry over to belief entailments in BOL provided that the knowledge base is proper+.

The idea behind the decision procedure is rather straightforward. By Theorem 7.4.2,
the number of relevant setups is bounded. Hence Rules BOL5 and BOL6 can be repli-
cated with the decision procedures for |•◦≈ and |•◦≈ from the previous chapter (Definitions
6.8.6 and 6.8.10). The following procedure generates the system of spheres that matches
the one from Rule BOL6.

Definition 7.5.1 Let Γ = {φ1 ⇒ ψ1, . . . , φm ⇒ ψm} be proper+.
Then MOD[N , k, l , Γ] = ~s is generated by:

• let ~s ′ = 〈s ′1, . . . , s ′m+1〉 such that s ′p = gndN (NF[∧i:p=1 or S[N ,s′p−1,k,¬φi]=1(φi ⊃ ψi)]);
• let p? = max{p ∈ {1, . . . ,m} | for some i,

max{S[N , s ′p′, k,¬φi] | p ′ < p} = max{C[N , s ′p′, l ,¬φi] | p ′ < p}};
• let ~s = 〈s ′1, . . . , s ′p?, s ′m+1〉.

The sequences of setups from MOD correspond to ~s ′ and ~s in Rule BOL6, except that
here they are grounded only with the names from N . The value of p? represents the last
sphere at which ~s ′ is l

k -bound-consistent (except in the special case p? = m, in which
case ~s ′ = ~s). Note that the role of |•◦≈ and |•◦≈ in the bound-consistency checks is assumed
by the respective decision procedures S and C (Definitions 6.8.6 and 6.8.10). Moreover
recall that the first m + 1 setups suffice by Theorem 7.4.2.

Based on this model, we define the decision procedure for belief implications of the
form Ol

kΓ |≈ Bl ′
k′(φ ⇒ ψ).

Definition 7.5.2 Let Γ = {φ1 ⇒ ψ1, . . . , φm ⇒ ψm} be proper+.
Then BEL[N , k, l , k ′, l ′, Γ, φ, ψ] = b ∈ {0, 1} is generated by

• let 〈s1, . . . , s j〉 = MOD[N , k, l , Γ];
• let p∗ = min{p | C[N , l ′, sp,¬φ] = 0 or p = j};
• let b = S[N , k ′, sp∗, (φ ⊃ ψ)].

The procedure BEL[N , k, l , k ′, l ′, Γ, φ, ψ] is intended to determine an entailment
Ol

kΓ |≈ Bl ′
k′(φ ⇒ ψ). As before, grounding happens only with the names from N . If N

is chosen appropriately, then BEL is a correct decision procedure.

141

7 Limited Conditional Belief

Definition 7.5.3 Let Γ = {φ1 ⇒ ψ1, . . . , φm ⇒ ψm}. We write |Γ|w for |NF[∧i(φi ⊃
ψi)]|w and ‖Γ‖ for |∧i(φi ⊃ ψi)|.
Theorem 7.5.4 Let Γ = {φ1 ⇒ ψ1, . . . , φm ⇒ ψm} be proper+. Let N contain the names
from Γ, φ, ψ plus max{k, l , k ′, l ′} · v + v names for v ≥ |Γ|w and v ≥ |φ |w and v ≥ |ψ |w.
ThenOl

kΓ |≈ Bl ′
k′(φ ⇒ ψ) iff BEL[N , k, l , k ′, l ′, Γ, φ, ψ] = 1.

The proof is given in Appendix D.4. It proceeds by first showing that ~s |≈ Ol
kΓ

matches MOD[N , k, l , Γ], except that it is only finitely grounded. Then it is easy to show
that BEL decides the entailment.

Based on the complexities of S and C, we obtain the following complexity bound for
BEL, which is exponential in the effort parameters and the width |Γ|w and |φ ⊃ ψ |w.

Theorem 7.5.5 Let Γ = {φ1 ⇒ ψ1, . . . , φm ⇒ ψm} be proper+. Suppose ‖Γ‖ ≥ |(φ ⊃ ψ)|.
Let j = max{k, l } and j ′ = {k ′, l ′} and i = max{ j, j ′}. ThenOl

kΓ |≈ Bl ′
k′(φ ⇒ ψ) can be

determined in

O(m2 · (‖Γ‖ + j)2·(j+1) · ((|Γ|w + |(φ ⊃ ψ)|w + 1) · (‖Γ‖ + i + 1))2·|Γ|w ·(j+1) · 2k +
m · (‖Γ‖ + j ′) j′+1 · |(φ ⊃ ψ)| j′+1 ·

((|Γ|w + |(φ ⊃ ψ)|w) · (‖Γ‖ + i + 2))(max{|Γ|w,|Γ|w}+|(φ⊃ψ)|w)·(j′+2)).

The first summand is due to the computation of MOD[N , k, l , Γ], which is, among
others, quadratic in the number of conditionals. In many practical scenarios one would
compute the model therefore only once and reuse it. The proof of the complexity bound
is given in Appendix D.4. For the propositional case, the complexity is much easier to
read.

Corollary 7.5.6 Let Γ = {φ1 ⇒ ψ1, . . . , φm ⇒ ψm} be proper+ and propositional, and
let φ and ψ also be propositional. Suppose ‖Γ‖ ≥ |(φ ⊃ ψ)|. Let j = max{k, l } and
j ′ = {k ′, l ′} and i = max{ j, j ′}. ThenOl

kΓ |≈ Bl ′
k′(φ ⇒ ψ) can be determined in

O(m2 · (‖Γ‖ + j)2·(j+1) +m · (‖Γ‖ + j ′) j+1 · |(φ ⊃ ψ)| j′+1).

7.6 Discussion

In this chapter we introduced the logic of limited conditional belief BOL. It is modelled
after BO, but uses the setup-based semantics from Chapter 6 instead of possible worlds
to avoid logical omniscience. BOL generalizes earlier work by Liu, Lakemeyer, and
Levesque to the case of conditional belief (Lakemeyer and Levesque 2002, 2013, 2014,

142

7.6 Discussion

2016; Liu 2006; Liu, Lakemeyer, and Levesque 2004); the closest relative is arguably
(Lakemeyer and Levesque 2014).

The main challenge of limited conditional belief is to approximate plausibilities
appropriately. This requires not only sound but also complete first-order reasoning in
order to soundly determine which sphere is certainly consistent with a conditional’s
premise. Consequently the limited belief operator Bl

k features two effort parameters: l
determines the effort put into finding an appropriate sphere, and k specifies how much
effort is spend on reasoning in that specific sphere.

As for limited only-believing, we employ under- and overapproximations of plausibili-
ties to build up the system of spheres. The better these approximations, the more faithful
the resulting system of spheres is to the corresponding epistemic state in BO. For that
reason, the only-believing operator Ol

k has effort parameters k and l for the lower and
upper plausibility bounds. This is in contrast to Liu, Lakemeyer, and Levesque’s work
on limited knowledge, where no relevant reasoning is necessary to associate a setup with
only-knowing.

For proper+knowledge bases – that is, conditionals that can be easily transformed
to clausal form without existentially quantified variables – BOL has several attractive
properties. In particular, limited belief entailments are sound with respect to their
unlimited counterparts in BO (Theorem 7.4.4). And limited belief entailments are
decidable: we presented a decision procedure (Theorem 7.5.4) and showed that in the
propositional case it is even tractable for fixed effort (Corollary 7.5.6).

Next, we want to complete an ongoing implementation effort of the decision proce-
dures presented in this chapter. We plan to evaluate the system in restricted domains
first, such as games like Battleship or the German card game Skat. In the long term, we
hope to deploy a limited reasoner on a robot to support the high-level control system.

A very interesting open issue on the more theoretical side is a limited variant of
revision. We imagine effort-parameterized revision operators that approximate the
genuine system of spheres, perhaps similarly to how limited only-believing approximates
the classical only-believing. Such an approximation would be particularly useful for
operators like lexicographic revision, which in their unlimited version bring along
exponential growth of the system of spheres.

Limited revision operators would also help to integrate actions into BOL. As for
the physical effects of actions, we could draw on the proposal by Lakemeyer and
Levesque (2014), which provides action operators like the ones in ES and ESB. The
semantics of their language is also based on setups and unit propagation, where literals
are augmented with a sequence of actions. For example, from the unit clauses [InBox(n)]

143

7 Limited Conditional Belief

and [Fragile(n)] together with [¬InBox(n),¬Fragile(n), [dropbox]Broken(n)] they can
infer [[dropbox]Broken(n)] simply by unit propagation. We expect this extension will
carry over to BOL easily. It is remarkable, though, that such semantic representation
of actions seems to bring about no performance gain over regression; at least our
preliminary experiments with prototypical implementations suggest so. We believe the
reason is the growing space of relevant split literals.

Be that as it may, a semantic account of limited actions would be interesting alone to
study a limited form progression, analogously to limited revision. Here, knowledge and
belief about the effect’s of actions should depend on the effort as well. Similar to the
envisioned limited revision, the actual effects would only be approximated. A limited
form of progression appears to be an interesting question of investigation in such a
model.

Whether the action model from (Lakemeyer and Levesque 2014) is the best choice,
or whether action effects should be limited by effort parameter similar to the envisioned
limited revision, is an open question.

Perhaps the next improvement of BOL is to accommodate functions. Functions
are highly attractive because, for one thing, they allow more intuitive modelling than
predicates in many cases, and predicates cannot imitate functions in proper+knowledge
bases for the lack of existentials. Moreover, functions can be used to represent existentials
in the knowledge base by means of Skolemization. As we can build on (Lakemeyer
and Levesque 2016) in this issue, the main remaining task is to generalize the complete
semantics |•◦≈ from Chapter 6 appropriately.

We moreover presume the work on introspection by Lakemeyer and Levesque (2013)
in limited reasoning carries over to BOL easily. For many applications, multi-agent
limited reasoning is relevant as well.

144

8 Conclusion

This chapter concludes the thesis. In the first part we recapitulate the questions under
consideration and summarize the answers we proposed. The second part suggests
possible directions of future work.

8.1 Summary

This thesis investigated conditional belief from a knowledge-representation perspective.
In particular, we studied the following three questions.

1. How can we capture the meaning of a conditional knowledge base in a semantically
perspicuous way?

2. How do conditional beliefs change in the face of physical actions and new infor-
mation?

3. How can reasoning about conditional beliefs be kept decidable and, sometimes,
tractable?

We addressed the first question by extending Levesque’s logic of only-knowing OL
to embrace conditional beliefs. We generalized Levesque’s only-knowing in order to
capture conditional knowledge bases in a reasonable way. Numerous properties and
results are shared among OL and our logic – most notably perhaps the unique-model
property and the representation theorem. This confirms that our logic captures the
spirit of OL very well while adding to its expressivity. Further, a close relation to Pearl’s
System Z indicates that our semantics stands to reason.

To consider the effect of actions on conditional beliefs we amalgamated our logic of
only-believing with situation calculus-style actions. A notion of informing allows new
information to flow into the system, which is accounted for by means of classical belief
revision. The main subject of our investigation was the belief projection problem, which
is to decide what is believed after a sequence of actions. Two fundamental approaches
to tackle this problem are known: regression, which performs backward reasoning

145

8 Conclusion

by rolling back the actions in the query, and progression, which reasons forward by
updating the knowledge base. We showed how both techniques can be applied to
conditional belief. By these results, reasoning about belief in dynamic systems can be
reduced to the static case.

Finally, we dealt with the question of decidability in our framework. We devised
a logic of limited conditional belief, where belief is parameterized with the effort
that should be spend on proving it. Our approach is based on both a sound and a
complete approximation of ordinary first-order semantics, which together allow us to
approximate the notions of conditional belief and only-believing in a reasonable fashion.
For a specific class of knowledge bases, this notion of limited belief is sound with respect
to its unlimited archetype. Moreover, at the cost of completeness, limited reasoning is
decidable. In the propositional case, the corresponding decision procedures are even
tractable (for fixed effort).

8.2 Future Work

The possible directions of future work are manifold, and many open questions were
discussed in the conclusions of the previous chapters. Here, we give only a brief overview
of the major open challenges.

A very interesting – perhaps the most interesting – open question is how practical
belief revision operators could look like. As mentioned before, operators like lexico-
graphic revision bring along exponential growth, which is not feasible with hundreds
or thousands of revisions as they will appear in a practical scenario. Limited reason-
ing seems to be a promising way to attack this problem. The rough idea is that the
revised belief structure would be only approximated, and the differences among the least
plausible scenarios would be forgotten. A model of actions where effects are known
or believed only as far as the reasoning effort permits, and a corresponding notion of
limited progression are related questions.

Aside from the potential concept of limited revision operators, we plan to investigate
if and how our results on the projection problem carry over to other classical revision
operators. Particularly the question of first-order-definable progression for such complex
revision operators is open.

Finally, a couple of open questions concern the basic concept of only-believing.
For one thing, the relationships to only-knowing and System Z yields numerous new
relatives, and examining these relationships could be interesting. Especially investigating
an amalgamation of only-believing with probabilities, in the propositional fragment or

146

8.2 Future Work

the first-order setting, appears worthwhile. From a more theoretical view, an axiom
system for the logic of only-believing is desirable to get a second perspective on the logic.
However, as remarked before, such an axiom system can be sound and complete only
for the propositional fragment without giving up recursiveness.

147

A Long Proofs for BO

A.1 Proof of the OL embedding theorem

Here we prove Theorem 4.6.4, the embedding of OL in BO.

Lemma A.1.1 ~e |= O{¬α ⇒ false} iff for all p ∈ P, w ∈ ep iff ~e,w |= α.
Proof. For the only-if direction, let ~e |= O{¬α ⇒ false}. By Rule BO7, for all p ∈ P,
w ∈ ep iff ~e,w |= (¬α ⊃ false) or b~e |¬αc < p, which simplifies to ~e,w |= α or
b~e |¬αc < p (*). We show by induction on p that b~e |¬αc ≥ p for all p ∈ P, which
immediately gives us the right-hand side of the lemma. The base case holds trivially. For
the induction step, suppose b~e |¬αc ≥ p. Then ~e,w |= α for all w ∈ ep by (*), and thus
b~e |¬αc > p, that is, b~e |¬αc ≥ p + 1.

Conversely, let w ∈ ep iff ~e,w |= α for all p ∈ P. Then b~e |¬αc = ∞, and by
Rule BO7, ~e |= O{¬α ⇒ false}. �

For this remainder of this section, let α denote an arbitrary sentence of OL. Recall
from Definition 4.6.3 that] maps Kα to Kα] and Oα to O{¬α] ⇒ false}.
Lemma A.1.2 For every e and w, e,w |=OL α iff 〈e〉,w |= α].
Proof. By induction on the length of α. Let ~e = 〈e〉. We only consider the induction
steps for Kα and Oα here; the other cases are trivial.

For Kα, e |=OL Kα iff e,w |=OL α for all w ∈ e iff (by induction) ~e,w |= α] for all
w ∈ e iff (by construction of ~e) ~e,w |= α] for all w ∈ ep and p ∈ P iff (by Theorem 4.4.2)
~e |= Kα].

For Oα, e |=OL Oα iff e = {w | e,w |=OL α} iff (by induction) e = {w | ~e,w |= α]}
iff (by construction of ~e) ep = {w | ~e,w |= α]} for all p ∈ P iff (by Lemma A.1.1)
~e |= O{¬α] ⇒ false}. �

This lemma showed how to construct a BO model from an OL model. Constructing
an OL model from a BO model is more tricky. On the one hand, the OL model shall
represent all worlds that occur in the BO model regardless of which spheres that world
occurs in. On the other hand, if any sphere “misses” a world, the OL model shall miss
one, too.

149

A Long Proofs for BO

Definition A.1.3 For a primitive atom ρ, we define w ρ

i such that w ρ

i [ρ] = i and
w ρ

i [τ] = w[τ] for all primitive terms and atoms τ distinct from ρ.

Definition A.1.4 For arbitrary ~e we define ẽ ρ = ê ∪ {w ρ
0 | w ∈ ě and w ρ

1 < ê} where
ê =
⋂

p∈P ep and ě =
⋃

p∈P ep .

Lemma A.1.5 For every ~e and w, ~e,w |= α] iff ẽ ρ,w |=OL , where ρ is a primitive atom
whose symbol does not occur in α and ẽ = ẽ ρ .

Proof. By induction on the length of α. Observe that ~e,w ρ
0 |= β iff ~e,w ρ

1 |= β for any
β that does not mention the symbol of ρ (*), as can be shown by a simple induction on
the length of α. We only consider the induction steps for Kα and Oα here; the other
cases are trivial.

For Kα, ẽ |=OL Kα iff ẽ,w |=OL α for all w ∈ ẽ iff (by induction) ~e,w |= α] for
all w ∈ ẽ iff (by construction of ẽ and (*)) ~e,w |= α] for all w ∈ ep and p ∈ P iff (by
Theorem 4.4.2) ~e |= Kα].

For Oα we first make the following observations. Suppose ẽ = {w | ~e,w |= γ}
for some γ that does not mention the symbol of ρ. First suppose there is some w
such that w ∈ ě and w ρ

1 < ê . Then w ρ
0 ∈ ẽ but w ρ

1 < ẽ . Contradiction to (*). Hence
{w ρ

0 | w ∈ ě and w ρ
1 < ê} = {}, so we have ê = ẽ . Next suppose there is some

w such that w ∈ ě and w ρ
0 < ê . So w ρ

0 < ê = ẽ , and by (*), w ρ
1 < ẽ = ê . Then

by construction, w ρ
0 ∈ ẽ = ê . Contradiction. Hence ě ⊆ ê . So we have ẽ = ê = ě

(**). Now for the induction step, ẽ |=OL Oα iff ẽ = {w | ẽ,w |=OL α} iff (by
induction) ẽ = {w | ~e,w |= α]} iff (by (**)) ẽ = {w | ~e,w |= α]} and ẽ = ê = ě iff
ê = {w | ~e,w |= α]} and ep = ep′ for all p, p ′ ∈ P iff ep = {w | ~e,w |= α]} for all p ∈ P
iff (by Lemma A.1.1) ~e |= O{¬α] ⇒ false}. �

Theorem 4.6.4 |=OL α iff |= α].
Proof. For the only-if direction, suppose |=OL α but ~e,w 6|= α]. Then ~e,w |= ¬α], and
by Lemma A.1.5, ¬α is satisfiable in OL. Contradiction. Conversely, suppose |= α]

but e,w 6|=OL α. Then e,w |=OL ¬α, and by Lemma A.1.2, ¬α] is satisfiable in BO.
Contradiction. �

A.2 Proof of the Z-ordering theorem

Here we prove Theorem 4.7.4, which states the correspondence between only-believing
and Z-ordering. For this purpose let φ and ψ denote objective and propositional formulas
as in Section 4.7. Moreover, let Γ = {φ1 ⇒ ψ1, . . . , φm ⇒ ψm} be objective and
propositional, and let ~e |= OΓ, which exists and is unique by Theorem 4.5.3.

150

A.2 Proof of the Z-ordering theorem

Lemma A.2.1 The Z-ranking is well-defined iff Γ is consistent.

Proof. According to Pearl (1990), Γ is consistent iff
⋃

i Γi = Γ. Thus, Γ is inconsistent iff
there is some φ ⇒ ψ < Γi for all i iff Z(φ ⇒ ψ) is undefined for some φ ⇒ ψ ∈ Γ. �

Lemma A.2.2 Let ~e |= OΓ and Γ be consistent.
Then b~e | φc = Z(φ ⇒ ψ) + 1 for every φ ⇒ ψ ∈ Γ.

Proof. By Lemma A.2.1, Z is well-defined. We show by induction on p that b~e | φc ≤ p
iff Z(φ ⇒ ψ) ≤ p − 1 for all p ∈ P and φ ⇒ ψ ∈ Γ. The lemma is then an easy
consequence: from b~e | φc ≤ b~e | φc we obtain Z(φ ⇒ ψ) ≤ b~e | φc − 1, and similarly
from Z(φ ⇒ ψ) ≤ Z(φ ⇒ ψ) + 1 − 1 we obtain b~e | φc ≤ Z(φ ⇒ ψ) + 1; hence the
lemma holds.

For the base case, b~e | φc ≤ 1 iff b~e | φc = 1 iff w |= φ for some w ∈ e1 iff (by
Rule BO7) w |= φ ∧∧φi⇒ψi ∈Γ(φi ⊃ ψi) for some w iff (by Lemma 4.7.2) Γ tolerates
φ ⇒ ψ iff (by Definition 4.7.3) φ ⇒ ψ ∈ Γ0 iff Z(φ ⇒ ψ) = 0 iff Z(φ ⇒ ψ) ≤ 0.

For the induction step suppose that b~e | φc < p iff Z(φ ⇒ ψ) < p − 1 for all p ∈ P and
φ ⇒ ψ ∈ Γ. First observe that b~e | φic ≥ p iff (by induction) Z(φi ⇒ ψi) ≥ p − 1 iff (by
Definition 4.7.3) φi ⇒ ψi < Γ0 ∪ . . . ∪ Γp−2 iff φi ⇒ ψi ∈ Γ \ (Γ0 ∪ . . . ∪ Γp−2) (*). Then
b~e | φc ≤ p iff w |= φ for some w ∈ ep iff (by Rule BO7) w |= φ ∧∧i:b~e | φi c≥p(φi ⊃ ψi)
for some w iff (by (*)) w |= φ ∧

∧
φi⇒ψi ∈Γ\(Γ0∪...Γp−2)(φi ⊃ ψi) for some w iff (by

Lemma 4.7.2) Γ \ (Γ0 ∪ . . . Γp−2) tolerates φ ⇒ ψ iff (by Definition 4.7.3) φ ⇒ ψ ∈

Γ0 ∪ . . . ∪ Γp−1 iff Z(φ ⇒ ψ) ≤ p − 1. �

Lemma A.2.3 Let ~e |= OΓ. Then Γ is inconsistent iff b~e | φc = ∞ for some φ ⇒ ψ ∈ Γ.

Proof. For the only-if direction suppose Γ is inconsistent. Then some non-empty Γ′ ⊆ Γ
does not tolerate any φ ⇒ ψ ∈ Γ′. We show by induction on p that b~e | φc > p
for all φ ⇒ ψ ∈ Γ′. For the base case consider p = 1. By Lemma 4.7.2, for every
φ ⇒ ψ ∈ Γ′, w 6|= φ ∧∧φ′⇒ψ′∈Γ′(φ′ ⊃ ψ ′) for all w , so by Rule BO7, w 6|= φ for all
w ∈ e1, and hence b~e | φc > 1. For the induction step consider p > 1. By induction,
b~e | φc ≥ p for all φ ⇒ ψ ∈ Γ′. Thus and by Lemma 4.7.2, for every φ ⇒ ψ ∈ Γ′,
w 6|= φ∧∧i:b~e | φi c≥p(φi ⊃ ψi) for all w , so by Rule BO7, w 6|= φ for all w ∈ ep , and hence
b~e | φc > p. Hence the only-if direction holds, that is, b~e | φc = ∞ for all φ ⇒ ψ ∈ Γ′.

Conversely, suppose Γ is consistent. Then Z(φ ⇒ ψ) ∈ {0, 1, 2, . . .} for all φ ⇒ ψ ∈ Γ

by Definition 4.7.3, and thus b~e | φc , ∞ by Lemma A.2.2. �

Lemma A.2.4 Let ~e |= OΓ and Γ be consistent. Then min{p | w ∈ ep} = Z(w) + 1.

Proof. For every world w , p is minimal such that w ∈ ep iff (by Rule BO7) p is
minimal such that w |= ∧i:b~e | φi c≥p(φi ⊃ ψi) iff (by Lemma A.2.2) p is minimal such
that w |= ∧i:Z(φi⇒ψi)≥p−1(φi ⊃ ψi) iff (by Definition 4.7.3) Z(w) = p − 1. �

151

A Long Proofs for BO

Lemma A.2.5 Let ~e |= OΓ, Γ be consistent, and φ satisfiable. Then b~e | φc = Z(φ) + 1.

Proof. Since φ is satisfiable, there is some w with w |= φ, and by Lemma A.2.4,
min{p | w ∈ ep} = Z(w) + 1. Thus, since Z(w) cannot take the value ∞, b~e | φc , ∞.
Hence, b~e | φc = min{p | w |= φ and w ∈ ep} = min{min{p | w ∈ ep} | w |= φ} = (by
Lemma A.2.4) min{Z(w) + 1 | w |= φ} = (by Definition 4.7.3) Z(φ) + 1. �

Theorem 4.7.4

(i) Γ is inconsistent iff b~e | φc = ∞ for some φ ⇒ ψ ∈ Γ;

(ii) if Γ is consistent, then b~e | φc = Z(φ ⇒ ψ) + 1 for every φ ⇒ ψ ∈ Γ;

(iii) if Γ is consistent, then min{p | w ∈ ep} = Z(w) + 1;

(iv) if Γ is consistent and φ is satisfiable, then b~e | φc = Z(φ) + 1.

Proof. Follows from Lemmas A.2.3, A.2.2, A.2.4, A.2.5, respectively. �

152

B Long Proofs for ESB

B.1 Proof of the BO embedding theorem

Here we prove Theorem 5.3.9, the embedding of BO in ESB. For this section, let α
denote an arbitrary sentence of BO, and let Γ = {α1 ⇒ β1, . . . , αm ⇒ βm} denote a set
of BO conditionals.

Definition B.1.1 For a BO world w and an ESB world w ′, let w ∼ w ′ iff w and w ′

agree in the initial situation.

Lemma B.1.2 Let w and ~e be of BO. Then ~e,w |=BO α iff ~e ∗,w∗ |= α, where w∗ is arbi-
trary with w ∼ w∗, and ~e ∗ is such that for every p ∈ P, e∗p = {w ′ | w ∼ w ′ for some w ∈
ep}.
Proof. By induction on the length of α, where we take the length of B(α ⇒ β) as the
length of (α ⊃ β) plus 1, and the length of OΓ as the length of

∧
i(αi ⊃ ψi) plus 1. We

only consider the induction steps for B(α ⇒ β) and OΓ here; the other cases are trivial.
First consider B(α ⇒ β) and suppose the lemma holds for formulas shorter than

B(α ⇒ β). First notice that for every p ∈ P, b~e | αc ≤ p iff ~e,w ′ |=BO α for somew ′ ∈ ep
iff (by induction) ~e ∗,w ′∗ |= α for some w ′ ∈ ep and for arbitrary w ′∗ with w ′ ∼ w ′∗

iff ~e ∗,w ′ |= α for some w ′ ∈ e∗p iff b~e | αc ≤ p. Hence b~e | αc = b~e ∗ | αc (*). Then
~e,w |=BO B(α ⇒ β) iff for all p ∈ P, if p ≤ b~e | αc and w ′ ∈ ep , then ~e,w |=BO (α ⊃ β)
iff (by induction) for all p ∈ P, if p ≤ b~e | αc and w ′ ∈ ep , then ~e ∗,w ′∗ |= (α ⊃ β) for
arbitrary w ′∗ with w ′ ∼ w ′∗ iff (by (*)) for all p ∈ P, if p ≤ b~e ∗ | αc and w ′ ∈ e∗p , then
~e ∗,w ′ |= (α ⊃ β) iff ~e ∗,w∗ |= B(α ⇒ β).

Now consider OΓ and suppose the lemma holds for formulas shorter than OΓ.
By the same argument as above, b~e | αic = b~e ∗ | αic (*). Then ~e,w |=BO OΓ iff ep =
{w ′ | ~e,w ′ |=BO ∧i:b~e | αi c≥p(αi ⊃ βi)} for all p ∈ P iff (by induction) ep = {w ′ |
~e ∗,w ′∗ |= ∧i:b~e | αi c≥p(αi ⊃ βi) for arbitrary w ′∗ with w ′ ∼ w ′∗} for all p ∈ P iff (by (*))
e∗p = {w ′ | ~e ∗,w ′ |= ∧i:b~e ∗ | αi c≥p(αi ⊃ βi)} for all p ∈ P iff ~e ∗,w∗ |= OΓ. �

Constructing a BO model from an ESB model is more involved because we need to
avoid a pitfall similar to the problem when translating a BO model to an OL model in
Appendix A.1. Given an ESB model such that ep ({w | ~e,w |= α} for some p ∈ P,

153

B Long Proofs for ESB

when we simply “cut” the future situations from every individual world in ep we might
end up with a BO model e∗ = {w∗ | e∗,w∗ |=BO α}. The intuitive reason is that ep
might contain all possible truth assignments for the initial situation, but not for every
future situation.

Definition B.1.3 We say a set of ESB worldsW is complete when for all ESB worlds
w ′,w ′′, if w ′ ∈ W and there is a BO world w such that w ∼ w ′ and w ∼ w ′′, then
w ′′ ∈W .

Intuitively a set of ESB worlds is complete when for every w ′ ∈W it also contains
all other worlds that agree with w ′ on the initial situation. The notation w ρ

i in the
following lemma was introduced in Definition A.1.3.

Lemma B.1.4 Let w and ~e be of ESB. Then ~e,w |= α iff ~e ∗,w∗ |=BO α, where w∗ is
such that w∗ ∼ w, and ~e ∗ is such that for every p ∈ P, if ep is complete, e∗p = {w | w ∼
w ′ for some w ′ ∈ ep}, and otherwise e∗p = {w ρ

0 | w ∼ w ′ for some w ′ ∈ ep}.
Proof. By induction on the length of α, where we take the length of B(α ⇒ β) as the
length of (α ⊃ β) plus 1, and the length of OΓ as the length of

∧
i(αi ⊃ ψi) plus 1.

Notice that w∗ is uniquely determined by w ; we hence use ∗ as function that maps
arbitrary ESB worlds w ′ to w ′∗ such that w ′∗ ∼ w ′. We only consider the induction
steps for B(α ⇒ β) and OΓ here; the other cases are trivial.

First consider B(α ⇒ β) and suppose the lemma holds for formulas shorter than
B(α ⇒ β). First notice that for every p ∈ P, b~e | αc ≤ p iff ~e,w ′ |= α for some w ′ ∈ ep
iff (by induction) ~e ∗,w ′∗ |=BO α for some w ′ ∈ ep iff (since the symbol of ρ does not
occur in α) ~e ∗,w ′ |=BO α for some w ′ ∈ e∗p iff b~e ∗ | αc ≤ p. Hence b~e | αc = b~e ∗ | αc (*).
Then ~e,w |= B(α ⇒ β) iff for all p ∈ P, if p ≤ b~e | αc and w ′ ∈ ep , then ~e,w |= (α ⊃ β)
iff (by induction) for all p ∈ P, if p ≤ b~e | αc and w ′ ∈ ep , then ~e ∗,w ′∗ |=BO (α ⊃ β) iff
(since the symbol of ρ does not occur in α ⊃ β and by (*)) for all p ∈ P, if p ≤ b~e ∗ | αc
and w ′ ∈ e∗p , then ~e ∗,w ′ |=BO (α ⊃ β) iff ~e ∗,w∗ |=BO B(α ⇒ β).

Now consider OΓ and suppose the lemma holds for formulas shorter than OΓ. By
the same argument as above, b~e | αic = b~e ∗ | αic (*). We observe the following (**) for
any sentence γ of BO that is shorter than OΓ and does not mention the symbol of ρ.

• If w ′ ∈ ep iff ~e ∗,w ′∗ |=BO γ, then ep is complete and so w ′ ∈ e∗p iff ~e ∗,w ′ |=BO γ.
• If w ′ ∈ ep but ~e ∗,w ′∗ 6|=BO γ, then also (w ′∗)ρi ∈ e∗p for either i = 0 (when
w ′∗ = (w ′∗)ρ0 or when ep is incomplete) or i = 1 (when w ′∗ = (w ′∗)ρ1 and ep is
complete), but ~e ∗, (w ′∗)ρi 6|=BO γ.

• If w ′ < ep but ~e ∗,w ′∗ |=BO γ, then (whether ep is complete or not) (w ′∗)ρ1 < e∗p

154

B.2 Proof of the regression theorems

although ~e ∗, (w ′∗)ρ1 |=BO γ.
Now for the actual induction step, ~e,w |= OΓ iff ep = {w ′ | ~e,w ′ |= ∧i:b~e | αi c≥p(αi ⊃

βi)} for all p ∈ P iff (by induction) ep = {w ′ | ~e ∗,w ′∗ |=BO ∧i:b~e | αi c≥p(αi ⊃ βi)} for
all p ∈ P iff (by (*)) ep = {w ′ | ~e ∗,w ′∗ |=BO ∧i:b~e ∗ | αi c≥p(αi ⊃ βi)} for all p ∈ P iff (by
(**)) e∗p = {w ′ | ~e ∗,w ′ |=BO ∧i:b~e ∗ | αi c≥p(αi ⊃ βi)} for all p ∈ P iff ~e ∗,w∗ |=BO OΓ. �

Theorem 5.3.9 |=BO α iff |= α.
Proof. For the only-if direction suppose |=BO α and let ~e and w be an arbitrary ESB
epistemic state and world, respectively. By Lemma B.1.4, ~e,w |= α iff ~e ∗,w∗ |=BO α,
where ~e ∗ and w∗ are as in Lemma B.1.4. Hence by assumption, ~e,w |= α.

Conversely suppose |= α and let ~e and w be an arbitrary BO epistemic state and
world, respectively. By Lemma B.1.2, ~e,w |=BO α iff e∗,w∗ |= α, where ~e ∗ and w∗ are
as in Lemma B.1.2. Hence by assumption, ~e,w |=BO α. �

B.2 Proof of the regression theorems

Here we show the regression results. To begin with, we prove Theorems 5.5.4 and 5.5.5,
which relate beliefs after an action to the beliefs before an action similar to successor-state
axioms. After that, we prove the actual regression results, Theorems 5.5.3, 5.5.7, and
5.6.5.

Lemma B.2.1 Let n be a weak-revision action standard name and b~e | IF(n)c , ∞.
(i) If b~e | IF(n)c = b~e | IF(n) ∧ [n]αc, then b~e� n | αc = 1.

(ii) If b~e | IF(n)c , b~e | IF(n) ∧ [n]αc, then b~e� n | αc = b~e | [n]αc + 1.

Proof. (i) By assumption ~e,w |= IF(n)∧ [n]α for some w ∈ eb~e | IF(n)c . Thus ~e,w |= [n]α
for some w ∈ (~e ∗w IF(n))1, and so by Rule ESB7, ~e� n,w |= α for some w ∈ (~e� n)1.
Therefore b~e� n | αc = 1.

(ii) By assumption, ~e,w 6|= IF(n) ∧ [n]α for all w ∈ eb~e | IF(n)c . Thus ~e,w 6|= [n]α
for all w ∈ (~e ∗w IF(n))1 (*). Thus ~e� n,w 6|= α for all w ∈ (~e� n)1, and hence
b~e� n | αc > 1. Now let p ∈ P. First suppose p < b~e | [n]αc. Then ~e,w 6|= [n]α for all
w ∈ ep . Hence and by (*), ~e,w 6|= [n]α for all w ∈ (~e ∗w IF(n))p+1. Thus ~e� n,w 6|= α
for all w ∈ (~e� n)p+1, and therefore p + 1 < b~e� n | αc. Now suppose p ≥ b~e | [n]αc.
Then ~e,w |= [n]α for some w ∈ ep ⊆ (~e ∗w IF(n))p+1. Thus ~e� n,w |= α for some
w ∈ (~e� n)p+1, and hence p + 1 ≥ b~e� n | αc. �

Lemma B.2.2 Let n be a strong-revision action standard name and b~e | IF(n)c , ∞.

155

B Long Proofs for ESB

(i) If b~e | IF(n) ∧ [n]αc , ∞, then b~e� n | αc = b~e | IF(n) ∧ [n]αc − b~e | IF(n)c + 1.

(ii) If b~e | IF(n) ∧ [n]αc = ∞ and b~e |¬IF(n)c , ∞, then b~e� n | αc = b~e | [n]αc +
d~ee − b~e | IF(n)c − b~e |¬IF(n)c + 2.

Proof. (i) Suppose b~e | IF(n)c ≤ p < b~e | IF(n) ∧ [n]αc. Then ~e,w 6|= IF(n) ∧ [n]α
for all w ∈ ep . Thus ~e,w 6|= [n]α for all w ∈ (~e ∗s IF(n))p−b~e | IF(n)c+1. By Rule ESB7,
~e� n,w 6|= α for all w ∈ (~e� n)p−b~e | IF(n)c+1. Thus p − b~e | IF(n)c + 1 < b~e� n | αc.
Analogously p ≥ b~e | IF(n) ∧ [n]αc implies p − b~e | IF(n)c + 1 ≥ b~e� n | αc.

(ii) Suppose b~e |¬IF(n)c ≤ p < b~e | [n]αc. Then ~e,w 6|= [n]α for all w ∈ ep . So
~e,w 6|= [n]α for allw ∈ (~e ∗s IF(n))p∗ where p∗ = p+ d~ee− b~e | IF(n)c+1− b~e |¬IF(n)c+1,
because by the same argument as in (i), ~e� n,w 6|= α for all w ∈ (~e� n)p′ and
p ′ ≤ d~ee − b~e | IF(n)c + 1. By Rule ESB7, ~e� n,w 6|= α for all w ∈ (~e� n)p∗ . Thus
p∗ < b~e� n | αc. Analogously p ≥ b~e | [n]αc implies p∗ ≥ b~e� n | αc. �

Theorem 5.5.4 Let a be a weak-revision action variable. Then

|= �[a]B(α ⇒ β) ≡ ¬B(IF(a)⇒ ¬[a]α) ∧ B(IF(a) ∧ [a]α ⇒ [a]β) ∨
B(IF(a)⇒ ¬[a]α) ∧ B([a]α ⇒ [a]β) ∨
B(IF(a)⇒ false).

Proof. We prove that the equivalence holds in any epistemic state ~e for any weak-
revision action n substituted for a. We distinguish three cases. The first case supposes
~e 6|= B(IF(n) ⇒ ¬[n]α). The second one supposes the opposite plus b~e | IF(n)c , ∞.
The third case supposes b~e | IF(n)c = ∞. For each case we show the equivalence. Since
the cases are exhaustive, the theorem follows.

First suppose ~e 6|= B(IF(n) ⇒ ¬[a]α). Then also ~e 6|= B(IF(n) ⇒ false). Hence
the equivalence to be shown reduces to ~e |= [n]B(α ⇒ β) ≡ B(IF(n) ∧ [n]α ⇒ [n]β).
Notice that by assumption b~e | IF(n)c = b~e | IF(n) ∧ [n]αc , ∞ (*), and by Lemma B.2.1
b~e� n | αc , ∞ (**). Now we prove the equivalence: ~e |= B(IF(n) ∧ [n]α ⇒ [n]β)
iff (by Theorem 5.3.12 and (*)) ~e,w |= IF(n) ∧ [n]α ⊃ [n]β for all w ∈ eb~e | IF(n)c iff
~e,w |= [n]α ⊃ [n]β for all w ∈ (~e ∗w IF(n))1 iff (by (**)) ~e� n,w |= α ⊃ β for all
w ∈ (~e� n)b~e � n | αc iff (by Theorem 5.3.12 and (**)) ~e |= [n]B(α ⇒ β).

Now suppose b~e | IF(n)c , ∞ and ~e |= B(IF(n) ⇒ ¬[n]α). Then ~e 6|= B(IF(n) ⇒
false). Similar to the previous case, the remaining equivalence is ~e |= [n]B(α ⇒ β) ≡
B([n]α ⇒ [n]β). Notice that by assumption, ~e,w |= IF(n) ⊃ ¬[n]α for all w ∈

eb~e | IF(n)c , so ~e,w 6|= [n]α for all w ∈ (~e ∗w IF(n))1 (*). Now we prove the equivalence:
~e |= B([n]α ⇒ [n]β) iff ~e,w |= [n]α ⊃ [n]β for all w ∈ ep for all p ∈ P with

156

B.2 Proof of the regression theorems

p ≤ b~e | [n]αc iff (by (*)) ~e,w |= [n]α ⊃ [n]β for all w ∈ (~e ∗w IF(n))p for all p ∈ P
with p ≤ b~e | [n]αc + 1 iff (by Lemma B.2.1) ~e� n,w |= α ⊃ β for all w ∈ (~e� n)p for
all p ∈ P with p ≤ b~e� n | αc iff ~e |= [n]B(α ⇒ β).

Finally suppose b~e | IF(n)c = ∞. Then ~e,w 6|= IF(n) for all p ∈ P and w ∈ ep , and
so ~e |= B(IF(n) ⇒ false). Since b~e | IF(n)c = ∞, (~e� n)p = {} for all p ∈ P, and so
~e� n,w |= α ⊃ β for all w ∈ (~e� n)p . Thus ~e |= [n]B(α ⇒ β). �

Theorem 5.5.5 Let a be a strong-revision action variable. Then

|= �[a]B(α ⇒ β) ≡ ¬B(IF(a) ∧ [a]α ⇒ false) ∧ B(IF(a) ∧ [a]α ⇒ [a]β) ∨
B(IF(a) ∧ [a]α ⇒ false) ∧ B([a]α ⇒ [a]β) ∨
B(IF(a)⇒ false).

Proof. We prove that the equivalence holds in any epistemic state ~e for any strong-
revision action n substituted for a. We distinguish three cases. The first case supposes
~e 6|= B(IF(n)∧¬[n]α ⇒ false). The second one supposes the opposite plus b~e | IF(n)c ,
∞. The third case supposes b~e | IF(n)c = ∞. For each case we show the equivalence.
Since the cases are exhaustive, the theorem follows.

First suppose ~e 6|= B(IF(n) ∧ [n]α ⇒ false). Then also ~e 6|= B(IF(n) ⇒ false).
Hence the equivalence to be proved reduces to ~e |= [n]B(α ⇒ β) ≡ B(IF(n) ∧ [n]α ⇒
[n]β). Notice that by assumption b~e | IF(n) ∧ [n]αc , ∞ (*), and by Lemma B.2.1
b~e� n | αc , ∞ (**). Now we can prove the equivalence: ~e |= B(IF(n) ∧ [n]α ⇒ [n]β)
iff (by Theorem 5.3.12 and (*)) ~e,w |= IF(n) ∧ [n]α ⊃ [n]β for all w ∈ eb~e | IF(n)∧[n]αc iff
~e,w |= [n]α ⊃ [n]β for all w ∈ (~e ∗s IF(n))b~e | IF(n)∧[n]αc−b~e | IF(n)c+1 iff (by Lemma B.2.2)
~e� n,w |= α ⊃ β for all w ∈ (~e� n)b~e � n | αc iff (by Theorem 5.3.12 and (**))
~e |= [n]B(α ⇒ β).

Now suppose ~e |= B(IF(n)∧[n]α ⇒ false) and b~e | IF(n)c , ∞. Then ~e 6|= B(IF(n)⇒
false). Hence the equivalence left to be shown is ~e |= [n]B(α ⇒ β) ≡ B([n]α ⇒ [n]β).
Notice that by assumption, ~e,w 6|= IF(n) ∧ [n]α for all w ∈ ep and p ∈ P (*). Thus also
~e� n,w 6|= α for all w ∈ (~e� n)p for all p ∈ P with p ≤ d~ee − b~e | IF(n)c + 1 (**). Now
we prove the equivalence. If b~e |¬IF(n)c = ∞, then there are no ¬IF(n)-worlds in ~e ,
so ~e |= B([n]α ⇒ [n]β) holds by (*) and ~e |= [n]B(α ⇒ β) holds by (**). Otherwise
the equivalence is shown as follows: ~e |= B([n]α ⇒ [n]β) iff ~e,w |= [n]α ⊃ [n]β for
all w ∈ ep for all p ∈ P with p ≤ b~e | [n]αc iff (by (**)) ~e,w |= [n]α ⊃ [n]β for all
w ∈ (~e ∗s IF(n))p for all p ∈ P with p ≤ b~e | [n]αc + d~ee − b~e | IF(n)c − b~e |¬IF(n)c + 2
iff (by Lemma B.2.2) ~e� n,w |= α ⊃ β for all w ∈ (~e� n)p for all p ∈ P with
p ≤ b~e� n | αc iff ~e |= [n]B(α ⇒ β).

157

B Long Proofs for ESB

Finally suppose b~e | IF(n)c = ∞. Then ~e,w 6|= IF(n) for all p ∈ P and w ∈ ep , and
so ~e |= B(IF(n) ⇒ false). Since b~e | IF(n)c = ∞, (~e� n)p = {} for all p ∈ P, and so
~e� n,w |= α ⊃ β for all w ∈ (~e� n)p . Thus ~e |= [n]B(α ⇒ β). �

Next, we turn to the actual regression theorems. We begin with the regression results
from Section 5.5, Theorems 5.5.3 and 5.5.7. Then we generalize Theorem 5.5.7 for the
extended only-believing operator to show Theorem 5.6.5.

Proving Theorems 5.5.3 and 5.5.7 follows a scheme similar to the knowledge regression
proof in (Lakemeyer and Levesque 2011). Namely, we show that every world and
epistemic state can be converted to one that adheres to the dynamic axioms Σdyn
without changing its initial truth values. In Lemma B.2.12 we show that an epistemic
state and a world satisfy a regressed sentence iff their Σdyn-compliant counterparts satisfy
the non-regressed sentence. The regression theorem is then an easy consequence.

For the rest of this section, let Σdyn,Σbel be a basic action theory over fluents F .
Recall that Σdyn contains the successor state axioms �[a]F (x1, . . . , xk) ≡ γF for F ∈ F ,
and the informed fluent axiom �IF(a) ≡ ϕ.
Definition B.2.3 For a world w , wΣdyn is a world such that wΣdyn ≈F ∪{IF} w and

• wΣdyn[F (n1, . . . , nk), 〈〉] = w[F (n1, . . . , nk), 〈〉] for all F ∈ F ;

• wΣdyn[F (n1, . . . , nk), z · n] = 1 iff wΣdyn� z |= γF x1 ... xk a
n1 ... nk n for all F ∈ F , action

sequences z , and actions n;

• wΣdyn[IF(n), z] = 1 iff wΣdyn� z |= ϕa
n for all action sequences z .

For a set of worldsW and an epistemic state ~e , we letWΣdyn = {wΣdyn | w ∈W } and
~eΣdyn = 〈(e1)Σdyn, . . . , (ed~ee)Σdyn〉.
Lemma B.2.4 wΣdyn is uniquely defined.

Proof. Intuitively, once all values except for IF are fixed after z , the truth of γF and ϕ
after z is uniquely determined as they are fluent formulas, and thus by definition also
the value of F after z · n and of IF after z are uniquely determined. The formal proof is
by straightforward induction on z and subinduction on the length of γF and ϕ. �

Lemma B.2.5 wΣdyn |= Σdyn.
Proof. By definition, wΣdyn[F (n1, . . . , nk), z · n] = 1 iff wΣdyn� z |= γF

x1 ... xk a
n1 ... nk n, so

wΣdyn |= �[a]F (x1, . . . , xk) ≡ γF for all F ∈ F . Analogously, wΣdyn |= �IF(a) ≡ ϕ.
Hence wΣdyn |= Σdyn. �

Lemma B.2.6 If w |= Σdyn, then wΣdyn = w.

158

B.2 Proof of the regression theorems

Proof. Suppose w |= Σdyn. Then w |= �[a]F (x1, . . . , xn) ≡ γF and w |= �IF(a) ≡ ϕ.
Thus, w satisfies the conditions from Definition B.2.3: w[F (n1, . . . , nk), z · n] = 1 iff
(w� z · n)[F (n1, . . . , nk), 〈〉] = 1 iff w� z |= γF

x1 ... xk a
n1 ... nk n for all F ∈ F ; analogously,

w[IF(n), z] = 1 iff (w� z)[IF(n), 〈〉] = 1 iff w� z |= ϕa
n. Since wΣdyn is unique by

Lemma B.2.4, wΣdyn = w . �

Lemma B.2.7 Let φ be a fluent sentence. Then w |= φ iff wΣdyn |= φ.
Proof. By an easy induction on the length of φ since w,wΣdyn agree on all initial values
except perhaps for IF. �

Lemma B.2.8 If ~e |= OΣbel, then ~eΣdyn |= O(Σdyn,Σbel).
Proof. Let Σbel = {φ1 ⇒ ψ1, . . . , φm ⇒ ψm} and ~e |= OΣbel. We show that ~eΣdyn |=
O(Σdyn,Σbel). Note that by Lemma B.2.7, b~e | φic = b~eΣdyn | φic (*). Suppose w ∈ (~eΣdyn)p .
Then there is some w ′ ∈ ep such that w ′

Σdyn
= w , and w ′ |= ∧i:b~e | φi c≥p(φi ⊃ ψi) iff

(by Lemmas B.2.5 and B.2.7 and (*)) w |= Σdyn ∧∧i:b~eΣdyn | φi c≥p(φi ⊃ ψi). Conversely,
suppose w |= Σdyn ∧∧i:b~eΣdyn | φi c≥p(φi ⊃ ψi). Then w ∈ ep by Rule ESB10 and (*). By
Lemma B.2.6, w = wΣdyn ∈ (~eΣdyn)p . �

For induction proofs about regression we introduce the following non-standard
measure. Intuitively, ‖α‖ measures the length of the regressed formula R[α] plus how
many of “calls” to the regression operator it takes to determine R[α] (not counting
Rule R8).

Definition B.2.9 Let α be a regressable formula and k ≥ 0. We define the measure ‖α‖
with respect to a basic action theory with dynamic axioms Σdyn as

• ‖[t1] . . . [tk]R(t ′1, . . . , t ′l)‖ = 1 for rigid R;

• ‖[t1] . . . [tk]F (t ′1, . . . , t ′l)‖ =



1 if k = 0

1 + ‖[t1] . . . [tk−1]γF ‖ if k > 0
for fluent F ∈ F ;

• ‖[t1] . . . [tk]IF(t)‖ = 1 + ‖[t1] . . . [tk]ϕ‖;
• ‖[t1] . . . [tk](t ′1 = t ′2)‖ = 1;

• ‖[t1] . . . [tk]¬α‖ = 1 + ‖[t1] . . . [tk]α‖;
• ‖[t1] . . . [tk](α ∨ β)‖ = 1 + ‖[t1] . . . [tk]α‖ + ‖[t1] . . . [tk]β‖;
• ‖[t1] . . . [tk]∃xα‖ = 1 + ‖[t1] . . . [tk]α‖;

159

B Long Proofs for ESB

• ‖[t1] . . . [tk]B(α ⇒ β)‖ =



1 + ‖(α ⊃ β)‖ if k = 0

1 + ‖[t1] . . . [tk−1]σ‖ if k > 0
where σ is the right-hand side of Theorem 5.5.4 or 5.5.5 depending on the sort of
tk .

Observe that ‖[t1] . . . [tk]α‖ reflects the regression operator R[〈t1, . . . , tk〉, α] from
Definitions 5.5.2 and 5.5.6. For example, the definition ‖[t]F (t ′)‖ = 1 + ‖γF ‖ corre-
sponds to R[[t]F (t ′)] = R[γF x a

t ′ t]; similarly for the other cases. This makes ‖ ·‖ useful for
induction proofs involving regression: the base cases are ‖[t1] . . . [tk]R(t ′1, . . . , t ′l)‖ for
rigid R, ‖F (t ′1, . . . , t ′l)‖ for fluent F ∈ F , and ‖[t1] . . . [tk](t = t ′)‖, whose regression is
trivial; all other cases are proved by induction.

We first need to show that ‖ · ‖ is a well-defined function from the regressable formulas
to the natural numbers. Intuitively this is true because the right-hand sides of ‖ · ‖ for
fluent atoms and beliefs eliminate an action or push it inside the belief, respectively,
and the right-hand side for IF mentions no IF itself. Given the construction of ‖ · ‖ it
then follows immediately that the measure for expressions on the left-hand side of the
equations in Definition B.2.9 is always bigger than the measure of expressions on the
right-hand side.

Lemma B.2.10 ‖ · ‖ is a well-defined function from the regressable formulas to the natural
numbers.

Proof. Let |α|B be the nesting depth of B operators: |R(t1, . . . , tk)|B = |F (t1, . . . , tk)|B =
|(t = t ′)|B = 0 for rigid R and fluent F ; |¬α|B = |∃xα|B = |[t]α|B = |α|B; |(α ∨ β)|B =
max{|α|B, |β |B}; and |B(α ⇒ β)|B = 1 +max{|α|B, |β |B}.

Let |α|A be as follows: |R(t1, . . . , tk)|A = |F (t1, . . . , tk)|A = |(t = t ′)|A = 0 for rigid
R and fluent F ; |¬α|A = |∃xα|A = |α|A; |(α ∨ β)|A = |B(α ⇒ β)|A = max{|α|A, |β |A};
and |[t]α|A = 2|α|B + |α|A. Note that for objective φ, |φ |A is just the number of nested
action operators in φ. In subjective formulas every action is additionally penalized with
| · |B.

First we show that |[t1] . . . [tk]B(α ⇒ β)|A > |[t1] . . . [tk−1]σ |A for k > 0 where
σ is the right-hand side of Theorem 5.5.4 or 5.5.5 (*). Let |B(α ⇒ β)|B = n. Then
|[t1] . . . [tk]B(α ⇒ β)|A = k · 2n + max{|α|A, |β |A}. On the other hand, |σ |B = n.
Hence |[t1] . . . [tk−1]σ |A = (k − 1) · 2n + |σ |A. It is immediate from Theorems 5.5.4
and 5.5.5 that |σ |A = max{|[tk]α|A, |[tk]β |A}. Since |α|B ≤ n − 1 and |β |B ≤ n − 1,
we have max{|[tk]α|A, |[tk]β |A} ≤ 2n−1 + max{|α|A, |β |A}. Thus |[t1] . . . [tk−1]σ |A ≤
(k − 1) · 2n + 2n−1 +max{|α|A, |β |A}. Since k · 2n > (k − 1) · 2n + 2n−1, (*) holds.

Now we prove the lemma by induction on |α|A. For the base case, consider regressable

160

B.2 Proof of the regression theorems

α with |α|A = 0. We show that ‖α‖ is well-defined by subinduction on the length of α,
where we take the length of IF(t) to be the length of ϕ plus 1 (which is well-behaved
because ϕ contains no IF), and the length of B(α ⇒ β) to be the length of (α ⊃ β) plus
1. The subinduction base cases ‖R(t ′1, . . . , t ′l)‖ = 1 for rigid R, ‖F (t ′1, . . . , t ′l)‖ = 1 for
fluent F ∈ F , and ‖(t = t ′)‖ = 1 are obviously well-defined. For the subinduction steps,
‖IF(t)‖ is well-defined iff ‖ϕ‖ is well-defined, ‖¬α‖ is well-defined iff ‖α‖ is well-defined,
‖(α ∨ β)‖ is well-defined if ‖α‖ and ‖ β‖ are well-defined, ‖∃xα‖ is well-defined iff ‖α‖
is well-defined, ‖B(α ⇒ β)‖ is well-defined iff ‖(α ⊃ β)‖ is well-defined, all of which is
the case by subinduction.

For the induction step consider α with |α|A = m > 0 and suppose that ‖ β‖ is
well defined for all regressable β with |β |A < m. We show that ‖α‖ is well-defined
by a subinduction in the same vein as in the main base case. As for the first base
case, ‖[t1] . . . [tm]F (t ′1, . . . , t ′l)‖ for fluent F ∈ F is well-defined iff ‖[t1] . . . [tm−1]γF ‖
is well-defined, which holds by induction since γF is fluent and thus mentions nei-
ther actions, beliefs, nor IF, so |[t1] . . . [tm−1]γF |A = m − 1. The other base cases
‖[t1] . . . [tm]R(t ′1, . . . , t ′l)‖ = 1 for rigid R and ‖[t1] . . . [tm](t = t ′)‖ = 1 are immediate.
For the first subinduction step, ‖[t1] . . . [tm]IF(t)‖ is well-defined iff ‖[t1] . . . [tm]ϕ‖ is
well-defined, which holds by subinduction. For disjunction with |[t1] . . . [tk](α∨ β)|A =
m, ‖[t1] . . . [tk](α ∨ β)‖ is well-defined iff ‖[t1] . . . [tk]α‖ and ‖[t1] . . . [tk]β‖ are well-
defined, which for α holds by induction in case |[t1] . . . [tk]α|A < m and otherwise
by subinduction, and likewise for β. The subinduction steps ‖[t1] . . . [tk]¬α‖ and
‖[t1] . . . [tk]∃xα‖ trivially hold by subinduction. For the subinduction step for be-
liefs, let |[t1] . . . [tk]B(α ⇒ β)|A = m; then ‖[t1] . . . [tk]B(α ⇒ β)‖ is well-defined iff
‖[t1] . . . [tk−1]σ‖ is well-defined where σ is the right-hand side of Theorem 5.5.4 or
5.5.5 depending on the sort of tk , which holds by induction since |[t1] . . . [tk]B(α ⇒
β)|A > |[t1] . . . [tk−1]σ |A by (*). �

Since ‖α‖ is a natural number for every regressable α, we can prove properties of
α by induction over ‖α‖, as we do in the next two lemmas. For example, for the
induction step for a fluent atom [t1] . . . [tk]F (t ′1, . . . , t ′l) after k ≥ 1 actions, we have
R[[t1] . . . [tk]F (t ′1, . . . , t ′l)] = R[[t1] . . . [tk−1]γF

x1 ... x l a
t ′1 ... t

′

l tk
] by the definition of R, and

then use the induction assumption since ‖[t1] . . . [tk]F (t ′1, . . . , t ′l)‖ > ‖[t1] . . . [tk−1]γF ‖
by Definition B.2.9.

Lemma B.2.11 Let α be a regressable sentence. Then R[αx
n] = R[α]xn .

Proof. By induction on ‖α‖. For the base case let ‖α‖ = 1. For rigid R and k ≥
0, R[([t1] . . . [tk]R(t ′1, . . . , t ′l))xn] = R(t ′1, . . . , t ′l)xn = R[[t1] . . . [tk]R(t ′1, . . . , t ′l)]xn; analo-

161

B Long Proofs for ESB

gously for [t1] . . . [tk](t = t ′). For fluent F ∈ F , R[F (t ′1, . . . , t ′l)xn] = F (t ′1, . . . , t ′l)xn =
R[F (t ′1, . . . , t ′l)]xn.

For the induction step let ‖α‖ = m > 1 and suppose the lemma holds for all β with
‖ β‖ < m. For fluent F ∈ F and k ≥ 1, R[([t1] . . . [tk]F (t ′1, . . . , t ′l))xn] = (by Rules R2
and R8) R[[t1xn] . . . [tk−1xn]γF x1 ... x l a

t ′1
x
n ... t ′l tk

x
n
] = (since γF does not mention x due to rectifi-

cation) R[([t1] . . . [tk−1]γF x1 ... x l a
t ′1 ... t

′

l tk
)xn] = (by induction) R[[t1] . . . [tk−1]γF x1 ... x l a

t ′1 ... t
′

l tk
]xn =

(by Rules R2 and R8) R[[t1] . . . [tk]F (t ′1, . . . , t ′l)]xn. Similarly, R[([t1] . . . [tk]IF(t))xn] =
R[[t1xn] . . . [tk xn]IF(t xn)] = (by Rules R3 and R8) R[[t1xn] . . . [tk xn]ϕa

t xn
] = (since x does

not occur in ϕ) R[([t1] . . . [tk]ϕa
t)xn] = (by induction) R[[t1] . . . [tk]ϕa

t]xn = (by Rules
R3 and R8) R[IF(t)]xn.

For a quantifier and k ≥ 1, R[([t1] . . . [tk]∃x ′α)xn] = (since x ′, x are distinct and
by Rules R7 and R8) ∃x ′R[[t1xn] . . . [tk xn]αx

n] = (by induction) ∃x ′R[[t1] . . . [tk]α]xn =
(since x ′, x are distinct and by Rules R8 and R7) R[[t1] . . . [tk]∃x ′α]xn. We omit the
similar induction steps for [t1] . . . [tk]¬α and [t1] . . . [tk](α ∨ β).

For static belief, R[B(α ⇒ β)xn] = R[B(αx
n ⇒ βxn)] = (by Rule R9) B(R[αx

n] ⇒
R[βxn]) = (by induction) B(R[α]xn ⇒ R[β]xn) = B(R[α] ⇒ R[β])xn = (by Rule R9)
R[B(α ⇒ β)]xn. Finally, for beliefs after k ≥ 1 actions, R[([t1] . . . [tk]B(α ⇒ β))xn] =
(by Rules R9 and R8, where σ is the right-hand side of Theorem 5.5.4 or 5.5.5 depending
on the sort of tk) R[[t1xn] . . . [tk−1xn]σx a

n tk xn
] = R[([t1] . . . [tk−1]σa

tk)xn] = (by induction)
R[[t1] . . . [tk−1]σa

tk]xn = (by Rules R9 and R8) R[[t1] . . . [tk]B(α ⇒ β)]xn. �

Lemma B.2.12 Let α be a regressable sentence. Then ~e,w |= R[α] iff ~eΣdyn,wΣdyn |= α.
Proof. By induction on ‖α‖. For the base case let ‖α‖ = 1. For rigid R and k ≥ 0,
wΣdyn |= [t1] . . . [tk]R(t ′1, . . . , t ′l) iff wΣdyn[R(n′1, . . . , n′l)] = 1 where n′i = wΣdyn(t ′i)
iff w[R(n′1, . . . , n′l)] = 1 where n′i = w(t ′i) iff w |= R(t ′1, . . . , t ′l) iff (by Rule R1)
w |= R[R(t ′1, . . . , t ′l)]; similarly for [t1] . . . [tk](t = t ′). For fluent F ∈ F , wΣdyn |=
F (t ′1, . . . , t ′l) iff wΣdyn[F (n′1, . . . , n′l), 〈〉] = 1 where n′i = wΣdyn(t ′i) iff (by definition of
wΣdyn) w[F (n′1, . . . , n′l), 〈〉] = 1 where n′i = w(t ′i) iff w |= F (t ′1, . . . , t ′l) iff (by Rule R2)
w |= R[F (t ′1, . . . , t ′l)].

For the induction step let ‖α‖ = m > 1 and suppose the lemma holds for all regress-
able β with ‖ β‖ < m. For fluent F ∈ F and k ≥ 1, wΣdyn |= [t1] . . . [tk]F (t ′1, . . . , t ′l)
iff (by Rule ESB7) (wΣdyn� n1� . . .� nk)[F (n′1, . . . , n′l), 〈〉] = 1 where ni = wΣdyn(ti)
and n′i = wΣdyn(t ′i) iff (by definition of wΣdyn and Rule ESB7) wΣdyn |= [t1] . . . [tk−1]
γF

x1 ... x l a
t ′1 ... t

′

l tk
iff (by induction) w |= R[[t1] . . . [tk−1]γF x1 ... x l a

t ′1 ... t
′

l tk
] iff (by Rules R2 and

R8) w |= R[[t1] . . . [tk]F (t ′1, . . . , t ′l)]. Similarly for IF, wΣdyn |= [t1] . . . [tk]IF(t) iff
(by Rule ESB7) (wΣdyn� n1� . . .� nk)[IF(n), 〈〉] = 1 where ni = wΣdyn(ti) and

162

B.2 Proof of the regression theorems

n = wΣdyn(t) iff (by definition of wΣdyn and Rule ESB7) wΣdyn |= [t1] . . . [tk]ϕa
t iff (by

induction) w |= R[[t1] . . . [tk]ϕa
t] iff (by Rules R3 and R8) w |= R[[t1] . . . [tk]IF(t)].

For a quantifier and k ≥ 1, ~eΣdyn,wΣdyn |= [t1] . . . [tk]∃xα iff (by Rules ESB6 and
ESB7) ~eΣdyn,wΣdyn |= ([t1] . . . [tk]α)xn for some standard name n iff (by induction)
~e,w |= R[([t1] . . . [tk]α)xn] for some n iff (by Lemma B.2.11) ~e,w |= R[[t1] . . . [tk]α]xn
for some n iff (by Rule ESB6) ~e,w |= ∃xR[[t1] . . . [tk]α] iff (by Rules R7 and R8)
~e,w |= R[[t1] . . . [tk]∃xα]. We omit the similar induction steps for [t1] . . . [tk]¬α and
[t1] . . . [tk](α ∨ β).

For static belief, ~eΣdyn |= B(α ⇒ β) iff (by Theorem 5.3.12) b~eΣdyn | αc = ∞ or
~eΣdyn,w |= (α ⊃ β) for all w ∈ (~eΣdyn)b~eΣdyn | αc iff (by definition of ~eΣdyn) b~eΣdyn | αc = ∞
or ~eΣdyn,wΣdyn |= (α ⊃ β) for all w ∈ eb~eΣdyn | αc iff (by induction) b~e |R[α]c = ∞
or ~e,w |= R[(α ⊃ β)] for all w ∈ eb~e | R[α]c iff (by Rules R5 and R6) b~e |R[α]c =
∞ or ~e,w |= (R[α] ⊃ R[β]) for all w ∈ eb~e | R[α]c iff (by Theorem 5.3.12) ~e |=
B(R[α] ⇒ R[β]) iff (by Rule R9) ~e |= R[B(α ⇒ β)]. Finally, for belief after k ≥ 1
actions, ~eΣdyn,wΣdyn |= [t1] . . . [tk]B(α ⇒ β) iff (by Rule ESB7 and, depending on
the sort of tk , Theorem 5.5.4 or 5.5.5, where σ is that theorem’s right-hand side)
~eΣdyn,wΣdyn |= [t1] . . . [tk−1]σa

nk where nk = wΣdyn(tk) iff (since by assumption ac-
tion terms in formulas to be regressed only have variables or names as arguments)
~eΣdyn,wΣdyn |= [t1] . . . [tk−1]σa

tk iff (by induction) ~e,w |= R[[t1] . . . [tk−1]σa
tk] iff (by

Rules R9 and R8) ~e,w |= R[[t1] . . . [tk]B(α ⇒ β)]. �

Theorem 5.5.3 Let φ be a fluent sentence and ψ be an objective regressable sentence.
Then Σdyn ∧ φ |= ψ iff φ |= R[ψ].
Proof. For the only-if direction suppose Σdyn ∧ φ |= ψ and w |= φ. By Lemma B.2.7
and the assumption, wΣdyn |= ψ, and by Lemma B.2.12, w |= R[ψ]. Conversely, suppose
φ |= R[ψ] and w |= Σdyn ∧ φ. Then w |= R[ψ] by assumption, and thus wΣdyn |= ψ by
Lemma B.2.12. By Lemma B.2.6, wΣdyn = w , so w |= ψ. �

Theorem 5.5.7 Let α be a regressable sentence. ThenO(Σdyn,Σbel) |= α iffOΣbel |= R[α].
Proof. For the only-if direction suppose O(Σdyn,Σbel) |= α and ~e |= OΣbel. Then by
Lemma B.2.8, ~eΣdyn |= O(Σdyn,Σbel). By assumption, ~eΣdyn |= α. By Lemma B.2.12,
~e |= R[α]. Conversely, suppose OΣbel |= R[α] and ~e |= O(Σdyn,Σbel). Let ~e ′ |= OΣbel.
By assumption, ~e ′ |= R[α]. By Lemma B.2.12, ~e ′

Σdyn
|= α. By Lemma B.2.8, ~e ′

Σdyn
|=

O(Σdyn,Σbel). By Theorem 5.3.16, ~e ′
Σdyn
= ~e , so ~e |= α. �

To generalize the regression result for the extended only-believing operator from
Section 5.6, suppose S is a finite set of object function and predicate symbols and that
Σdyn is S-free from now on. It suffices to generalize Lemma B.2.8, as the other lemmas

163

B Long Proofs for ESB

involved do not refer to only-believing.

Lemma B.2.13 Let φ be objective and S-free, and w ≈S w ′. Then w |= φ iff w ′ |= φ.
Proof. Follows by a trivial induction on the length of φ. �

Lemma B.2.14 If ~e |= OSΣbel, then ~eΣdyn |= OS(Σdyn,Σbel).
Proof. Let ~e |= OΣbel. By Lemma B.2.8, ~eΣdyn |= O(Σdyn,Σbel). Then ~eS |= OSΣbel, and
(~eΣdyn)S |= OS(Σdyn,Σbel). We need to show that (~eS)Σdyn = (~eΣdyn)S . Let w ∈ ((~eS)Σdyn)p .
Then for some w ′ ∈ (~eS)p , w ′Σdyn = w . Then for some w ′′ ∈ ep , w ′′ ≈S w ′, and
therefore w ′′

Σdyn
≈S w ′

Σdyn
= w . Since w ′′

Σdyn
∈ (~eΣdyn)p , w ∈ ((~eΣdyn)S)p . Conversely,

let w ∈ ((~eΣdyn)S)p . Then for some w ′ ∈ (~eΣdyn)p , w ′ ≈S w . Then w ′ ∈ ep , and so
w ∈ (~eS)p . By Lemma B.2.5, w ′ |= Σdyn. Thus by Lemma B.2.13 and since Σdyn is S-free,
w |= Σdyn. By Lemma B.2.6, w = wΣdyn , so w ∈ ((~eS)Σdyn)p . �

Theorem 5.6.5 Let α be a regressable sentence. Then OS(Σdyn,Σbel) |= α iff OSΣbel |=
R[α].
Proof. Proceeds by the exact same argument as the proof of Theorem 5.5.7, with O
replaced by OS , Lemma B.2.8 replaced by Lemma B.2.14, and Theorem 5.3.16 replaced
by Corollary 5.6.4. �

B.3 Proof of the revision theorems

In this section we prove Theorems 5.7.3 and 5.7.5, which claim correctness of our weak
and strong revision of a conditional knowledge base.

Lemma B.3.1 If b~e | αc > d~ee, then b~e | αc = ∞.
Proof. Suppose b~e | αc , ∞. Then ~e,w |= α for some w ∈ ep and p ∈ P. Since ep ⊆ ed~ee ,
b~e | αc ≤ d~ee. �

Lemma B.3.2 Let Γ = {φ1 ⇒ ψ1, . . . , φm ⇒ ψm} be objective, ~e |= OΓ, and let p ∈
P ∪ {∞} such that p ≥ b~e | αc.
Then w |= ∧i:b~e | φi c≥p(φi ⊃ ψi) iff w |= ∧φ⇒ψ∈Γα with max{b~e | φc,b~e | αc}≥p(φ ⊃ ψ) for all w.

Proof. By Theorems 5.3.16 and 5.3.14, φ ⇒ ψ ∈ Γα iff b~e | αc = b~e |¬(φ ⊃ ψ)c = ∞ or
b~e | αc < b~e |¬(φ ⊃ ψ)c (*).

For the only-if direction, suppose w |= ∧i:b~e | φi c≥p(φi ⊃ ψi) and let φ ⇒ ψ ∈ Γα with
max{b~e | φc, b~e | αc} ≥ p. Thenw ∈ emin{p,d~ee} by Rule ESB10. Note thatw ′ |= (φ ⊃ ψ)
for all w ′ ∈ ep′ and p ′ ∈ P with p ′ ≤ b~e | φc by Rule ESB10. Likewise, w ′ |= (φ ⊃ ψ) for
all w ′ ∈ ep′ and p ′ ∈ P with p ′ ≤ b~e | αc by (*). Hence, since p ≤ max{b~e | φc, b~e | αc},
w |= (φ ⊃ ψ).

164

B.3 Proof of the revision theorems

Conversely, suppose w 6|= (φi ⊃ ψi) for some i with b~e | φic ≥ p. Then trivially
max{b~e | φic, b~e | αc} ≥ p, so we only need to show that φi ⇒ ψi ∈ Γα. By Rule ESB10,
w ′ |= (φi ⊃ ψi) for all w ′ ∈ ep′ and p ′ ∈ P with p ′ ≤ p. Hence p < b~e |¬(φi ⊃ ψi)c.
If b~e | αc ≤ d~ee, then b~e | αc ≤ p < b~e |¬(φi ⊃ ψi)c. Otherwise, if d~ee < b~e | αc, then
d~ee ≤ p < b~e |¬(φi ⊃ ψi)c, and by Lemma B.3.1, b~e | αc = b~e |¬(φi ⊃ ψi)c = ∞. In
both cases, by (*), φi ⇒ ψi ∈ Γα. �

Lemma B.3.3 Let φ be objective and S-free. Then (~e ∗ φ)S = ~eS ∗ φ.
Proof. By Lemma B.2.13, b~e | φc = b~eS | φc and (~eS | φ)p = ((~e | φ)p)S . Thus by Defini-
tion 5.3.4 the lemma follows. �

Theorem 5.7.3 Let Γ = {φ1 ⇒ ψ1, . . . , φm ⇒ ψm} and υ be objective and S-free. Let R
be the nullary rigid predicate newly introduced in Γ ∗w υ.
If ~e |= OSΓ, then ~e ∗w υ |= OS∪{R}Γ ∗w υ.

Proof. We show the theorem for the case S = {} first. Let ~e |= OΓ. We construct
an ~e ′ such that ~e ′ |= OΓ ∗w υ and ~e ′{R} = ~e ∗w υ, which gives ~e ∗w υ |= O{R}Γ ∗w υ. If
b~e | υc = ∞, we let e ′p = {} for all p ∈ P. Otherwise, we let e ′1 = ((~e | υ) | R)b~e | υc and
e ′p = e ′1 ∪ (~e |¬R)p−1 for p > 1.

First suppose b~e | υc = ∞. Then ~e ∗w υ = 〈{}〉. Clearly, b〈{}〉 | φc = ∞ for all φ, so
〈{}〉 |= OΓ ∗w υ if (by Rule ESB10)

∧
φ⇒ψ∈Γυ (R ⊃ (φ ⊃ ψ)) ∧ (R ⊃ υ) ∧ (true ⊃

R) is unsatisfiable iff
∧
φ⇒ψ∈Γυ (φ ⊃ ψ) ∧ υ ∧ R is unsatisfiable if (by Lemma B.3.2)∧

i:b~e | φi c=∞(φi ⊃ ψi) ∧ υ is unsatisfiable, which holds by Rule ESB10 and b~e | υc = ∞.
Now suppose b~e | υc , ∞. We show that ~e ′ |= OΓ ∗w υ for the following plausibilities

of the conditionals in Γ ∗w υ.

• b~e ′ | truec = 1; because by assumption b~e | υc , ∞ and thus e ′1 , {}.
• b~e ′ |¬(R ⊃ υ)c = ∞; because w |= υ for all w ∈ e ′1, and w 6|= R for all w ∈ e ′p \ e ′1.

• b~e ′ |¬(R ⊃ (φ ⊃ ψ))c = ∞ for all φ ⇒ ψ ∈ Γυ; because by Lemma B.3.2, w |=
(φ ⊃ ψ) for all w ∈ eb~e | υc ⊇ e ′1, and w 6|= R for all w ∈ e ′p \ e ′1.

• b~e ′ | (¬R ∧ φ)c = b~e | φc + 1 for all φ ⇒ ψ ∈ Γ; because w |= R for all w ∈ e ′1,
and so for all p ∈ P we have p + 1 ≥ b~e ′ | (¬R ∧ φ)c iff w |= (¬R ∧ φ) for some
w ∈ e ′p+1 iff w |= (¬R ∧ φ) for some w ∈ (~e |¬R)p iff (since Γ, υ are {R}-free and
by Rule ESB10 and Lemma B.2.13) w |= φ for some w ∈ ep iff p ≥ b~e | φc.

Then w ∈ e ′1 iff w ∈ ((~e | υ) | R)b~e | υc iff w |= ∧i:b~e | φi c≥b~e | υc(φi ⊃ ψi) ∧ υ ∧ R iff
(by Lemma B.3.2) w |= ∧φ⇒ψ∈Γυ (φ ⊃ ψ) ∧ υ ∧ R iff w |= ∧φ⇒ψ∈Γυ (R ⊃ (φ ⊃
ψ)) ∧ (R ⊃ υ) ∧ (true ⊃ R) ∧ ∧i:b~e | φi c+1≥1((¬R ∧ φi) ⊃ ψi). For p > 1, w ∈ e ′p iff

165

B Long Proofs for ESB

w ∈ ((~e | υ) | R)b~e | υc or w ∈ (~e |¬R)p−1 iff w |= ∧i:b~e | φi c≥b~e | υc(φi ⊃ ψi) ∧ υ ∧ R or
w |= ∧i:b~e | φi c≥p−1(φi ⊃ ψi) ∧ ¬R iff (by Lemma B.3.2) w |= ∧φ⇒ψ∈Γυ (φ ⊃ ψ) ∧ υ ∧ R
or w |= ∧i:b~e | φi c+1≥p(φi ⊃ ψi) ∧ ¬R iff w |= ∧φ⇒ψ∈Γυ (R ⊃ (φ ⊃ ψ)) ∧ (R ⊃ υ) ∧∧

i:b~e | φi c+1≥p((¬R ∧ φi) ⊃ ψi). Thus the right-hand side of Rule ESB10 holds, and
hence ~e ′ |= OΓ ∗w υ.

Since Γ and υ are {R}-free, for each w ∈ (~e | υ)b~e | υc there is a w ′ ∈ e ′1 with w ≈{R} w ′

by Lemma B.2.13 and Rule ESB10. Likewise, for each w ∈ ep there is a w ′ ∈ (~e |¬R)p
with w ≈{R} w ′. Thus ~e ∗w υ = ~e ′{R}, and hence ~e ∗w υ |= O{R}Γ ∗w υ.

Now let S , {}. Let ~e |= OSΓ and ~e ′ |= OΓ. By Rule ESB11 and Corollary 5.6.4,
~e = ~e ′

S
. By the case for S = {}, ~e ′ ∗w υ |= O{R}Γ ∗w υ. By Rule ESB11, (~e ′ ∗w υ)S |=

OS∪{R}Γ ∗w υ. By Lemma B.3.3, ~e ∗w υ |= OS∪{R}Γ ∗w υ. �

Next, we turn to the strong-revision theorem from Section 5.7. Showing that requires
even more work than the weak-revision result.

Definition B.3.4 We say ∗ is a symbol involution when it maps object function symbols
to object function symbols and predicate symbols to predicate symbols of corresponding
arities, and S = S∗∗ for all object function or predicate symbols S . We denote by α∗ the
formula obtained from α by simultaneously replacing each object function or predicate
symbol S with S∗. For a world w , we define the world w∗ such that

• for all object function symbols g , w∗[g ∗(n1, . . . , nk)] = w[g (n1, . . . , nk)];
• for all rigid predicate symbols R and action sequences z , 〈〉,

– w∗[R∗(n1, . . . , nk)] = w[R(n1, . . . , nk)] if R∗ is rigid;
– w∗[R∗(n1, . . . , nk), 〈〉] = w[R(n1, . . . , nk)] and
w∗[R∗(n1, . . . , nk), z] = w[R∗(n1, . . . , nk), z] if R∗ is fluent;

• for all fluent predicate symbols F and action sequences z ,

– w∗[F ∗(n1, . . . , nk)] = w[F (n1, . . . , nk), 〈〉] if F ∗ is rigid;
– w∗[F ∗(n1, . . . , nk), z] = w[F (n1, . . . , nk), z] if F ∗ is fluent.

For a set of worlds W and an epistemic state ~e , we let W ∗ = {w∗ | w ∈ W } and
~e ∗ = 〈e∗1, . . . , e∗d~ee〉.

We use symbol involutions to rename the symbols of a formula: when S′ contains all
symbols of α, and ∗ maps each of them to a new symbol from a set S′′ disjoint with
S′, then α∗ is just the result of replacing every symbol from S′ with the corresponding
symbol from S′′.

Lemma B.3.5 Let ∗ be a symbol involution. Then w = w∗∗,W =W ∗∗, and ~e = ~e ∗∗.

166

B.3 Proof of the revision theorems

Proof. For w = w∗∗, the only non-trivial cases are when a fluent F is mapped to rigid
F ∗ or the other way around. If R is rigid and R∗ is fluent, then w∗∗[R(n1, . . . , nk)]
= w∗∗[R∗∗(n1, . . . , nk)] = w∗[R∗(n1, . . . , nk), 〈〉] = w[R(n1, . . . , nk)]. If F is fluent and
F ∗ is rigid, then w∗∗[F (n1, . . . , nk), 〈〉] = w∗∗[F ∗∗(n1, . . . , nk), 〈〉] = w∗[F ∗(n1, . . . , nk)]
= w[F (n1, . . . , nk), 〈〉], and similarly w∗∗[F (n1, . . . , nk), z] = w∗∗[F ∗∗(n1, . . . , nk), z] =
w∗[F ∗(n1, . . . , nk), z] = w[F (n1, . . . , nk), z] for all z , 〈〉. Thus w = w∗∗. W = W ∗∗

and ~e = ~e ∗∗ then follow immediately from the definition. �

Lemma B.3.6 Let φ be objective static and let ∗ be a symbol involution. Then w |= φ iff
w∗ |= φ∗.
Proof. By induction on the length of φ. We show the base case only for fluent predicate
symbols F with rigid image F ∗ (the other cases are analogous): w |= F (t1, . . . , tk) iff
w[F (n1, . . . , nk), 〈〉] = 1 where ni = w(ti) iff w∗[F ∗(n1, . . . , nk)] = 1 where ni = w∗(t ∗i)
iff w∗ |= (F (t1, . . . , tk))∗. The induction steps for ¬φ, (φ ∨ β), and ∃xφ are trivial. �

Lemma B.3.7 Let φ be objective static and let ∗ be a symbol involution.
Then {w | w |= φ}∗ = {w | w |= φ∗}.
Proof. Let w∗ ∈ {w ′ | w ′ |= φ}∗. Then w |= φ, and by Lemma B.3.6, w∗ |= φ∗, so
w∗ ∈ {w ′ | w ′ |= φ∗}. Conversely, let w ∈ {w ′ | w ′ |= φ∗}. Then w |= φ∗. By
Lemma B.3.6, w∗∗ |= φ, and by Lemma B.3.5, w = w∗∗ ∈ {w ′ | w ′ |= φ}∗. �

Lemma B.3.8 Let Γ = {φ1 ⇒ ψ1, . . . , φm ⇒ ψm} be objective and static, and let ∗ be a
symbol involution. Then ~e |= OΓ iff ~e ∗ |= OΓ∗.

Proof. Let ~e |= OΓ and ~e ′ |= OΓ∗. Then ep = {w | w |= ∧i:b~e | φi c≥p(φi ⊃ ψi)}, and
e ′p = {w ′ | w ′ |= ∧i:b~e ′ | φ∗i c≥p(φ∗i ⊃ ψ∗i)} by Rule ESB10. We show by induction on p
that e∗p = e ′p , and b~e | φic > p iff b~e ′ | φ∗i c > p. For p = 1, this follows from Lemmas
B.3.7 and B.3.6, respectively. For p > 1, by induction b~e | φic ≥ p iff b~e ′ | φ∗i c ≥ p. Thus,
just like in the base case, e∗p = e ′p by Lemma B.3.7, and b~e | φic > p iff b~e ′ | φ∗i c > p by
Lemma B.3.6. Thus ~e ∗ = ~e ′. The only-if direction of the lemma thus holds. Conversely,
the if direction holds because ∗ is an involution: if ~e ∗ |= OΓ∗ for some ~e , then ~e ∗∗ |=
OΓ∗∗ by the only-if direction, and since ~e ∗∗ = ~e by Lemma B.3.5 and OΓ∗∗ = OΓ,
~e |= OΓ. �

Lemma B.3.9 Let φ1, φ2 be objective sentences over object function and predicate symbols
S1,S2 and let S1,S2 be disjoint. Suppose w1 |= φ1, w2 |= φ2. Then there is some w such
that w |= φ1 ∧ φ2 and w ≈S2 w1 and w ≈S1 w2.

Proof. Since S1 and S2 are disjoint, there clearly is a w with w ≈S2 w1 and w ≈S1 w2.
By a simple induction on φ1, w |= φ1 because φ1 does not mention any symbol from

167

B Long Proofs for ESB

S2. Analogously, w |= φ2. �

Theorem 5.7.5 Let Γ = {φ1 ⇒ ψ1, . . . , φm ⇒ ψm} and υ be objective and static. Let S
be a set of object function and predicate symbols, and let υ be S-free. Let S′′ be the symbols
newly introduced in Γ ∗s υ. If ~e |= OSΓ, then ~e ∗s υ |= OS∪S′′Γ ∗s υ.

Proof. Let S′ be the object function and predicate symbols that occur in Γ and ∗ be the
symbol involution that maps each symbol from S′ to the corresponding symbol from
S′′. Recall that ∆ = {φ ⇒ ψ ∈ Γυ | OΓ 6|= K(φ ⊃ ψ)}. Then Γ ∗s υ = Γ′υ ∪ Γ′¬υ ∪ ∆′ ∪
Λ1 ∪ Λ2 ∪ Λ3, where

Γ
′
υ = {φ∗ ⇒ ψ∗ | φ ⇒ ψ ∈ Γυ};
Γ
′
¬υ = {(φ∗ ∧ ¬υ)⇒ ψ∗ | φ ⇒ ψ ∈ Γ¬υ};
∆
′ = {true⇒ υ} ∪ {¬(φ∗ ⊃ ψ∗) ∨ ¬υ ⇒ υ | φ ⇒ ψ ∈ ∆};
Λ
′
1 = {¬((υ ∧ ¬υ∗) ⊃ (φ ⊃ ψ)) ⇒ false | φ ⇒ ψ ∈ Γυ};
Λ
′
2 = {¬((¬υ ∧ υ∗) ⊃ (φ ⊃ ψ)) ⇒ false | φ ⇒ ψ ∈ Γ¬υ};
Λ
′
3 = {¬((υ ≡ υ∗) ⊃ (φ ≡ φ∗) ∧ (ψ ≡ ψ∗))⇒ false | φ ⇒ ψ ∈ Γ}.

We show the theorem for the case S = {} first. Let ~e |= OΓ. We show that ~e ∗s υ |=
OS′′Γ ∗s υ.

First suppose b~e | υc = ∞. Then ~e ∗s υ = 〈{}〉. Clearly, b〈{}〉 | φc = ∞ for all φ, so
〈{}〉 |= OΓ ∗s υ if (by Rule ESB10)

∧
φ⇒ψ∈Γυ (φ∗ ⊃ ψ∗)∧

∧
φ⇒ψ∈Γυ ¬(((υ ∧¬υ∗) ⊃ (φ ⊃

ψ)) ⊃ false)∧υ is unsatisfiable. By Rule ESB10 and b~e | υc = ∞,
∧

i:b~e | φc=∞(φ ⊃ ψ)∧υ
is unsatisfiable, and by Lemma B.3.2,

∧
φ⇒ψ∈Γυ (φ ⊃ ψ) ∧ υ is unsatisfiable, too, and

by Lemma B.3.6,
∧
φ⇒ψ∈Γυ (φ∗ ⊃ ψ∗) |= ¬υ∗. Hence, the formula mentioned before is

indeed inconsistent.
Now suppose b~e | υc , ∞. We show ~e ∗s υ |= OS′′Γ ∗s υ by constructing a model of

OΓ ∗s υ and showing that forgetting S′′ in this epistemic state yields ~e ∗s υ. The proof
proceeds in three steps. Step 1 is to show ~e ′ |= OΓ′υ ∪ Γ′¬υ ∪ ∆′ where

~e ′ = 〈(~e ∗ | υ)b~e | υc, . . . , (~e ∗ | υ)d~ee,
(~e ∗ |¬υ)b~e |¬υc ∪ (~e ∗ | υ)d~ee, . . . , (~e ∗ |¬υ)d~ee ∪ (~e ∗ | υ)d~ee〉.

Step 2 is to show (~e ′ | λ) |= OΓ ∗s υ, where λ =
∧
φ⇒ψ∈Λ′1∪Λ

′
2∪Λ

′
3
(φ ⊃ ψ). Step 3 is to

prove (~e ′ | λ)S′′ = ~e ∗s υ.
Step 1. We now prove that ~e ′ |= OΠ where Π = Γ′υ ∪ Γ′¬υ ∪ ∆′ for the following

plausibilities of the conditionals in Π.

168

B.3 Proof of the revision theorems

• b~e ′ | φ∗c = max{b~e | υc, b~e | φc} − b~e | υc + 1 for all φ ⇒ ψ ∈ Γυ; because for all
p ∈ P with p ≥ b~e | υc we have p ≥ b~e | φc iff w |= φ for some w ∈ ep iff (by
Lemma B.3.6) w |= φ∗ for some w ∈ ~e ∗p iff (by Rule ESB10 and Lemma B.3.9)
w |= φ∗∧υ for some w ∈ ~e ∗p iff w |= φ∗ for some w ∈ e ′p−b~e | υc+1 iff p− b~e | υc+1 ≥
b~e ′ | φ∗c.

• b~e ′ | φ∗ ∧ ¬υc = max{b~e |¬υc, b~e | φc} + d~ee − b~e | υc − b~e |¬υc + 2 for all φ ⇒
ψ ∈ Γ¬υ; because, very similar to the above, for all p ∈ P with p ≥ b~e |¬υc we
have p ≥ b~e | φc iff w |= φ for some w ∈ ep iff (by Lemma B.3.6) w |= φ∗ for some
w ∈ ~e ∗p iff (by Rule ESB10 and Lemma B.3.9) w |= φ∗ ∧ ¬υ for some w ∈ ~e ∗p iff
(since w |= υ for all w ∈ e ′p′ and p ′ ≤ d~ee − b~e | υc + 1) w |= φ∗ ∧ ¬υ for some
w ∈ e ′p−b~e |¬υc+1+d~ee−b~e | υc+1 iff p + d~ee − b~e | υc − b~e |¬υc + 2 ≥ b~e ′ | φ∗ ∧ ¬υc.

• max({b~e ′ | truec} ∪ {b~e ′ |¬(φ∗ ⊃ ψ∗) ∨ ¬υc | φ ⇒ ψ ∈ ∆}) = d~ee − b~e | υc + 1;
for the following reason. If ∆ = {}, then b~e | υc = d~ee, and since b~e | υc , ∞,
b~e ′ | truec = 1. Now suppose φ ⇒ ψ ∈ ∆. Then b~e |¬(φ ⊃ ψ)c , ∞, and by
Lemma B.3.1, b~e |¬(φ ⊃ ψ)c ≤ d~ee. Moreover, w |= (φ ⊃ ψ) for all w ∈ eb~e | φc , so
b~e |¬(φ ⊃ ψ)c ≥ b~e | φc + 1. In particular, there is some φ ⇒ ψ ∈ ∆ with b~e | φc =
d~ee − 1, for otherwise ed~ee−1 = ed~ee by Rule ESB10; hence b~e |¬(φ ⊃ ψ)c = d~ee.
By Lemma B.3.6 and since w 6|= ¬υ for all w ∈ e ′p and p ≤ d~ee − b~e | υc + 1, the
equality follows.

First consider p ≤ d~ee − b~e | υc + 1. Then w ∈ e ′p iff w ∈ (~e ∗ | υ)p+b~e | υc−1 iff
(by Rule ESB10 and Lemma B.3.6) w |= ∧i:b~e | φi c≥p+b~e | υc−1(φ∗i ⊃ ψ∗i) ∧ υ iff (by
Lemma B.3.2) w |= ∧φ⇒ψ∈Γυ with max{b~e | υc,b~e | φc}≥p+b~e | υc−1(φ∗ ⊃ ψ∗) ∧ υ iff (since
|= υ ⊃ (φ∗ ∧ ¬υ ⊃ ψ∗) as well as |= υ ≡ ((¬(φ∗ ⊃ ψ∗) ∨ ¬υ) ⊃ υ) and by the
above plausibilities)

w |=
∧

φ⇒ψ∈Γυ
b~e ′ | φ∗c≥p

(φ∗ ⊃ ψ∗) ∧
∧

φ⇒ψ∈Γ¬υ
b~e ′ | φ∗∧¬υc≥p

(φ∗ ∧ ¬υ ⊃ ψ∗) ∧
∧

φ⇒ψ∈∆
b~e ′ |¬(φ∗⊃ψ∗)∨¬υc≥p

((¬(φ∗ ⊃ ψ∗) ∨ ¬υ) ⊃ υ) ∧
∧

b~e ′ | truec≥p
(true ⊃ υ)

iff w |= ∧φ⇒ψ∈Π with b~e ′ | φc≥p(φ ⊃ ψ).
Now consider p > d~ee − b~e | υc + 1. Then w ∈ e ′p iff w ∈ (~e ∗ | υ)d~ee or w ∈

(~e ∗ |¬υ)p−d~ee+b~e | υc+b~e |¬υc−2 iff (by Lemma B.3.6) w |= ∧i:b~e | φi c=∞(φ∗i ⊃ ψ∗i) ∧ υ or
w |= ∧b~e | φi c≥p−d~ee+b~e | υc+b~e |¬υc−2(φ∗i ⊃ ψ∗i) ∧ ¬υ iff (by Lemma B.3.2 and by the above

169

B Long Proofs for ESB

plausibilities)

w |=
∧

φ⇒ψ∈Γ¬υ
b~e ′ | φ∗c=∞

(φ∗ ⊃ ψ∗) ∧ υ or w |=
∧

φ⇒ψ∈Γ¬υ
b~e ′ | φ∗∧¬υc≥p

(φ∗ ⊃ ψ∗) ∧ ¬υ

iff

w |=
∧

φ⇒ψ∈Γ¬υ
b~e ′ | φ∗c=∞

(φ∗ ⊃ ψ∗) ∧
∧

φ⇒ψ∈Γ¬υ
b~e ′ | φ∗∧¬υc≥p

(φ∗ ∧ ¬υ ⊃ ψ∗)

iff w |= ∧φ⇒ψ∈Π with b~e ′ | φc≥p(φ ⊃ ψ). Therefore ~e |= OΠ and Step 1 is completed.
Step 2. The second step of the proof is to show (~e ′ | λ) |= OΓ ∗s υ. The conditionals

added in Γ ∗s υ over Π are those from Λ′1 ∪ Λ
′
2 ∪ Λ

′
3, which simply assert knowledge

of λ as they have unsatisfiable consequents. Having shown ~e ′ |= OΠ in Step 1, it
is immediate from Rule ESB10 that (~e ′ | λ) |= OΓ ∗s υ if b~e ′ | τc = b(~e ′ | λ) | τc for
the antecedents τ ∈ {φ∗, φ∗ ∧ ¬υ, (φ∗ ∧ ψ∗) ∨ ¬υ} of the conditionals in Π. Clearly,
b~e ′ | τc ≤ b(~e ′ | λ) | τc. To show the converse, we let w ∈ e ′p be arbitrary and show that
there is some w ′ ∈ (~e ′ | λ)p such that w ′ |= τ iff w |= τ. First suppose w |= ¬υ ∧ υ∗.
Since w |= ¬υ, by definition of ~e ′, b~e |¬υc , ∞. Hence

∧
φ⇒ψ∈Γ¬υ (φ ⊃ ψ) ∧ ¬υ is

satisfiable by Lemma B.3.2. By Lemma B.3.9 there is some w ′ with w ′ ≈S′ w with
w ′ |= ∧φ⇒ψ∈Γ¬υ ((¬υ ∧ υ∗) ⊃ (φ ⊃ ψ)) ∧ ¬υ ∧ υ∗, so w ′ |= λ. Since w ′ |= υ iff w |= υ
and by Lemma B.2.13 we have that for all φ ⇒ ψ ∈ Π, w ′ |= φ iff w |= φ as well as
w ′ |= ψ iff w |= ψ, so w ′ ∈ e ′p by Rule ESB10. Therefore w ′ ∈ (~e ′ | λ)p , and w ′ |= τ
iff w |= τ. The case for w |= υ ∧ ¬υ∗ is analogous. Now suppose w |= υ ≡ υ∗.
By Lemma B.3.6,

∧
φ⇒ψ∈Γ(±φ ∧ ±ψ) ∧ ±υ is satisfiable where ±β stands for β if

w |= β∗ and for ¬β otherwise. By Lemma B.3.9 there is some w ′ with w ≈S′ w ′

with w ′ |= ∧φ⇒ψ∈Γ(±φ ∧ ±ψ) ∧ ±υ. Since w ′ |= υ iff w |= υ and by Lemma B.2.13 we
have that for all φ ⇒ ψ ∈ Π, w ′ |= φ iff w |= φ as well as w ′ |= ψ iff w |= ψ, so w ′ ∈ e ′p
by Rule ESB10. Therefore w ′ ∈ (~e ′ | λ)p , and w ′ |= τ iff w |= τ.

Step 3. Lastly, we need to show that (~e ′ | λ)S′′ = ~e ∗s υ. Let w ∈ ((~e ′ | λ)S′′)p . Then
there is some w ′ ∈ (~e ′ | λ)p with w ≈S′′ w ′. Thus w ′ |= ∧φ⇒ψ∈Γ ∗s υ with b~e ′ | φc≥p(φ ⊃ ψ).
First suppose p ≤ d~ee − b~e | υc + 1. Then w |= υ. If w ′ |= υ ≡ υ∗, then by Lemma B.2.13
and Λ3, w |= ∧i:b~e | φi c≥p+b~e | υc−1(φi ⊃ ψi) ∧ υ, and thus w ∈ (~e | υ)p+b~e | υc−1 = (~e ∗s υ)p .
Otherwise, w ′ |= υ ∧¬υ∗, and then by Lemma B.2.13 and Λ1, w |= ∧i:b~e | φi c≥b~e | υc(φi ⊃
ψi) ∧ υ, and thus w ∈ (~e | υ)b~e | υc ⊆ (~e | υ)p+b~e | υc−1 = (~e ∗s υ)p . Now suppose p >

d~ee − b~e | υc + 1. The cases for w ′ |= υ ≡ υ∗ and w ′ |= υ ∧ ¬υ∗ are analogous. If
w ′ |= ¬υ ∧ υ∗, then by Lemma B.2.13 and Λ2, w |= ∧i:b~e | φi c≥b~e |¬υc(φi ⊃ ψi) ∧ ¬υ,

170

B.4 Proof of the progression theorems

and thus w ∈ (~e |¬υ)b~e |¬υc ⊆ (~e |¬υ)p−d~ee+b~e | υc+b~e |¬υc−2 ⊆ (~e ∗s υ)p . For the converse
direction, let w ′ ∈ (~e ∗s υ)p . Since ∗ swaps the (initial) values of S′ and S′′, there clearly
is a w such that w ≈S′′ w ′ and w∗ = w . Thus w |= υ iff w∗ |= υ, and therefore w ∈ e ′p .
For all φ ⇒ ψ ∈ Γ, w |= φ iff (by Lemma B.3.6) w∗ |= φ∗ iff w |= φ∗, and likewise for ψ.
Thus w |= λ, and hence w ∈ (~e ′ | λ)p . As w ≈S′′ w ′, we have w ′ ∈ ((~e ′ | λ)S′′)p .

Now let S , {}. Let ~e |= OSΓ and ~e ′ |= OΓ. By Rule ESB11 and Corollary 5.6.4,
~e = ~e ′

S
. By the case for S = {}, ~e ′ ∗s υ |= OS′′Γ ∗s υ. By Rule ESB11, (~e ′ ∗s υ)S |=

OS∪S′′Γ ∗s υ. By Lemma B.3.3, ~e ∗s υ |= OS∪S′′Γ ∗s υ. �

B.4 Proof of the progression theorems

Here we prove the correctness of progression, that is, Theorems 5.8.2 and 5.8.3. We use
the following assumptions.

• Let Σbel,Σdyn be a basic action theory over fluents F = {F1, . . . , Fl }, and let n
be an action standard name. Recall that Σdyn contains the successor state axioms
�[a]F (x1, . . . , xk) ≡ γF for F ∈ F , and the informed fluent axiom �IF(a) ≡ ϕ.

• Let S′ be the symbols newly introduced in Σbel� n, which is partitioned into
two subsets: R = {R1, . . . ,Rl } ⊆ S′ contains the rigid predicates for the physical
progression as in Definition 5.8.1; S′ \ R contains the rigid symbols introduced
by the revision as in Definition 5.7.2 or 5.7.4.

• Let ∗ be the symbol involution that maps Fi to Ri and leaves the rest unchanged.

Definition B.4.1 For a world w and an action n, wn is a world such that wn ≈F

(w� n) and

• wn[F (n1, . . . , nk), 〈〉] = 1 iff wn |= (γF x1 ... xk a
n1 ... nk n)∗ for all F ∈ F ;

• wn[F (n1, . . . , nk), z] = w[F (n1, . . . , nk), z] for all F ∈ F and z , 〈〉.
For a set of worlds W and an epistemic state ~e , we let W n = {wn | w ∈ W } and
~e n = 〈en1 , . . . , end~ee〉.

Intuitively,wn sets the initial values of every fluent F ∈ F to the its value after n when
the values before n are memorized in R: wn |= F (n1, . . . , nk) iff wn |= (γF x1 ... xk a

n1 ... nk n)∗,
where ∗ replaces all fluents in γF with the corresponding rigid predicates from R.

Lemma B.4.2 wn is uniquely defined.

171

B Long Proofs for ESB

Proof. Let w ′ ≈F (w� n) be such that for every F ∈ F , w ′[F (n1, . . . , nk), 〈〉] = 1 iff
w� n |= (γF x1 ... xk a

n1 ... nk n)∗, and moreover w ′[F (n1, . . . , nk), z] = w[F (n1, . . . , nk), z] for
all z , 〈〉. Clearly such a w ′ exists and is uniquely defined. By Lemma B.2.13 and since
γ∗F is F -free, w ′ |= (γF x1 ... xk a

n1 ... nk n)∗ iff w� n |= (γF x1 ... xk a
n1 ... nk n)∗. Thus w ′ = wn. �

Lemma B.4.3 Let φ be fluent. Then w |= φ∗ iff wn |= φ∗.
Proof. Since φ is fluent and by definition of ∗, φ∗ mentions only rigid predicates. By
Lemma B.4.2, wn is uniquely defined, and since w and wn agree on all rigids, a simple
induction on the length of φ shows that the lemma holds. �

Lemma B.4.4 If ~e |= O(Σbel ∗ ϕa
n)∗, then ~e n |= OΣbel� n.

Proof. Let (Σbel ∗ ϕa
n)∗ = {φ1 ⇒ ψ1, . . . , φm ⇒ ψm} and ~e |= O(Σbel ∗ ϕa

n)∗. We show
that ~e n |= OΣbel� n for the same plausibilities and plausibility ∞ for the added condi-
tionals. We first show that b~e | φic = b~e n | φic for all i and b~e n | φc = ∞ for the newly
added conditionals φ ⇒ ψ ∈ (Σbel� n) \ (Σbel ∗ ϕa

n). If p < b~e | φic, then w 6|= φi for
all w ∈ ep , and by Lemma B.4.3, w 6|= φi for all w ∈ ~e np , so p < b~e n | φic. Analogously,
if p ≥ b~e | φic, then p ≥ b~e n | φic. Thus b~e | φic = b~e | φic. All other conditionals from
Σbel� n are of the form ¬

�
F (x1, . . . , xk) ≡ (γF x1 ... xk a

n1 ... nk n)∗
�
⇒ false for some F ∈ F ,

and by definition of wn, b~e n |¬(F (x1, . . . , xk) ≡ (γF x1 ... xk a
n1 ... nk n)∗)c = ∞.

Now we prove w ∈ ~e np iff w |= ∧i:b~e n | φi c≥p(φi ⊃ ψi) ∧ ∧F ∈F (¬
�
F (x1, . . . , xk) ≡

(γF x1 ... xk a
n1 ... nk n)∗

�
⊃ false), that is, ~e n satisfies Rule ESB10. For the only-if direction

suppose w ′ ∈ ~e np . Then for some w ∈ ep , wn = w ′. By Rule ESB10 for ~e we have
w |= ∧i:b~e | φi c≥p(φi ⊃ ψi). Since w ′ = wn and by b~e | φic = b~e n | φic and Lemma B.4.3,
w ′ |= ∧i:b~e n | φi c≥p(φi ⊃ ψi), and by of wn also w ′ |= F (x1, . . . , xk) ≡ (γF x1 ... xk a

n1 ... nk n)∗
for every F ∈ F . Thus the right-hand side holds. Conversely, suppose w ′ < ~e np . If
there is some w with wn = w ′, then w < ep , and hence by b~e | φic = b~e n | φic, w ′ 6|=∧

i:b~e p | φi c≥p(φi ⊃ ψi). Otherwise, for all w , wn , w ′, and hence w ′ 6|= F (x1, . . . , xk) ≡
(γF x1 ... xk a

n1 ... nk n)∗ for some F ∈ F . In either case the right-hand side is false. �

Lemma B.4.5 (wΣdyn� n) ≈R ((w∗)n)Σdyn .
Proof. The cases for object function symbols and rigid predicate symbols R < R are
trivial as they are left unchanged by the involved Definitions 5.8.1, B.2.3, B.3.4, B.4.1.
For F ∈ F and z = 〈〉, (wΣdyn� n)[F (n1, . . . , nk), 〈〉] = 1 iff wΣdyn[F (n1, . . . , nk), n] = 1
iff wΣdyn |= γF

x1 ... xk a
n1 ... nk n iff (by Lemma B.2.7) w |= γF

x1 ... xk a
n1 ... nk n iff (by Lemma B.3.6)

w∗ |= (γF x1 ... xk a
n1 ... nk n)∗ iff (w∗)n[F (n1, . . . , nk), 〈〉] = 1 iff ((w∗)n)Σdyn[F (n1, . . . , nk), 〈〉] = 1.

The cases for F ∈ F with z , 〈〉 and for IF follow from the definition of wΣdyn and ϕ,
γF being R-free and fluent. Finally, F < F ∪ {IF} follows because both w� n and wn

progress F by n. �

172

B.4 Proof of the progression theorems

Lemma B.4.6 Let ~e |= O(Σdyn,Σbel ∗ ϕa
n) and ~e ′ |= O(Σdyn,Σbel� n). Then for all p ∈ P,

(ep� n) = (~e ′
R
)p .

Proof. Let ~e ′′ |= OΣbel ∗ ϕa
n, which exists by Theorem 5.3.16. Then by Lemma B.2.8,

~e ′′
Σdyn

|= O(Σdyn,Σbel ∗ ϕa
n), and by Theorem 5.3.16, ~e = ~e ′′

Σdyn
(*). By Lemma B.3.8,

~e ′′∗ |= O(Σbel ∗ ϕa
n)∗, and by Lemma B.4.4, (~e ′′∗)n |= OΣbel� n, and by Lemma B.2.8,

((~e ′′∗)n)Σdyn |= O(Σdyn,Σbel� n), and by Theorem 5.3.16, ((~e ′′∗)n)Σdyn = ~e ′ (**).
For the ⊆ direction let w ′ ∈ (ep� n). By (*) there is some w ∈ ~e ′′p such that

(wΣdyn� n) = w ′. Also, by (**), ((w∗)n)Σdyn ∈ e ′p . By Lemma B.4.5, (wΣdyn� n) ≈R
((w∗)n)Σdyn . Thus w ′ = (wΣdyn� n) ∈ (~e ′

R
)p , so (ep� n) ⊆ (~e ′

R
)p .

Conversely, let w ∈ (~e ′
R
)p . Then w ≈R w ′ for some w ′ ∈ e ′p . By (**) there is

some w ′′ ∈ ~e ′′p such that ((w ′′∗)n)Σdyn = w ′. By Lemma B.4.5, (w ′′
Σdyn
� n) ≈R w ′,

and thus (w ′′
Σdyn
� n) ≈R w . Hence w ∈ ((~e ′′p)Σdyn� n)R = (ep� n)R with (*). Thus

(~e ′
R
)p ⊆ (ep� n)R . Since Σdyn,Σbel ∗ ϕa

n are R-free and by Lemma B.2.13, (ep)R = ep ,
and so (ep� n)R = (ep� n). Thus (~e ′

R
)p ⊆ (ep� n). �

Lemma B.4.7 If ~e |= OS(Σdyn,Σbel), then ~e ∗ IF(n) |= OS∪(S′\R)(Σdyn,Σbel ∗ ϕa
n).

Proof. Since w |= �IF(n) ≡ ϕa
n for all w ∈ ep and p ∈ P, we have ~e ∗ IF(n) = ~e ∗ ϕa

n.
Hence ~e ∗ IF(n) |= OS∪(S′\R)(({¬Σdyn ⇒ false} ∪ Σbel) ∗ ϕa

n) by Theorems 5.7.3 and
5.7.5. Let Θ = (({¬Σdyn ⇒ false} ∪ Σbel) ∗ ϕa

n) \ (Σbel ∗ ϕa
n). It is easy to see that Σdyn

is not affected by revision, that is,
∧
φ⇒ψ∈Θ(φ ⊃ ψ) is equivalent to ¬Σdyn ⊃ false.

Therefore ~e ∗ IF(n) |= OS∪(S′\R)(Σdyn,Σbel ∗ ϕa
n). �

Theorem 5.8.2 |= OS(Σdyn,Σbel) ⊃ [n]OS∪S′(Σdyn,Σbel� n).
Proof. Suppose ~e |= OS(Σdyn,Σbel). By Theorem 5.3.16, ~e ′ |= O(Σdyn,Σbel ∗ ϕa

n) and
~e ′′ |= O(Σdyn,Σbel� n) exist. By Lemma B.4.7, ~e ∗ IF(n) |= OS∪(S′\R)(Σdyn,Σbel ∗ ϕa

n).
By Rule ESB11 and Theorem 5.3.16, ~e ∗ IF(n) = ~e ′

S∪(S′\R). By Lemma B.4.6 we have
(e ′p� n) = (~e ′′

R
)p . Thus (~e ′

S∪(S′\R))p� n = (~e ′′
S∪S′

)p , and so ~e� n = ~e ′′
S∪S′

. Moreover
by assumption and Rule ESB11, ~e ′′

S∪S′
|= OS∪S′(Σdyn,Σbel� n). Thus by Rule ESB7,

~e |= [n]OS∪S′(Σdyn,Σbel� n). �

Theorem 5.8.3 OS(Σdyn,Σbel) |= [n]α iffOS∪S′(Σdyn,Σbel� n) |= α.
Proof. For the if direction, suppose OS∪S′(Σdyn,Σbel� n) |= α. Let ~e |= OS(Σdyn,Σbel).
By Theorem 5.8.2, ~e� n |= OS∪S′(Σdyn,Σbel� n). By assumption, ~e� n,w� n |= α
for all w . By Rule ESB7, ~e,w |= [n]α for all w .

Conversely, supposeOS(Σdyn,Σbel) |= [n]α. Let ~e |= OS∪S′(Σdyn,Σbel� n). By Corol-
lary 5.6.4, there is some ~e ′ |= OS(Σdyn,Σbel). By assumption, ~e ′,w |= [n]α for all w .
Thus ~e ′� n,w |= α for all w . By Theorem 5.8.2, ~e ′� n |= OS∪S′(Σdyn,Σbel� n), and
again by Corollary 5.6.4, ~e = ~e ′� n. Thus ~e,w |= α for all w . �

173

B Long Proofs for ESB

B.5 Proof of the representation theorems

Here we prove the representation theorem for ESB, Theorem 5.9.7. The representation
theorem for BO, Theorem 4.8.5, is just a special case of Theorem 5.9.7. Corollaries 5.9.8
and 5.9.9, which combine the representation theorem with regression or progression,
respectively, follow immediately as well.

Our proof is similar to the one of the representation theorem in OL in (Levesque
and Lakemeyer 2001). In fact, the following lemmas generalize their Lemma 2.8.5,
Corollary 2.8.6, and Lemma 7.2.2 from (Levesque and Lakemeyer 2001), respectively, to
our notions of beliefs and action standard names. Theorem 5.9.7 and Corollaries 5.9.8
and 5.9.9 then follow easily.

Definition B.5.1 A function ∗ between standard names is called a preserving involution
with respect to α iff

• n∗∗ = n and n∗ is of the same sort as n for all standard names n;

• A(n1, . . . , nk)∗ = A(n∗1, . . . , n∗k) for all ni for every action function A which is
mentioned in α as a non-standard-name term A(t1, . . . , tk).

For non-standard-names terms, we extend the definition inductively by letting x∗ = x
for variables x , A(t1, . . . , tk)∗ = A(t ∗1, . . . , t ∗k) for non-standard-name action terms,
and g (t1, . . . , tk)∗ = g (t ∗1, . . . , t ∗k) for object terms. For formulas, we define α∗ induc-
tively by R(t1, . . . , tk)∗ = R(t ∗1, . . . , t ∗k) for rigid R; F (t1, . . . , tk)∗ = F (t ∗1, . . . , t ∗k) for
fluent F ; (t1 = t2)∗ = (t ∗1 = t ∗2); (¬α)∗ = ¬α∗; (α ∨ β)∗ = (α∗ ∨ β∗); (∃xα)∗ =
∃xα∗; ([t]α)∗ = [t ∗]α∗; (B(α ⇒ β))∗ = B(α∗ ⇒ β∗). For a world w , we let w∗

be such that w∗[F (n1, . . . , nk), z] = w[F (n∗1, . . . , n∗k), z∗] for all fluent predicate sym-
bols F , w∗[R(n1, . . . , nk)] = w[R(n∗1, . . . , n∗k)] for all rigid predicate symbols R, and
w∗[g (n1, . . . , nk)] = w[g (n∗1, . . . , n∗k)]∗ for all object function symbols g .

Lemma B.5.2 Let ∗ be a preserving involution with respect to α.

(i) (αx
n)∗ = (α∗)xn∗ .

(ii) ∗ is a preserving involution with respect to αx
n .

Proof. (i) We first show that (t xn)∗ = (t ∗)xn∗ for any term t whose action function symbols
occur in α by induction on the size of t . First consider the base cases. For the variable
x , (x xn)∗ = n∗ = x xn∗ . For variables distinct from x , for object constants, and for object
and action standard names the claim trivially holds. Now we do the induction step.
For an object function g , (g (t1, . . . , tk)xn)∗ = (g (t1xn, . . . , tk xn))∗ = g ((t1xn)∗, . . . , (tk xn)∗)

174

B.5 Proof of the representation theorems

= (by induction) g ((t ∗1)xn∗, . . . , (t ∗k)xn∗) = g (t ∗1, . . . , t ∗k)xn∗ = (g (t1, . . . , tk)∗)xn∗ . For a non-
standard-name action term, (A(t1, . . . , tk)xn)∗ = A(t1xn, . . . , tk xn)∗ = (if A(t1xn, . . . , tk xn)
is a standard name: because ∗ is preserving) A((t1xn)∗, . . . , (tk xn)∗) = (by induction)
A((t ∗1)xn, . . . , (t ∗k)xn) = A(t ∗1, . . . , t ∗k)xn = (if A(t1xn, . . . , tk xn) is a standard name: because
∗ is preserving) (A(t1, . . . , tk)∗)xn. With that, (i) follows by an easy induction on the
length of α.

(ii) Suppose αx
n mentions an action function symbol A that does not occur in α. Then

this occurrence can only be in the standard name n, that is, n = A(n1, . . . , nk). Thus ∗
is a preserving involution with respect to αx

n. �

Lemma B.5.3 Let φ be objective and let ∗ be a preserving involution with respect to φ.
Then |= φ iff |= φ∗.
Proof. We need to show that w∗ |= φ iff w |= φ∗ for any arbitrary world w .

We first show that w∗(t) = w(t ∗)∗ for all ground terms t whose action function
symbols occur in φ (*). The proof is by induction on the nesting depth of t . The base
cases are standard names and object constant symbols. For a standard name, w∗(n) = n
= n∗∗ = w(n∗)∗. For an object constant symbol g , w∗(g) = w[g]∗ = w(g)∗ = w(g ∗)∗. For
the induction step let g (t1, . . . , tk) be an object term of nesting depth l and suppose the
w∗(t) = w(t ∗)∗ for all t of nesting depth < l , which particularly includes the ti . Then
w∗(g (t1, . . . , tk)) = n iff w∗[g (n1, . . . , nk)] = n where ni = w∗(ti) iff (by definition of
w∗) w[g (n∗1, . . . , n∗k)]∗ = n where ni = w∗(ti) iff (by induction) w[g (n∗1, . . . , n∗k)]∗ = n
where ni = w(t ∗i)∗ iff w[g (n1, . . . , nk)]∗ = n where ni = w(t ∗i) iff w(g (t ∗1, . . . , t ∗k))∗ = n
iff (by definition of t ∗) w(g (t1, . . . , tk)∗)∗ = n. Consider an action function symbol A
that occurs as non-standard-name in φ. Then w∗(A(t1, . . . , tk)) = n iff A(n1, . . . , nk) =
n where ni = w∗(ti) iff (by induction) A(n1, . . . , nk) = n where ni = w(t ∗i)∗ iff
A(n∗1, . . . , n∗k) = n where ni = w(t ∗i) iff (by definition of n∗) A(n1, . . . , nk)∗ = n where
ni = w(t ∗i) iff w(A(t ∗1, . . . , t ∗k))∗ = n iff (by definition of t ∗) w(A(t1, . . . , tk)∗)∗ = n.

Now we do the induction on the length of φ to show the lemma. Consider a rigid
predicate symbol R. Then w∗ |= R(t1, . . . , tk) iff w∗[R(n1, . . . , nk)] = 1 where ni =

w∗(ti) iff (by (*)) w∗[R(n1, . . . , nk)] = 1 where ni = w(t ∗i)∗ iff (by definition of w∗)
w[R(n∗1, . . . , n∗k)] = 1 where ni = w(t ∗i)∗ iff w[R(n1, . . . , nk)] = 1 where ni = w(t ∗i)
iff w |= R(t ∗1, . . . , t ∗k). The base case for fluent predicates and equality expressions is
analogous. The induction steps for ¬φ and (φ ∨ ψ) are trivial. For actions, w∗ |= [t]φ
iff w∗� n |= φ for n = w∗(t) iff (by definition of w∗ and by (*)) (w� n∗)∗ |= φ for
n = w(t ∗)∗ iff (by induction) (w� n∗) |= φ∗ for n = w(t ∗)∗ iff (w� n) |= [t ∗]φ∗. For
quantifiers, w∗ |= ∃xφ iff w∗ |= φx

n for some n iff (by induction) w |= (φx
n)∗ for some n

iff (by Lemma B.5.2) w |= (φ∗)xn∗ for some n iff w |= (∃xφ)∗. �

175

B Long Proofs for ESB

Corollary B.5.4 Let φ be an objective formula with free variables x1, . . . , xk and let ∗ be
a preserving involution with respect to φ which leaves the names in φ unchanged. Then for
any names n1, . . . , nk of corresponding sorts, |= φx1 ... xk

n1 ... nk iff |= φx1 ... xk
n∗1 ... n

∗

k
.

Proof. |= φx1 ... xk
n1 ... nk iff (by Lemma B.5.3) |= (φx1 ... xk

n1 ... nk)∗ iff (by Lemma B.5.2) |= (φ∗)x1 ... xk
n∗1 ... n

∗

k

iff (since ∗ leaves all names in φ unchanged) |= φx1 ... xk
n∗1 ... n

∗

k
. �

Lemma B.5.5 Let φ be an objective sentence. Let ψ be an objective formula with free
variables x1, . . . , xk and let n1, . . . , nk be standard names of corresponding sorts.
Then |= RESnψ, φox1 ... xk

n1 ... nk iff |= (φ ⊃ ψx1 ... xk
n1 ... nk).

Proof. The proof is by induction on the number of free variables in ψ. If there are none,
the lemma holds immediately by Definition 5.9.1.

For the induction step let ψ have k free variables and suppose that the lemma holds
for ψx1

n1 for arbitrary n1. We consider here only the case where x1 is of sort action; the
proof for object variables is actually simpler and matches Lemma 7.2.2 from (Levesque
and Lakemeyer 2001). Suppose n1 = A(n̂1, . . . , n̂l) for arbitrary A and n̂i for the rest of
the proof. Let A, K , N ′, N ,M,M ′, A′ be as in Definition 5.9.1 for the case of a free
action variables. In analogy to the three disjuncts in RESnψ, φo in case of a free variable
a in ψ, we consider three different cases.

Suppose n1 ∈ M. Then all but one of the disjuncts in RESnψ, φox1
n1 are certainly false;

the remaining one is the one which contains (x1 = n1). Then |= RESnψ, φox1 ... xk
n1 ... nk iff (by

Definition 5.9.1) |= RESnψx1
n1 , φox2 ... xk

n2 ... nk iff (by induction) |= (φ ⊃ ψx1 x2 ... xk
n1 n2 ... nk).

Suppose A ∈ A and at least one n̂i < N . Then there is some n◦1 = A(n̂◦1, . . . , n̂◦l) ∈ M ′

so that either n̂i = n̂◦i ∈ N , or n̂i < N , n̂◦i < N , and n̂◦i ∈ N
′ (*), and moreover

n̂◦i = n̂◦j iff n̂i = n̂ j (**). For this n◦1, ∃y1 . . . ∃yK ((n1 = n◦1)
n′1 ...n

′
K

y1 ...yK ∧
∧

1≤i≤K ,n′′∈N (yi ,
n′′) ∧∧1≤i< j≤K (yi , y j)) is valid. Namely, for every n̂◦i < N , there is some j such that
n̂◦i = n′j ∈ N

′; so n̂◦i is replaced with y j in the mentioned formula; the formula thus
comes out true in the semantics by substituting the corresponding n̂i for y j . Therefore
|= RESnψ, φox1 ... xk

n1 ... nk iff (by Definition 5.9.1) |= RESnψx1
n◦1
, φon◦1x1

x1 x2 ... xk
n1 n2 ... nk . Let ∗ be the

bijection so that (n̂◦i)∗ = n̂i and n̂∗i = n̂◦i for all i where n̂i < N , and A(~n) = A(~n∗), and
the rest is left unchanged. By (**), the bijection is well-defined. By (*) and since RES
does not introduce new names, these n̂◦i and n̂i do not occur in RESnψx1

n◦1
, φon◦1x1 ; hence

∗ is preserving with respect to RESnψx1
n◦1
, φon◦1x1 . Therefore, |= RESnψx1

n◦1
, φon◦1x1

x1 x2 ... xk
n1 n2 ... nk iff

(by Corollary B.5.4) |= RESnψx1
n◦1
, φon◦1x1

x1 x2 ... xk
n∗1 n

∗
2 ... n

∗

k
iff (since by definition of ∗, n∗1 = n◦1)

|= RESnψx1
n◦1
, φox2 ... xk

n∗2 ... n
∗

k
iff (by induction) |= (φ ⊃ ψ

x1 x2 ... xk
n◦1 n

∗
2 ... n

∗

k
) iff (by Lemma B.5.2 and

Corollary B.5.4) |= (φ ⊃ ψ
x1 x2 ... xk
n◦∗1 n∗∗2 ... n∗∗k

) iff (since by definition of ∗, n◦∗1 = n1) |= (φ ⊃

176

B.5 Proof of the representation theorems

ψ
x1 x2 ... xk
n1 n2 ... nk).
Suppose A < A. Then |= RESnψ, φox1 ... xk

n1 ... nk iff |= RESnψx1
A′, φoA

′

x1
x1 x2 ... xk
n1 n2 ... nk . Let ∗

be a bijection so that n∗1 = A′ and A′∗ = n1 and leaves the rest unchanged. As
neither A nor A′ occur in ψ or φ, ∗ is preserving with respect to RESnψx1

A′, φoA
′

x1 .
Then |= RESnψx1

A′, φoA
′

x1
x1 x2 ... xk
n1 n2 ... nk iff (by Corollary B.5.4) |= RESnψx1

A′, φoA
′

x1
x1 x2 ... xk
n∗1 n

∗
2 ... n

∗

k
iff

|= RESnψx1
A′, φox2 ... xk

n∗2 ... n
∗

k
iff (by induction) |= (φ ⊃ ψ

x1 x2 ... xk
A′ n∗2 ... n

∗

k
) iff (by Corollary B.5.4)

|= (φ ⊃ ψx1 x2 ... xk
A′∗ n∗∗2 ... n∗∗k

) iff |= (φ ⊃ ψx1 x2 ... xk
n1 n2 ... nk). �

Lemma B.5.6 Let Γ = {φ1 ⇒ ψ1, . . . , φm ⇒ ψm} be objective. Let ~e |= OSΓ and ~γ

be an objective representation of OSΓ. Let α be a belief-static formula without O with
free variables x1, . . . , xk and let n1, . . . , nk be standard names of corresponding sorts. Then
~e,w |= αx1 ... xk

n1 ... nk iff w |= (‖α‖~γ)x1 ... xk
n1 ... nk .

Proof. The proof is by induction on the length α where the length of B(α ⇒ β) is
taken to be the length of (α ⊃ β) plus 1. For objective α (which includes the base cases
for rigid and fluent atoms and equalities, and, by the belief-static assumption, also the
cases for [t]α and �α), the lemma clearly holds since ‖α‖~γ = α. The induction steps for
negation, conjunction, and quantification are straightforward. The induction step for
B(α ⇒ β) uses the fact from Theorem 5.3.16 that only the first m + 1 levels of ~e may
differ and we thus may limit our consideration to levels 1 ≤ p ≤ m + 1, each of which
corresponds to γp . More precisely, ~e |= B(α ⇒ β)x1 ... xk

n1 ... nk iff for all p ∈ P, ~e,w ′ |= (α ⊃ β)
for all p ≤ b~e | αc iff (by Theorem 5.3.16) for all 1 ≤ p ≤ m + 1, if for all p ′ < p, for
all w ′ ∈ ep′, ~e,w ′ |= ¬α, then for all w ′ ∈ ep , ~e,w ′ |= (α ⊃ β) iff (by induction) for all
1 ≤ p ≤ m+1, if for all p ′ < p, for allw ′ ∈ ep′,w ′ |= (‖¬α‖~γ)x1 ... xk

n1 ... nk , then for allw ′ ∈ ep ,
w ′ |= (‖(α ⊃ β)‖~γ)x1 ... xk

n1 ... nk iff (by Lemma B.5.5 since ep = {w | w |= γp} for all p ∈ P)
for all 1 ≤ p ≤ m + 1, if for all 1 ≤ p ′ < p, w |= RESn‖¬α‖~γ, γ ′pox1 ... xk

n1 ... nk , then w |=
RESn‖(α ⊃ β)‖~γ, γpox1 ... xk

n1 ... nk iff w |= ∧m+1
p=1 ((

∧p−1
p′=1 RESn‖¬α‖~γ, γp′o) ⊃ RESn‖(α ⊃

β)‖~γ, γpo)x1 ... xk
n1 ... nk iff (by Definition 5.9.6) w |= (‖B(α ⇒ β)‖~γ)x1 ... xk

n1 ... nk . �

Theorem 5.9.7 Let Γ = {φ1 ⇒ ψ1, . . . , φm ⇒ ψm} be objective and α be belief-static
withoutO. ThenOSΓ |= α iff |= ‖α‖OSΓ.
Proof. OSΓ |= α iff ~e |= α for every ~e |= OSΓ iff (by Lemma B.5.6 and since ~e exists
and is unique by Corollary 5.6.4) |= ‖α‖~γ . �

Theorem 4.8.5 Let Γ = {φ1 ⇒ ψ1, . . . , φm ⇒ ψm} be objective where φi, ψi are formulas
of BO, and let α be a formula of BO withoutO. ThenOΓ |=BO α iff |=BO ‖α‖OΓ.
Proof. By Theorem 5.3.9, the representation theorem of BO is just a special case of
Theorem 5.9.7. �

177

B Long Proofs for ESB

Corollary 5.9.8 Σdyn,Σbel be an S-free basic action theory and let α be a regressable sen-
tence. ThenOS(Σdyn,Σbel) |= α iff |= ‖R[α]‖OSΣbel .
Proof. |= ‖R[α]‖OSΣbel iff (by Theorem 5.9.7) OSΣbel |= R[α] iff (by Theorem 5.3.16)
OS(Σdyn,Σbel) |= α. �

Corollary 5.9.9 Σdyn,Σbel be a basic action theory, S′ be the symbols newly introduced by
Σbel� n, and let α be a belief-static sentence withoutO.
ThenOS(Σdyn,Σbel) |= [n]α iff |= ‖α‖OS∪S′ (Σdyn,Σbel � n).

Proof. |= ‖α‖OS∪S′ (Σdyn,Σbel � n) iff (by Theorem 5.9.7) OS∪S′(Σdyn,Σbel� n) |= α iff (by
Theorem 5.8.3) OS(Σdyn,Σbel) |= [n]α. �

178

C Long Proofs for L−

C.1 Proof of the decidability theorems

Here we show correctness of the decision procedures for |•◦≈ and |•◦≈ from Section 6.8 for
the case of proper+knowledge bases. The proof is quite tedious. After proving some
general lemmas, we show that only a finite number of literals needs to be considered
when splitting or adding a literal (Lemmas C.1.5 and C.1.13). Then we show that finitely
many names suffice for the quantifiers in the query (Lemma C.1.14), and that the same
holds for the quantifiers in the knowledge base (Lemma C.1.16). With these results, we
can finally prove Theorems 6.8.7 and 6.8.11. At the end we show the complexity results
Theorems 6.8.8 and 6.8.12.

For the rest of this section, let π denote a proper+ sentence.

Definition C.1.1 Let ∗ be a bijection between standard names. For a set of standard
names N , we let N ∗ = {n∗ | n ∈ N }, and we write c∗, s∗, φ∗ for the corresponding
clause, setup, formula where every name n is replaced with n∗.

Note that in general N and N ∗ may be distinct. When N is the set of all standard
names, however, N = N ∗ .

Lemma C.1.2 Let ∗ be a bijection between standard names. Let N be a set of standard
names. Then gndN (π)∗ = gndN ∗(π∗).
Proof. Let π =

∧
∀~x j c j . Then c∗ ∈ gndN (π)∗ iff c∗ = (c j ~x j~n)∗ for some ni ∈ N for some

j iff c∗ = (c∗j)
~x j
~n∗ for some ni ∈ N for some j iff c∗ ∈ gndN ∗(π∗). �

Lemma C.1.3 Let ∗ be a bijection between standard names.

(i) c ∈ UP(s) iff c∗ ∈ UP(s∗);
(ii) c ∈ UP+(s) iff c∗ ∈ UP+(s∗);
(iii) c ∈ UP−(s) iff c∗ ∈ UP−(s∗);
(iv) c ∈ XP(s) iff c∗ ∈ XP(s∗);
(v) c ∈ L(`, s) iff c∗ ∈ L(`∗, s∗).

179

C Long Proofs for L−

Proof. (i) By induction on the length of the derivation of c . The base case holds trivially.
For the induction step, c ∈ UP(s) \ (EQ ∪ s) iff c ∪ [`], [`] ∈ UP(s) for some [`] iff (by
induction) c∗ ∪ [`∗], [`∗] ∈ UP(s∗) iff c∗ ∈ UP(s∗).

(ii) c ∈ UP+(s) iff c ′ ∈ UP(s) for some c ′ ⊆ c iff (by (i)) c ′∗ ∈ UP(s∗) for some c ′ ⊆ c
iff c ′ ∈ UP(s∗) for some c ′ ⊆ c∗ iff c∗ ∈ UP+(s∗).

(iii) c ∈ UP−(s) iff c ∈ UP(s) and for all c ′) c , c ′ < UP(s) iff (by (i)) c∗ ∈ UP(s∗)
and for all c ′) c , c ′∗ < UP(s∗) iff c∗ ∈ UP(s∗) and for all c ′) c∗, c ′ < UP(s∗) iff
c∗ ∈ UP−(s∗).

(iv) c ∈ XP(s) iff c ∈ UP−(s] ` | for some c , c ∪ [`] ∈ UP−(s)}) iff (by (iii))
c∗ ∈ UP−(s∗] `∗ | for some c , c ∪ [`] ∈ UP−(s)}) iff (by (iii)) c∗ ∈ UP−(s∗] `∗ | for
some c , c∗ ∪ [`∗] ∈ UP−(s∗)}) iff c∗ ∈ UP−(s∗] ` | for some c , c ∪ [`] ∈ UP−(s∗)}) iff
c∗ ∈ XP(s∗).

(v) c ∈ L(`, s) iff c = [` ′] and [` ′] ∈ gnd([`]) and [` ′] < UP(s) for some ` ′ iff (by
Lemma C.1.2 and (i)) c = [` ′] and [` ′∗] ∈ gnd([`∗]) and [` ′∗] < UP(s∗) for some ` ′ iff
c∗ = [` ′] and [` ′] ∈ gnd([`∗]) and [` ′] < UP(s∗) for some ` ′ iff c∗ ∈ L(`∗, s∗). �

Lemma C.1.4 Let ∗ be a bijection between standard names.

(i) s, k |•◦≈ φ iff s∗, k |•◦≈ φ∗;
(ii) s, l |•◦≈ φ iff s∗, l |•◦≈ φ∗.

Proof. (i) By induction on k. For the base case k = 0 we do a subinduction on the
length of φ. For a clause, s, 0 |•◦≈ c iff c ∈ UP+(s) iff (by Lemma C.1.3) c∗ ∈ UP+(s∗) iff
s∗, 0 |•◦≈ c∗. The subinduction steps for a non-clausal disjunction, negated disjunction, and
double negation are trivial. For an existential, s, 0 |•◦≈ ∃xφ iff s, 0 |•◦≈ φx

n for some n iff (by
subinduction) s∗, 0 |•◦≈ (φx

n)∗ for some n iff s∗, 0 |•◦≈ (φ∗)xn∗ for some n iff s∗, 0 |•◦≈ ∃xφ∗ iff
s∗, 0 |•◦≈ (∃xφ)∗. The case for a negated existential is analogous. For the main induction,
suppose (i) holds for k. Then s, k + 1 |•◦≈ φ iff s] `, k |•◦≈ φ and s] `, k |•◦≈ φ for some ` iff
(by induction) (s] `)∗, k |•◦≈ φ∗ and (s] `)∗, k |•◦≈ φ∗ for some ` iff s∗] `∗, k |•◦≈ φ∗ and
s∗] `∗, k |•◦≈ φ∗ for some ` iff s∗, k + 1 |•◦≈ φ∗.

(ii) By induction on l very similar to (i). For the base case l = 0 we do a subinduction
on the length of φ. For a negated clause, s, 0 |•◦≈ ¬c iff [] ∈ XP(s) or c < UP+(s) iff (by
Lemma C.1.3) [] ∈ XP(s∗) or c∗ < UP+(s∗) iff s∗, 0 |•◦≈ c∗. The subinduction steps for a
literal, a disjunction, negated non-clausal disjunction, and double negation are trivial.
The subinduction steps for an existential and a negated existential are analogous to (i).
For the main induction, suppose (ii) holds for l . Then s, l + 1 |•◦≈ φ iff s ⊗ `, l |•◦≈ φ for all
` iff (by induction) (s ⊗ `)∗, l |•◦≈ φ∗ for all ` iff (by Lemma C.1.3) s∗ ⊗ `∗, l |•◦≈ φ∗ for all
` iff s∗, l + 1 |•◦≈ φ∗. �

180

C.1 Proof of the decidability theorems

Finitely many literals suffice for splitting and adding

Here we observe that the number of relevant split literals in Rule L•◦1 and added literals
in Rule L•◦1 are in fact finite.

Lemma C.1.5 Let v ≥ |π |w and v ≥ |φ |w, and let N j contain the names from π and φ plus
new names n1, . . . , n j . Then gnd(π), k+1 |•◦≈ φ iff gnd(π)]`, k |•◦≈ φ and gnd(π)]`, k |•◦≈ φ
for some ` whose symbol occurs in π or φ and whose names are from N(k+1)·v .

Proof. The if direction holds immediately by the semantics. For the only-if direction
suppose gnd(π), k + 1 |•◦≈ φ. Then gnd(π)] `, k |•◦≈ φ and gnd(π)] `, k |•◦≈ φ for some `.
We first show that it suffices to consider for ` only symbols from π or φ; in a second
step we show that considering in ` only names from N(k+1)·v suffices as well.

For the first step suppose the symbol of ` occurs neither in π nor in φ or is an equality
literal. We show that then gnd(π), k |•◦≈ φ. By Lemma 6.5.3 this implies that we can split
an arbitrary literal, that is, choose any symbol that occurs in π or φ for the split literal.
The proof is by induction on k. The base case k = 0 needs a subinduction on the length
of φ. For a clause, if ` is an equality literal, gnd(π)] `, 0 |•◦≈ c and gnd(π)] `, 0 |•◦≈ c
iff c ∈ UP+(gnd(π)] `) and c ∈ UP+(gnd(π)] `) iff (since ` ∈ UP+(gnd(π)) or
` ∈ UP+(gnd(π))) c ∈ UP+(gnd(π)) iff gnd(π), 0 |•◦≈ c ; and otherwise, if the symbol of `
is not equality and does not occur in π or φ, gnd(π)] `, 0 |•◦≈ c and gnd(π)] `, 0 |•◦≈ c
iff c ∈ UP+(gnd(π)] `) and c ∈ UP+(gnd(π)] `) iff (since ` cannot trigger unit
propagation) c ∈ UP+(gnd(π))] ` and c ∈ UP+(gnd(π))] ` iff (since the symbol
of ` does not occur in c) c ∈ UP+(gnd(π)) iff gnd(π), 0 |•◦≈ c and gnd(π), 0 |•◦≈ c . The
subinduction steps are trivial. For the induction step, suppose the claim holds for k.
Then gnd(π)]`, k |•◦≈ φ and gnd(π)]`, k |•◦≈ φ iff gnd(π∧`), k |•◦≈ φ and gnd(π∧`), k |•◦≈ φ
only if (by induction) gnd(π ∧ `), k |•◦≈ φ and gnd(π ∧ `), k |•◦≈ φ where the k more split
literals have symbols that occur in π, φ, or ` iff (since for every split literal ` ′, only ` ′

or ` ′ can resolve with `) gnd(π ∧ `), k |•◦≈ φ and gnd(π ∧ `), k |•◦≈ φ where the k more
split literals have symbols that occur in π or φ only if gnd(π), k |•◦≈ φ.

For the second step suppose the symbol of ` occurs in π or φ but it mentions names
not in N(k+1)·v . Let n′1, . . . , n

′

l < N(k+1)·v be those names. If ` is an equality expression,
then N(k+1)·v must be non-empty, and by the first case we can split an arbitrary equality
literal formed from N(k+1)·v instead. Otherwise, the arity of ` is at most v , and thus
l ≤ v . Without loss of generality suppose n1, . . . , nl ∈ N(k+1)·v do not occur in `.
Let ∗ be the bijection that swaps the ni and n′i and leaves the rest unchanged. Then
gnd(π)] `, k |•◦≈ φ and gnd(π)] `, k |•◦≈ φ iff (by Lemma C.1.4) (gnd(π)] `)∗, k |•◦≈ φ∗
and (gnd(π)] `)∗, k |•◦≈ φ∗ iff gnd(π)∗] `∗, k |•◦≈ φ∗ and gnd(π)∗] `∗, k |•◦≈ φ∗ iff (by

181

C Long Proofs for L−

Lemma C.1.2) gnd(π)] `∗, k |•◦≈ φ∗ and gnd(π)] `∗, k |•◦≈ φ∗. Since φ∗ = φ and `∗

mentions names only from N(k+1)·v , this obtains the lemma. �

Now we prove similar results for the unsound semantics, Lemma C.1.13. To this end,
we first need a syntactic representation of gnd(π) ⊗ `.

Definition C.1.6 Let N contain all and only the names from π and `. Let x1, . . . , x l
be the variables in `. We define π ⊗ ` as π ∧ Π where Π is the least set such that, if
[`x1 ...x l

n1 ...nl] < UP(gnd(π)) for n1, . . . , nk < N and nk+1, . . . , nl ∈ N , then e ∨ e= ∨ e, ∨
`xk+1 ...x lnk+1 ...nl ∈ Π where e =

∨
1≤i≤k and n∈N (x i = n) and e= =

∨
1≤i< j≤k and ni=n j (x i , x j)

and e, =
∨

1≤i< j≤k and ni,n j (x i = x j).
A few words about this definition are in order. The idea is to represent every ground

instance added in gnd(π) ⊗ ` by one clause in Π. More intuitively, this clause can be
read as material implication∧

1≤i≤k, n∈N

(x i , n) ∧
∧

1≤i< j≤k, ni=n j

(x i = x j) ∧
∧

1≤i< j≤k, ni,n j

(x i , x j) ⊃ [`xk+1 ...x lnk+1 ...nl].

(We do not use ⊃ in the definition of Π in order to keep Π proper+. For example,
P ∧ Q ⊃ R stands for ¬¬(¬P ∨ ¬Q) ∨ R, which is not proper+ due to the double
negation.) Notice that this clause does not mention the names n1, . . . , nk < N , and
hence Π introduces no new names. Instead, the names n1, . . . , nk are replaced with
variables, and the formulas e , e=, e, ensure that any instance of ` derived from this clause
corresponds to an instance of ` added to gnd(π) ⊗ `. For example, let π = ∀x¬P (x, x).
Then gnd(π) = {[¬P (n, n)] | n is a name}, and gnd(π) ⊗ P (x, x) = {[¬P (n, n) | n is a
name} ∪ {[P (n, n′) | n, n′ are distinct names}. Therefore Π contains the single clause
(x1 = x2) ∨ P (x1, x2) that represents all [P (n, n′)] < gnd(π): grounding Π and doing
unit propagation with EQ just obtains {[P (n, n′)] | n, n′ are distinct names}.
Lemma C.1.7 π ⊗ ` is a well-defined sentence, proper+, contains only names that occur in
π or `, and |π ⊗ ` |w ≤ max{|π |w, |` |w}.
Proof. Let Π and N be as in Definition C.1.6. Since N is finite, every element in Π is a
well-defined formula. Since there are only finitely many variables in `xk+1 ...x lnk+1 ...nl , the set Π
must be finite as well. Hence π ⊗ ` is well-defined. Since the formulas in Π are clauses
with universally quantified variables, π ⊗ ` is proper+. Π introduces no new names, so
π ⊗ ` does not either. Moreover, Π does not mention more variables than ` and does
not mention more of them freely in any subformula than ` does, so |Π |w ≤ |` |w. �

Lemma C.1.8 UP−(gndN ′(π) ⊗N ′ `) = UP−(gndN ′(π ⊗ `)).

182

C.1 Proof of the decidability theorems

Proof. Let Π and N be as in Definition C.1.6. It suffices to show UP(LN ′(`, gndN ′(π))) =
UP−(gndN ′(Π)), as the lemma then follows from Lemma 6.8.2.

First we show that UP−(gndN ′(Π)) \ EQ only contains unit clauses of the form [` ′]
where ` ′ = `x1 ...x l

n1 ...nl (*). Clearly every clause in UP−(gndN ′(Π)) \ EQ is a subclause of
some clause from gndN ′(Π). Hence it suffices to show that [] < UP(gndN ′(Π)) and
that every clause from gndN ′(Π) is subsumed by some unit clause in UP(gndN ′(Π)).
Let c ∈ gndN ′(Π). Then c = c ′ ∪ [` ′] where c ′ only contains equality literals. If
c ′ is subsumed by EQ, then so is c . Otherwise, unit resolution of c ′ with EQ yields
[` ′] ∈ UP(gndN ′(Π)), which subsumes c . Moreover, c ∈ gndN ′(e∨ e=∨ e,∨`xk+1 ...x lnk+1 ...nl) for
some clause from Π. By Definition C.1.6, [` ′′] < UP(gnd(π)) where ` ′′ = `x1 ...xk xk+1 ...x l

n′1 ...n
′

knk+1 ...nl
for some n′1, . . . , n

′

k < N . Let ∗ be the bijection that swaps n1, . . . , nk for n′1, . . . , n
′

k
and leaves the rest unchanged. Then [` ′′]∗ = [` ′] < UP(gnd(π)) by Lemmas C.1.3
and C.1.2. Thus [` ′] < EQ, so if ` ′ is an equality literal, then [` ′] ∈ EQ. Otherwise,
[` ′] < UP(gndN ′(Π)). Hence [] < UP(gndN ′(Π)).

For the only-if direction let c ∈ UP(LN (`, gndN ′(π))). Then by definition of LN ,
either c ∈ EQ or c = [` ′] ∈ LN (`, gndN ′(π)) where ` ′ = `x1 ...x l

n1 ...nl for n1, . . . , nl ∈ N ′. In
the former case, c ∈ UP−(gndN ′(Π)) by (*). In the latter case, [` ′] < gndN ′(π). Hence
e ∨ e=∨ e,∨`

xk+1 ...x l
nk+1 ...nl ∈ Π for some k ≤ l , and by construction, c ′ = (e ∨ e=∨ e,)x1 ...xk

n1 ...nk is
invalid. Hence c ′ ∪ [` ′] ∈ gndN ′(Π), and since c ′ only mentions invalid equality literals,
they are eliminated by unit resolution with EQ, so that [` ′] ∈ UP(gndN ′(Π)), and by
(*), c = [` ′] ∈ UP−(gndN ′(Π)).

For the if direction let c ∈ UP−(gndN ′(Π)). If c ∈ EQ, then c ∈ UP(LN (`, gndN ′(π))).
Otherwise, by (*), c = [` ′] where ` ′ = `x1 ...x l

n1 ...nl for n1, . . . , nl ∈ N ′. By Definition C.1.6,
e ∨ e= ∨ e, ∨ `xk+1 ...x lnk+1 ...nl ∈ Π for some k ≤ l and (e ∨ e= ∨ e,)x1 ...xk

n1 ...nk is invalid. Again
by Definition C.1.6, some n′1, . . . , n

′

k < N exist such that [` ′′] < UP(gnd(π)) where
` ′′ = `x1 ...xk xk+1 ...x l

n′1 ...n
′

knk+1 ...nl
and such that ni = n j iff n′i = n′j . Therefore there is a bijection

∗ between standard names that swaps n1, . . . , nk and n′1, . . . , n
′

k and leaves the rest
unchanged. Then [` ′′]∗ = [` ′] < UP(gndN ′(π)) by Lemmas C.1.3, C.1.2, and 6.5.2.
Therefore [` ′] ∈ LN ′(`, gndN ′(π)) ⊆ UP(LN ′(`, gndN ′(π))). �

Lemma C.1.9 UP−(gndN ′(π) ⊗N ′ `1 ⊗N ′ . . . ⊗N ′ `k) = UP−(gndN ′(π ⊗ `1 ⊗ . . . ⊗ `k)).
Proof. By Lemma 6.8.2, LN ′(`,UP(s)) = LN ′(`, s), and therefore again by Lemma 6.8.2,
UP−(UP−(s) ⊗N ′ `) = UP−(s ⊗N ′ `). The lemma then follows by a simple induction
on k using Lemma C.1.8. �

Lemma C.1.10 Let the symbol of ` not occur in s and [] < XP(s ⊗ ` ⊗ `1 ⊗ . . . ⊗ `l).
Then [] < XP(s ⊗ `1 ⊗ . . . ⊗ `l).

183

C Long Proofs for L−

Proof. Suppose the opposite. Since the symbol of ` does not occur in s , there must
be some ` ′, `i, ` j with j > i with the same symbol as ` and so that [` ′] ∈ L(`i, s ⊗
`1 ⊗ . . . ⊗ `i−1) and [` ′] ∈ L(` j, s ⊗ `1 ⊗ . . . ⊗ ` j−1). However, by definition [` ′] ∈
L(` j, s ⊗ `1 ⊗ . . . ⊗ ` j−1) only if [` ′] < UP+(s ⊗ `1 ⊗ . . . ⊗ `i−1). Contradiction. �

Lemma C.1.11 Let the symbol of `1 not occur in s or c . Then c ∈ UP(s ⊗ `1 ⊗ . . . ⊗ `l)
iff c ∈ UP(s ⊗ `2 ⊗ . . . ⊗ `l).
Proof. By induction on the length of the derivation of c . If c ∈ s ⊗ `1 ⊗ . . . ⊗ `l , then
also c ∈ s ⊗ `2 ⊗ . . . ⊗ `l since c does not mention the symbol of `1. Now suppose
c ∪ [`], [`] ∈ UP(s ⊗ `1 ⊗ . . . ⊗ `l). Suppose the symbol of ` is the same as the one of `1.
Then this symbol does not occur in s , so c = [] and [`] ∈ L(`i, s ⊗ `1 ⊗ . . . ⊗ `i−1) and
[`] ∈ L(` j, s⊗`1⊗ . . .⊗` j−1) for some i , j , which contradicts the definition of L. Hence
the symbols of ` and `1 are distinct, so by induction, c ∪ [`], [`] ∈ UP(s ⊗ `2 ⊗ . . . ⊗ `l),
and thus c ∈ UP(s ⊗ `2 ⊗ . . . ⊗ `l). �

Lemma C.1.12 gnd(π), l •◦6|≈ φ iff gnd(π) ⊗ `1 ⊗ . . . ⊗ `l , 0 •◦6|≈ φ for some `1, . . . , `l whose
symbols occur in π or φ.

Proof. The if direction holds immediately by the semantics. For the only-if direction,
suppose gnd(π), l •◦6|≈ φ. Then gnd(π) ⊗ `1 ⊗ . . . ⊗ `l , 0 •◦6|≈ φ for some `1, . . . , `l . We show
by induction on i that gnd(π) ⊗ ` ′1 ⊗ . . . ⊗ ` ′i ⊗ `i+1 ⊗ . . . ⊗ `l , 0 •◦6|≈ φ for some ` ′1, . . . , `

′
i

whose symbols occur in π or φ. The base case i = 0 holds trivially.
For the induction step, suppose gnd(π) ⊗ ` ′1 ⊗ . . . ⊗ ` ′i−1 ⊗ `i ⊗ . . . ⊗ `l , 0 •◦6|≈ φ for

some ` ′1, . . . , `
′
i−1 whose symbols occur in π or φ, and suppose the symbol of `i occurs

neither in π nor in φ. Before we prove the induction step, we need two observations
((*) and (**) below).

By assumption, [] < XP(gnd(π)⊗` ′1⊗. . .⊗` ′i−1⊗`i⊗. . .⊗`l). Let π ′ = π⊗` ′1⊗. . .⊗`
′
i−1.

By Lemmas C.1.9 and 6.8.2, we can move ` ′1, . . . , `
′
i−1 inside gnd and obtain that [] <

XP(gnd(π ′) ⊗ `i ⊗ . . . ⊗ `l). By Lemma C.1.10, [] < XP(gnd(π ′) ⊗ `i+1 ⊗ . . . ⊗ `l).
Now let ` ′i be as follows. If i > 1, let ` ′i be just ` ′i−1. If i = 1 and there is an ` j with a

symbol that occurs in π or φ for with minimal j > i, let ` ′i be ` j . Otherwise (that is, if
i = 1 and all `2, . . . , `l have symbols not from π or φ), let ` ′i some literal that occurs in
UP−(gnd(π ′)) \ EQ, or if there is none, some ground literal whose symbol occurs in φ
that is not of the form (n , n) or (n = n′) for distinct names n, n′. In all three cases, we
have that the symbol of ` ′i occurs in π or φ, [] < XP(gnd(π ′) ⊗ ` ′i ⊗ `i+1 ⊗ . . . ⊗ `l), and
UP+(gnd(π ′) ⊗ ` ′i ⊗ `i+1 ⊗ . . . ⊗ `l) = UP+(gnd(π ′) ⊗ ` ′i ⊗ `i+1 ⊗ . . . ⊗ `l): in the first
case, gnd(π ′) ⊗ ` ′i ⊗ `i+1 ⊗ . . . ⊗ `l = gnd(π ′) ⊗ ` ′i ⊗ `i+1 ⊗ . . . ⊗ `l by Lemma C.1.9; in
the second case, it holds by Lemmas C.1.8, C.1.10, and C.1.11; in the third case, it holds

184

C.1 Proof of the decidability theorems

since [` ′i] does not occur in UP−(gnd(π ′)).
By Lemma C.1.11, UP(gnd(π ′) ⊗ `i+1 ⊗ . . . ⊗ `l) = UP(gnd(π ′) ⊗ `i ⊗ `i+1 ⊗ . . . ⊗ `l).

By applying Lemmas C.1.9 and 6.8.2 again to pull ` ′1, . . . , `
′
i−1 back out of gnd, we obtain

the observations for the induction step: [] < XP(gnd(π)⊗` ′1⊗ . . .⊗` ′i ⊗`i+1⊗ . . .⊗`l) (*)
and UP(gnd(π)⊗` ′1⊗ . . .⊗` ′i−1⊗`i ⊗ . . .⊗`l) ⊆ UP(gnd(π)⊗` ′1⊗ . . .⊗` ′i ⊗`i+1⊗ . . .⊗`l)
(**).

With (*) and (**), we can show by subinduction on the length of φ that gnd(π)⊗ ` ′1 ⊗
. . . ⊗ ` ′i ⊗ `i+1 ⊗ . . . ⊗ `l , 0 •◦6|≈ φ, which proves the induction step. For a negated clause,
gnd(π)⊗` ′1⊗. . .⊗` ′i−1⊗`i⊗. . .⊗`l , 0 •◦6|≈ ¬c iff [] < XP(gnd(π)⊗` ′1⊗. . .⊗` ′i−1⊗`i⊗. . .⊗`l)
and c ∈ UP+(gnd(π)⊗` ′1⊗ . . .⊗` ′i−1⊗`i ⊗ . . .⊗`l) iff (by (*) and (**) and Lemma 6.8.2)
[] < XP(gnd(π) ⊗ ` ′1 ⊗ . . . ⊗ ` ′i ⊗ `i+1 ⊗ . . . ⊗ `l) and c ∈ UP+(gnd(π) ⊗ ` ′1 ⊗ . . . ⊗ ` ′i ⊗
`i+1 ⊗ . . . ⊗ `l) iff gnd(π) ⊗ ` ′1 ⊗ . . . ⊗ ` ′i ⊗ `i+1 ⊗ . . . ⊗ `l , 0 •◦6|≈ ¬c . The other cases for
the subinduction are trivial. �

Lemma C.1.13 Let v ≥ |π |w and v ≥ |φ |w, and let N j contain the names from π and φ
plus new names n1, . . . , n j . Then gnd(π), l + 1 •◦6|≈ φ iff gnd(π) ⊗ `, l •◦6|≈ φ for some ` whose
symbol occurs in π or φ and whose names are from N(l+1)·v .

Proof. The if direction holds immediately by the semantics. For the only-if direction
suppose gnd(π), l + 1 •◦6|≈ φ. Then gnd(π) ⊗ `, l •◦6|≈ φ for some `. By Lemma C.1.12 we
already have that only symbols from π or φ are relevant. So we only need to show that
considering names from N(l+1)·v suffices.

Suppose the symbol of ` occurs in π or φ but it mentions names not in N(l+1)·v .
Let n′1, . . . , n

′

k < N(l+1)·v be those names. If ` is an equality expression, then N(l+1)·v
must be non-empty, and since gnd(π) ⊗ ` ′ = gnd(π) for any equality literal ` ′, we
have gnd(π) ⊗ (n = n), l •◦6|≈ φ for arbitrary n ∈ N(l+1)·v . Otherwise, the arity of ` is
at most v , and thus k ≤ v . Without loss of generality suppose n1, . . . , nk ∈ N(l+1)·v .
Let ∗ be the bijection that swaps the ni and n′i and leaves the rest unchanged. Then
gnd(π)⊗`, l •◦6|≈ φ iff (by Lemmas C.1.3 and C.1.4) gnd(π)∗⊗`∗, l •◦6|≈ φ∗ iff (Lemma C.1.2)
gnd(π)⊗`∗, l •◦6|≈ φ∗. Since φ∗ = φ and `∗ mentions only names from N(l+1)·v , this obtains
the base case. �

Finitely many names suffice for the quantifiers in the query

The following Lemma C.1.14 allows us to consider only finitely many names when
dealing with quantifiers.

Lemma C.1.14 Let x be a free variable in φ, and let n, n′ be two names that do not occur
in π or φ.

185

C Long Proofs for L−

(i) gnd(π), k |•◦≈ φx
n iff gnd(π), k |•◦≈ φx

n′ ;

(ii) gnd(π), l |•◦≈ φx
n iff gnd(π), l |•◦≈ φx

n′ .

Proof. Let N be the set of all standard names, and ∗ be the bijection that swaps n and
n′ and leaves the rest unchanged. Note that N = N ∗.

(i) gnd(π), k |•◦≈ φx
n iff (by Lemma C.1.4) gnd(π)∗, k |•◦≈ (φx

n)∗ iff (by Lemma C.1.2)
gndN ∗(π∗), k |•◦≈ (φx

n)∗ iff (since π and φ contain no n′) gnd(π), k |•◦≈ φx
n′.

(ii) gnd(π), l |•◦≈ φx
n iff (by Lemma C.1.4) gnd(π)∗, l |•◦≈ (φx

n)∗ iff (by Lemma C.1.2)
gndN ∗(π∗), l |•◦≈ (φx

n)∗ iff (since π and φ contain no n′) gnd(π), l |•◦≈ φx
n′. �

Finitely many names suffice for the quantifiers in the knowledge base

Here we show that grounding with respect to a finite set of names is sufficient.

Lemma C.1.15 Let v ≥ |π |w and let N contain all names from π . Then any clause
c ∈ UP(gnd(π)) \ EQ mentions at most v names not in N .

Proof. By induction on the length of the derivation of c . For the base case, let π =∧
∀~x j c j and c ∈ gnd(π). If c ∈ gnd(π), c = c j

~x j
~n for some j and ~n, and since c j has

at most v variables by assumption, the lemma holds again. For the induction step,
c ∈ UP(gnd(π)) \ (EQ ∪ gnd(π)) only if c ∪ [`], [`] ∈ UP(gnd(π)) for some `. By
induction, either c ∪ [`] ∈ EQ, in which case c = [] satisfies the lemma, or c ∪ [`]
mentions at most v names not in N , and hence c satisfies the lemma as well. �

Lemma C.1.16 Let v ≥ |π |w and let N contain all names from π plus new names
n1, . . . , nv . Let c mention names only from (N \ {n1, . . . , nl }) ∪ {n′1, . . . , n′l } where
n′1, . . . , n

′

l < N , l ≤ v. Let ∗ be the bijection that swaps ni with n′i .

(i) c ∈ UP(gnd(π)) iff c∗ ∈ UP(gndN (π));
(ii) c ∈ UP+(gnd(π)) iff c∗ ∈ UP+(gndN (π));
(iii) c ∈ UP−(gnd(π)) iff c∗ ∈ UP−(gndN (π));
(iv) c ∈ XP(gnd(π)) iff c∗ ∈ XP(gndN (π)).

Proof. (i) By induction on the length of the derivation of c . For the base case, let
π =

∧
∀~x j c j . If c ∈ EQ, clearly c∗ ∈ EQ. Otherwise, c ∈ gnd(π) iff c = c j

~x j
~n for

some j and ~n iff (since ∗ leaves the names in c j unchanged) c∗ = c j
~x j
~n∗ for some j

and ~n iff c∗ ∈ gnd(π) iff (since c∗ contains names only from N) c∗ ∈ gndN (π). For
the induction step, c ∈ UP(gnd(π)) \ (EQ ∪ gnd(π)) iff c ∪ [`], [`] ∈ UP(gnd(π)) for

186

C.1 Proof of the decidability theorems

some ` iff (by induction) c? ∪ [`?], [`?] ∈ UP(gndN (π)) where ? swaps the names
n′l+1, . . . , n

′

l ′ < N , l ′ ≤ v that occur in ` but not in c with nl+1, . . . , nl ′ and is like ∗
otherwise iff c? = c∗ ∈ UP(gndN (π)) \ (EQ ∪ gndN (π)).

(ii) c ∈ UP+(gnd(π)) iff c ′ ∈ UP(gnd(π)) for some c ′ ⊆ c iff (by (i)) c ′∗ ∈
UP(gndN (π)) for some c ′ ⊆ c iff c ′ ∈ UP(gndN (π)) for some c ′ ⊆ c∗ iff c∗ ∈
UP+(gndN (π)).

(iii) c ∈ UP−(gnd(π)) iff c ∈ UP(gnd(π)) and for all c ′ (c , c ′ < UP(gnd(π)) iff (by
(i)) c∗ ∈ UP(gndN (π)) and for all c ′ (c , c ′∗ < UP(gndN (π)) iff c∗ ∈ UP(gndN (π)) and
for all c ′ (c∗, c ′ < UP(gndN (π)) iff c∗ ∈ UP−(gndN (π)).

(iv) XP(gnd(π)) only contains unit clauses and perhaps the empty clause. For unit
clauses, [`] ∈ XP(gnd(π)) iff [`] ∈ EQ or for some c ′, c ′ ∪ [`] ∈ UP−(gnd(π)) \ EQ iff
(by Lemma C.1.15 and (iii)) [`?] ∈ EQ or for some c ′, c ′? ∪ [`?] ∈ UP−(gndN (π)) \ EQ
where ? swaps the names n′l+1, . . . , n

′

l ′ < N , l ′ ≤ v that occur in c ′ but not in ` with
nl+1, . . . , nl ′ and is like ∗ otherwise iff [`?] = [`∗] ∈ XP(gndN (π)). For the empty
clause, [] ∈ XP(gnd(π)) iff [`] ∈ XP(gnd(π)) and [`] ∈ XP(gnd(π)) for some ` iff (since
|` |w ≤ v) [`?] ∈ XP(gndN (π)) and [`?] ∈ XP(gndN (π)) where ? swaps the names
n′1, . . . , n

′

l ′ < N , l ′ ≤ v that occur in ` with n1, . . . , nl ′ iff [] ∈ XP(gndN (π)). �

Putting things together: the correctness theorems

Now we put the lemmas together and give two decision procedures for |•◦≈ and |•◦≈ with
respect to proper+knowledge bases.

Theorem 6.8.7 gnd(π), k |•◦≈ φ iff S[N , gndN (π), k, φ] = 1, where N contains the names
from π and φ plus k · v + v names for v ≥ |π |w and v ≥ |φ |w.
Proof. By induction on k. For the base case let k = 0. Let n1, . . . , nv ∈ N not oc-
cur in π or φ. We show by subinduction on the length of φ that gnd(π), 0 |•◦≈ φ iff
S[N , gndN (π), 0, φ∗] = 1 where ∗ is an arbitrary bijection that swaps the l ≤ v names
n′1, . . . , n

′

l < N occurring in φ with n1, . . . , nl and is the identity otherwise; since ∗ is
the identity for all names in the original φ, the lemma for k = 0 follows. For a clause,
gnd(π), 0 |•◦≈ c iff c ∈ UP+(gnd(π)) iff (by Lemma C.1.16 and since c mentions at most
v names that do not occur in π or φ) c∗ ∈ UP+(gndN (π)) where ∗ is the bijection
that swaps the names n′1, . . . , n

′

l < N occurring in c with n1, . . . , nl and is the identity
otherwise iff S[N , gndN (π), 0, c∗] = 1. For a non-clausal disjunction, gnd(π), 0 |•◦≈ (φ∨ψ)
iff gnd(π), 0 |•◦≈ φ or gnd(π), 0 |•◦≈ ψ iff (by subinduction) S[N , gndN (π), 0, φ?] = 1 or
S[N , gndN (π), 0, ψ†] = 1 where without loss of generality (since φ and ψ together men-
tion at most v names not in N) n? , n† implies n? = n or n† = n iff S[N , gndN (π), 0,

187

C Long Proofs for L−

(φ ∨ ψ)∗] = 1 where n∗ = n? if n? , n, and n∗ = n† otherwise. The case for negated
disjunctions is analogous, and the case for double negations is trivial. For an existential,
gnd(π), 0 |•◦≈ ∃xφ iff gnd(π), 0 |•◦≈ φx

n for some name n iff (by Lemma C.1.14 and since
φ mentions less than v of n1, . . . , nv) gnd(π), 0 |•◦≈ φx

n for some n ∈ N iff (by subinduc-
tion) S[N , gndN (π), 0, (φx

n)?] = 1 for some n ∈ N where ? is the bijection that swaps
n′1, . . . , n

′

l < N occurring in φx
n with n1, . . . , nl iff S[N , gndN (π), 0, (∃xφ)∗] = 1 where

∗ is just like ? except that for all n which n do not occur in φ, n∗ = n and n?∗ = n?.
The case for negated existentials is analogous.

For the main induction step suppose the theorem holds for k. Then gnd(π), k + 1 |•◦≈ φ
iff (by Lemma C.1.5) gnd(π)] `, k |•◦≈ φ and gnd(π)] `, k |•◦≈ φ for some ` whose
symbol occurs in π or φ and whose names occur in N iff gnd(π ∧ `), k |•◦≈ φ and
gnd(π ∧ `), k |•◦≈ φ for some ` whose symbol occurs in π or φ and whose names occur
in N iff (by induction, which is applicable because ` mentions at most v names, and
thus N still mentions k · v + v names not in π ∧ ` or φ) S[gndN (π ∧ `), k, φ] =
S[gndN (π ∧ `), k, φ] = 1 for some ` whose symbol occurs in π or φ and whose names
occur in N iff S[gndN (π)]`, k, φ] = S[gndN (π)]`, k, φ] = 1 for some ` whose symbol
occurs in π or φ and whose names occur in N iff S[N , gndN (π), k + 1, φ] = 1. �

Lemma C.1.17 Let f ∈ {UP,UP+,UP−}.
(i) S[N , s ∪ s ′, l , φ] = S[N , f (s) ∪ s ′, l , φ];
(ii) C[N , s ∪ s ′, l , φ] = C[N , f (s) ∪ s ′, l , φ].

Proof. Analogous to the proof of Lemma 6.8.3. �

Theorem 6.8.11 gnd(π), l |•◦≈ φ iff C[N , gndN (π), l , φ] = 1, where N contains the names
from π and φ plus l · v + v names for v ≥ |π |w and v ≥ |φ |w.
Proof. By induction on l . For the base case let l = 0. Let n1, . . . , nv ∈ N not oc-
cur in π or φ. We show by subinduction on the length of φ that gnd(π), 0 |•◦≈ φ iff
C[N , gndN (π), 0, φ∗] = 1 where ∗ is an arbitrary bijection that swaps the k ≤ v names
n′1, . . . , n

′

k < N occurring in φ with n1, . . . , nk and is the identity otherwise; since ∗ is
the identity for all names in the original φ, the lemma for l = 0 follows. For a negated
clause, gnd(π), 0 |•◦≈ ¬c iff [] ∈ XP(gnd(π)) or c < UP+(gnd(π)) iff (by Lemma C.1.16
and since c mentions at most v names that do not occur in π or φ) [] ∈ XP(gndN (π))
or c∗ < UP+(gndN (π)) where ∗ is the bijection that swaps the names n′1, . . . , n

′

k < N oc-
curring in c with n1, . . . , nk and is the identity otherwise iff C[N , gndN (π), 0,¬c∗] = 1.
For a positive literal, gnd(π), 0 |•◦≈ ` iff gnd(π), 0 |•◦≈ ¬` iff (by the case for negated
clauses) C[N , gndN (π), 0,¬`∗] = 1 iff C[N , gndN (π), 0, `∗] = 1. The subinduction steps

188

C.1 Proof of the decidability theorems

are analogous to those from the proof of Theorem 6.8.7.
For the main induction step suppose the theorem holds for l . Then gnd(π), l + 1 |•◦≈ φ

iff (by Lemma C.1.13) gnd(π) ⊗ `, l |•◦≈ φ for all ` whose symbols occur in π or φ and
whose names occur in N iff (by Lemmas C.1.9 and 6.8.3) gnd(π ⊗ `), l |•◦≈ φ for all `
whose symbol occurs in π or φ and whose names occur in N iff (by induction, which
is applicable because ` mentions at most v names, and since by Lemma C.1.7 N still
mentions l · v + v names not in π ⊗ ` or φ) C[gndN (π ⊗ `), l , φ] = 1 for all ` whose
symbols occur in π or φ and whose names occur in N iff (by Lemmas C.1.9 and C.1.17)
C[gndN (π) ⊗ `, l , φ] = 1 for all ` whose symbols occur in π or φ and whose names
occur in N iff C[N , gndN (π), l + 1, φ] = 1. �

Complexity analysis

Finally we can prove Theorems 6.8.8 and 6.8.12.

Lemma C.1.18 C[N , gndN (π), l , φ] can be computed in time
O(2k · (|π | + k)k+1 · |φ |k+1 · |N |(|π |w+|φ |w)·(k+1)).
Proof. Let f (k) denote the complexity of computing S[N , gndN (π), k, φ].

Splitting creates a tree of height k, whose leaves are setups that consist of gndN (π)
plus k more unit clauses. Closing such a setup under unit propagation can be done
in time linear in the size of the setup ≤ |π | · |N ||π |w + k (Zhang and Stickel 1996).
The number of clauses to be checked for subsumption is ≤ |φ | · |N ||φ |w . Hence f (0) ∈
O((|π | + k) · |φ | · |N ||π |w+|φ |w).

There are ≤ |π | predicate symbols in π and their maximum arity is ≤ |π |w. Analo-
gously for φ. Hence the number of relevant split literals is ≤ |π | · |N ||π |w + |φ | · |N ||φ |w .
Thus f (k + 1) ∈ O(2 · (|π | · |N ||π |w + |φ | · |N ||φ |w) · f (k)). Solving the recurrence obtains
f (k) ∈ O(2k · (|π | · |N ||π |w + |φ | · |N ||φ |w)k · f (0)).

Thus f (k) ∈ O(2k · (|π | + k)k+1 · |φ |k+1 · |N |(|π |w+|φ |w)·(k+1)). �

Theorem 6.8.8 gnd(π), k |•◦≈ φ can be decided in time
O((|π | + k)k+1 · |φ |k+1 · (max{|π |w, |φ |w} · (|π | + |φ | + k + 1))(|π |w+|φ |w)·(k+1) · 2k).
Proof. Let N be as in Lemma C.1.18. We can estimate |N | ≤ max{|π |w, |φ |w} · (|π | +
|φ | + k + 1). By Lemma C.1.18 and Theorem 6.8.7, the theorem follows. �

Lemma C.1.19 C[N , gndN (π), l , φ] can be computed in time
O((|π | + l)l+1 · |φ |l+1 · (max{|π |w, |φ |w} + |N |)(max{|π |w,|φ |w}+|φ |w)·(l+1)).
Proof. Let f (k) denote the complexity of computing C[N , gndN (π), l , φ].

Unlike splitting, the ⊗N operation possibly adds more than one unit clause. Hence, at
level 0 up to l · |N |max{|π |w,|φ |w} may have been added to gndN (π). Closing the resulting

189

C Long Proofs for L−

setup under unit propagation can be done in time linear in the size of the setup ≤
(|π |+ l) · |N |max{|π |w,|φ |w} (Zhang and Stickel 1996). The number of clauses to be checked
for subsumption is ≤ |φ | · |N ||φ |w . Hence f (0) ∈ O((|π | + l) · |φ | · |N |max{|π |w,|φ |w}+|φ |w).

There are ≤ |π | predicate symbols in π and their maximum arity is ≤ |π |w. Analo-
gously for φ. Hence the number of relevant add literals is ≤ |π | · (|π |w + |N |)|π |w + |φ | ·
(|φ |w+ |N |)|φ |w . Thus f (l +1) ∈ O((|π |+ |φ |) · (max{|π |w, |φ |w}+ |N |)max{|π |w,|φ |w} · f (l)).
Solving the recurrence yields O((|π |+ |φ |)l · (max{|π |w, |φ |w}+ |N |)max{|π |w,|φ |w} ·l · f (0)).

Thus f (l) ∈ O((|π |+ l)l+1 · |φ |l+1 · (max{|π |w, |φ |w}+ |N |)(max{|π |w,|φ |w}+|φ |w)·(l+1)). �
Theorem 6.8.12 gnd(π), l |•◦≈ φ can be decided in time
O((|π | + l)l+1 · |φ |l+1 · (max{|π |w, |φ |w} · (|π | + |φ | + l + 2))(max{|π |w,|φ |w}+|φ |w)·(l+1)).
Proof. Let N be as in Lemma C.1.19. We can estimate |N | ≤ max{|π |w, |φ |w} · (|π | +
|φ | + l + 1). By Lemma C.1.19 and Theorem 6.8.11, the theorem follows. �

C.2 Proof of the normal form

Here we show Theorem 6.9.3, which states that the normal form behaves well with
regard to |•◦≈ and |•◦≈ in the sense converting a formula to normal form retains all proofs
(disproofs) in |•◦≈ (|•◦≈).
Lemma C.2.1 If φ′ is the result renaming the variables in φ so that no variable bounded
by different quantified, then

(i) |= φ ≡ φ′;
(ii) s, k |•◦≈ φ iff s, k |•◦≈ φ′;
(iii) s, l |•◦≈ φ iff s, l |•◦≈ φ′.

Proof. Follows by trivial inductions on φ. �

Lemma C.2.2

(i) If s, k |•◦≈ φ or s, k |•◦≈ ψ, then s, k |•◦≈ (φ ∨ ψ).
(ii) If s, l •◦6|≈ ¬φ or s, l •◦6|≈ ¬ψ, then s, l •◦6|≈ ¬(φ ∨ ψ).

Proof. (i) By induction on k. Let s, 0 |•◦≈ φ or s, 0 |•◦≈ ψ. If (φ ∨ ψ) is not a clause,
by Rule L•◦3 s, 0 |•◦≈ (φ ∨ ψ). Otherwise, if c, c ′ are the two clauses, c ∈ UP+(s) or
c ′ ∈ UP+(s), so c ∪ c ′ ∈ UP+(s), and thus s, 0 |•◦≈ c ∪ c ′, which is (φ ∨ ψ). For the
induction step, s, k+1 |•◦≈ φ or s, k+1 |•◦≈ ψ iff s]`, k |•◦≈ φ and s]`, k |•◦≈ φ, or s]`, k |•◦≈ ψ

190

C.2 Proof of the normal form

and s] `, k |•◦≈ ψ only if (by induction) s] `, k |•◦≈ (φ ∨ ψ) or s] `, k |•◦≈ (φ ∨ ψ) iff
s, k + 1 |•◦≈ (φ ∨ ψ).

(ii) By induction on l analogous to (i). If (φ ∨ ψ) is not a clause, by Rule L•◦4 s, 0 •◦6|≈
¬(φ ∨ ψ). Otherwise, if c, c ′ are the two clauses, either [] < XP(s) and c ∈ UP+(s) or
[] < XP(s) and c ′ ∈ UP+(s), so [] < XP(s) and c ∪ c ′ ∈ UP+(s), and thus s, 0 |•◦≈ ¬(c ∪ c ′),
which is ¬(φ ∨ψ). For the induction step, s, l + 1 •◦6|≈ ¬φ or s, l + 1 •◦6|≈ ¬ψ iff s ⊗ `, l •◦6|≈ ¬φ
for some ` or s ⊗ `, l •◦6|≈ ¬ψ for some ` ′ only if (by induction) s ⊗ `, l •◦6|≈ ¬(φ ∨ ψ) for
some ` iff s, l + 1 •◦6|≈ ¬(φ ∨ ψ). �

Lemma C.2.3 Let all variables in ~x1, ~x2 be distinct and §~x i be a word over {¬,∃x i1,
∃x i2, . . .} with an even number of ¬.

(i) If s, 0 |•◦≈ (§~x1 c1 ∨ §~x2 c2), then s, 0 |•◦≈ §~x1 §~x2 (c1 ∨ c2).
(ii) If s, 0 |•◦≈ ¬(§~x1 c1 ∨ §~x2 c2), then s, 0 |•◦≈ ¬§~x1 §~x2 (c1 ∨ c2).
(iii) If s, 0 |•◦≈ (§~x1 c1 ∨ §~x2 c2), then s, 0 |•◦≈ §~x1 §~x2 (c1 ∨ c2).
(iv) If s, 0 |•◦≈ ¬(§~x1 c1 ∨ §~x2 c2), then s, 0 |•◦≈ ¬§~x1 §~x2 (c1 ∨ c2).

Proof. (i) By induction on the length of §~x1 . For the base case, we do a subinduction
on the length of §~x2 . The base case of the subinduction is trivial. For the subinduction
step for k existentials between two negations, we need subsubinduction on k. The base
case is simply s, 0 |•◦≈ (c1 ∨ ¬¬§~x2 c2) iff s, 0 |•◦≈ c1 or s, 0 |•◦≈ ¬¬§~x2 c2 iff s, 0 |•◦≈ c1 or
s, 0 |•◦≈ §~x2 c2 iff s, 0 |•◦≈ (c1 ∨ §~x2 c2) iff s, 0 |•◦≈ ¬¬(c1 ∨ §~x2 c2). For the subsubinduction,
s, 0 |•◦≈ (c1 ∨¬∃x1 . . . ∃xk¬§~x2 c2) iff s, 0 |•◦≈ c1 or s, 0 |•◦≈ ¬∃x1 . . . ∃xk¬§~x2 c2 iff s, 0 |•◦≈ c1
or s, 0 |•◦≈ ¬∃x2 . . . ∃xk¬§~x2 c2x1

n for all n iff s, 0 |•◦≈ (c1 ∨ ¬∃x2 . . . ∃xk¬§~x2 c2x1
n) for

all n only if (by subinduction) s, 0 |•◦≈ ¬∃x2 . . . ∃xk¬§~x2 (c1 ∨ c2x1
n) for all n iff s, 0 |•◦≈

¬∃x1 . . . ∃xk¬§~x2 (c1 ∨ c2). We skip the subinduction step for existentials not wrapped
by negations, as it is very similar but does not require the subsubinduction. For the
induction step for existentials not wrapped by negations, s, 0 |•◦≈ (∃x§~x1 c1 ∨ §~x2 c2)
iff s, 0 |•◦≈ ∃x§~x1 c1 or s, 0 |•◦≈ §~x2 c2 iff s, 0 |•◦≈ §~x1 c1xn or s, 0 |•◦≈ §~x2 c2 for some n iff
s, 0 |•◦≈ (§~x1 c1xn ∨ §~x2 c2) for some n only if (by induction) s, 0 |•◦≈ §~x1 §~x2 (c1xn ∨ c2xn) for
some n iff s, 0 |•◦≈ ∃x§~x1 §~x2 (c1 ∨ c2). We skip the induction step for existentials between
two negations; it is very similar to the base case we have shown above and requires the
same subsubinduction scheme.

(ii) By induction very similar to (i). For the base case, we do a subinduction
on the length of §~x2 . The base case of the subinduction is trivial. For the subin-
duction step for existentials not wrapped by negations, s, 0 |•◦≈ ¬(c1 ∨ ∃x§~x2 c2) iff

191

C Long Proofs for L−

s, 0 |•◦≈ ¬c1 and s, 0 |•◦≈ ¬∃x§~x2 c2 iff s, 0 |•◦≈ ¬c1 and s, 0 |•◦≈ ¬§~x2 c2xn for all n iff
s, 0 |•◦≈ ¬(c1 ∨ §~x2 c2xn) for all n only if (by subinduction) s, 0 |•◦≈ ¬§~x2 (c1 ∨ c2xn) for
all n iff s, 0 |•◦≈ ¬∃x§~x2 (c1 ∨ c2). We skip the subinduction step for existentials between
two negations; like the subinduction from (i) it requires a subsubinduction on the
number of existentials. For the induction step for k existentials between two negations
we again need a subinduction on k. The base case is simply s, 0 |•◦≈ ¬(¬¬§~x1 c1 ∨ §~x2 c2)
iff s, 0 |•◦≈ ¬¬¬§~x1 c1 and s, 0 |•◦≈ ¬§~x2 c2 iff s, 0 |•◦≈ ¬§~x1 c1 and s, 0 |•◦≈ ¬§~x2 c2 iff
s, 0 |•◦≈ ¬(§~x1 c1 ∨ §~x2 c2) only if (by induction) s, 0 |•◦≈ ¬§~x1 §~x2 (c1 ∨ c2) iff s, 0 |•◦≈
¬¬¬§~x1 (c1 ∨ §~x2 c2). For the subinduction, s, 0 |•◦≈ ¬(¬∃x1 . . . ∃xk¬§~x1 c1 ∨ §~x2 c2) iff
s, 0 |•◦≈ ¬¬∃x1 . . . ∃xk¬§~x1 c1 and s, 0 |•◦≈ ¬§~x2 c2 iff s, 0 |•◦≈ ∃x2 . . . ∃xk¬§~x1 c1x1

n and
s, 0 |•◦≈ ¬§~x2 c2 for some n iff s, 0 |•◦≈ ¬¬∃x2 . . . ∃xk¬§~x1 c1x1

n and s, 0 |•◦≈ ¬§~x2 c2 for some
n iff s, 0 |•◦≈ ¬(¬∃x2 . . . ∃xk¬§~x1 c1x1

n ∨ §~x2 c2) for some n only if (by induction) s, 0 |•◦≈
¬¬∃x2 . . . ∃xk¬§~x1 §~x2 (c1x1

n ∨ c2) for some n iff s, 0 |•◦≈ ∃x1 . . . ∃xk¬§~x1 §~x2 (c1 ∨ c2)
iff s, 0 |•◦≈ ¬¬∃x1 . . . ∃xk¬§~x1 (c1 ∨ §~x2 c2).

(iii) Analogous to (i).
(iv) Analogous to (ii). �

Lemma C.2.4 Let all variables in ~x1, ~x2 be distinct.

(i) If s, 0 |•◦≈ φ, then s, 0 |•◦≈ NF[φ].
(ii) If s, 0 •◦6|≈ φ, then s, 0 •◦6|≈ NF[φ].

Proof. By induction on the length of φ. For the induction steps we additionally need
s, 0 |•◦≈ ¬φ implies s, 0 |•◦≈ ¬NF[φ], which is also shown below. For a clause, s, 0 |•◦≈ c iff
(since c = NF[c]) s, 0 |•◦≈ NF[c].

Now consider a non-clausal disjunction (φ1 ∨ φ2). When NF[φi] = §~x i ci , then
s, 0 |•◦≈ (φ1∨φ2) iff s, 0 |•◦≈ φ1 or s, 0 |•◦≈ φ2 only if (by induction) s, 0 |•◦≈ NF[φ1] or s, 0 |•◦≈ φ2

iff s, 0 |•◦≈ §~x1 c1 or s, 0 |•◦≈ §~x2 c2 only if (by Lemma C.2.2) s, 0 |•◦≈ (§~x1 c1 ∨ §~x2 c2) only
if (by Lemma C.2.3) s, 0 |•◦≈ §~x1 §~x2 (c1 ∨ c2) iff s, 0 |•◦≈ NF[(φ1 ∨ φ2)]. The case for
NF[φi] = §′~x i ai for an atom ai is shown analogously by first showing (by induction on
the length of §′~x) that s, 0 |•◦≈ §′~x i ai iff s, 0 |•◦≈ §~x i ¬ai , so that the rest of the argument of
the previous applies here, too. Otherwise, if NF[φi] , §~x i ci for some i, s, 0 |•◦≈ (φ1 ∨ φ2)
iff s, 0 |•◦≈ φ1 or s, 0 |•◦≈ φ2 only if (by induction) s, 0 |•◦≈ NF[φ1] or s, 0 |•◦≈ NF[φ2] only if
(by Lemma C.2.2) s, 0 |•◦≈ (NF[φ1] ∨ NF[φ2]) iff s, 0 |•◦≈ NF[(φ1 ∨ φ2)].

Now consider a negated disjunction ¬(φ1 ∨ φ2). When NF[φi] = §~x i ci , then s, 0 |•◦≈
¬(φ1 ∨ φ2) iff s, 0 |•◦≈ ¬φ1 and s, 0 |•◦≈ ¬φ2 only if (by induction) s, 0 |•◦≈ ¬NF[φ1] and
s, 0 |•◦≈ ¬φ2 iff s, 0 |•◦≈ ¬§~x1 c1 and s, 0 |•◦≈ ¬§~x2 c2 iff s, 0 |•◦≈ ¬(§~x1 c1 ∨ §~x2 c2) only if (by
Lemma C.2.3) s, 0 |•◦≈ ¬§~x1 §~x2 (c1∨c2) iff s, 0 |•◦≈ ¬NF[(φ1∨φ2)] iff s, 0 |•◦≈ NF[¬(φ1∨φ2)].

192

C.2 Proof of the normal form

The case for NF[φi] = §′~x i ai for an atom ai is shown analogously by first showing (by
induction on the length of §′~x) that s, 0 |•◦≈ ¬§′~x i ai iff s, 0 |•◦≈ ¬§~x i ¬ai , so that the rest of
the argument of the previous applies here, too. Otherwise, if NF[φi] , §~x i ci for some
i, s, 0 |•◦≈ ¬(φ1 ∨ φ2) iff s, 0 |•◦≈ ¬φ1 and s, 0 |•◦≈ ¬φ2 only if (by induction) s, 0 |•◦≈ ¬NF[φ1]
and s, 0 |•◦≈ ¬NF[φ2] iff s, 0 |•◦≈ ¬(NF[φ1] ∨ NF[φ2]) iff s, 0 |•◦≈ NF[¬(φ1 ∨ φ2)].

For a double negation, s, 0 |•◦≈ ¬¬φ iff s, 0 |•◦≈ φ iff (by induction) s, 0 |•◦≈ NF[φ] iff
s, 0 |•◦≈ NF[¬¬φ].

For an existential, s, 0 |•◦≈ ∃xφ iff s, 0 |•◦≈ φx
n for some n iff (by induction) s, 0 |•◦≈ NF[φx

n]
for some n iff s, 0 |•◦≈ ∃xNF[φ] iff s, 0 |•◦≈ NF[∃xφ].

For a negated existential, s, 0 |•◦≈ ¬∃xφ iff s, 0 |•◦≈ ¬φx
n for all n iff (by induction)

s, 0 |•◦≈ ¬NF[φx
n] for all n iff s, 0 |•◦≈ ¬∃xNF[φ] iff s, 0 |•◦≈ ¬NF[∃xφ] iff s, 0 |•◦≈ NF[¬∃xφ].

This also proves that s, 0 |•◦≈ ¬∃xφ implies s, 0 |•◦≈ ¬NF[∃xφ].
Now we complete the induction by doing the steps to show that s, 0 |•◦≈ ¬φ implies

s, 0 |•◦≈ ¬NF[φ]. For a clause, s, 0 |•◦≈ ¬c iff (since c = NF[c]) s, 0 |•◦≈ ¬NF[c]. The cases
for a disjunction has been covered by the case for a negated disjunction above already.
For a negated disjunction, s, 0 |•◦≈ ¬¬(φ ∨ ψ) iff (by induction) s, 0 |•◦≈ NF[(φ ∨ ψ)] iff
s, 0 |•◦≈ ¬¬NF[(φ ∨ ψ)] iff s, 0 |•◦≈ ¬NF[¬(φ ∨ ψ)]. For a double negation, s, 0 |•◦≈ ¬¬¬φ
iff s, 0 |•◦≈ ¬φ iff (by induction) s, 0 |•◦≈ ¬NF[φ] iff s, 0 |•◦≈ ¬NF[¬¬φ]. The cases for an
existential has been covered by the case for a negated existential above already.

(ii) Analogous to (i), except that the second to last step for the negated (non-clausal)
disjunction is merely an implication (instead of equivalence) justified by Lemma C.2.2
(instead of Rule L•◦4), and similarly the second to last step for non-clausal disjunc-
tions is an equivalence (instead of an implication) justified by Rule L•◦3 (instead of
Lemma C.2.2). �

Theorem 6.9.3

(i) If s, k |•◦≈ φ, then s, k |•◦≈ NF[φ].
(ii) If s, l •◦6|≈ φ, then s, l •◦6|≈ NF[φ].

Proof. By Lemma C.2.1 we can assume the φ to be preprocessed according to Defini-
tion 6.9.1.

(i) By induction on k. The base case follows from Lemma C.2.4. For the induction
step, s, k + 1 |•◦≈ φ iff s] `, k |•◦≈ φ and s] `, k |•◦≈ φ for some ` only if (by induction)
s] `, k |•◦≈ NF[φ] and s] `, k |•◦≈ NF[φ] for some ` iff s, k + 1 |•◦≈ NF[φ].

(ii) By induction on l . The base case follows from Lemma C.2.4. For the induction
step, s, l + 1 •◦6|≈ φ iff s ⊗ `, l •◦6|≈ φ for some ` only if (by induction) s ⊗ `, l •◦6|≈ NF[φ] for
some ` iff s, l + 1 •◦6|≈ NF[φ]. �

193

D Long Proofs for BOL

D.1 Proof of the unique-model property

Here we prove the unique-model (modulo UP+) property of BOL for proper+knowl-
edge bases, Theorem 7.4.2. The idea follows the proof of the unique-model property for
BO, Theorem 4.5.3. For this section, let Γ = {φ1 ⇒ ψ1, . . . , φm ⇒ ψm} be proper+.

Lemma D.1.1

(i) b~s, k |•◦ φc ≥ p iff sp′, k |•◦≈ ¬φ for all p ′ < p;

(ii) b~s, l |•◦ φc ≥ p iff sp′, l |•◦≈ ¬φ for all p ′ < p.

Proof. Follows from the definitions of b~s, k |•◦ φic and b~s, l |•◦ φic, respectively. �

Lemma D.1.2 Let ~s = 〈s1, . . . , sm+1〉 be such that sp = gnd(NF[∧i:b~s,k |•◦φi c≥p(φi ⊃ ψi)])
for all p ∈ P. Then ~s is a well-defined limited epistemic state, and ~s |lk |≈ Ol

kΓ.

Proof. We first show by induction on p ∈ P that b~s, k |•◦ φic ≥ p and sp are well-defined
and that if p > 1, UP+(sp) ⊆ UP+(sp−1). Then ~s is a well-defined epistemic state. The
base holds trivially.

For the induction step, suppose~s has been constructed up to p−1. Then the expression
b~s, k |•◦ φic ≥ p is well-defined by Lemma D.1.1. Thus sp is well-defined as well. By
Lemma 6.5.2, UP+(sp) ⊆ UP+(sp−1) for p > 1. This completes the induction.

By Theorem 6.8.4, sp is UP+-minimal such that sp, 0 |•◦≈ NF[∧i:b~s,k |•◦φi c≥p(φi ⊃ ψi)] for
every p ∈ P. Thus by Rule BOL6, ~s |lk |≈ Ol

kΓ.
Finally we show that ~s = 〈s1, . . . , sm+1〉, that is, that at most the first m + 1 setups

differ (modulo UP+). To see that, suppose the opposite. Then there is a “hole” in the
plausibility ranking, that is, there is some p and i such that p + 1 = b~s, k |•◦ φic , ∞, and
b~s, k |•◦ φ jc , p and for all j . Since b~s, k |•◦ φic = p + 1, sp, k |•◦≈ ¬φi , but sp+1, k •◦6|≈ ¬φi .
Then Ip = Ip+1, and hence sp = sp+1. Contradiction. �

Lemma D.1.3 For all p, let sp, 0 |•◦≈ NF[∧i:b~s,k |•◦φi c≥p(φi ⊃ ψi)] be UP+-minimal and
s ′p, 0 |•◦≈ NF[∧i:b~s ′,k |•◦φi c≥p(φi ⊃ ψi)] be UP+-minimal. Then UP+(sp) = UP+(s ′p).

195

D Long Proofs for BOL

Proof. We show by induction on p that UP+(sp) = UP+(s ′p) and that b~s, k |•◦ φic > p
iff b~s ′, k |•◦ φic > p for all i. For the base case consider p = 1. By Theorem 6.8.4,
UP+(s1) = UP+(gnd(NF[∧i(φi ⊃ ψi)])) = UP+(s ′1), and by Lemma 6.8.3, b~s, k |•◦ φic >
1 iff b~s ′, k |•◦ φic > 1.

For the induction step suppose the statement holds for p −1. By induction, b~s |•◦ φic ≥
p iff b~s ′ | φic ≥ p for all i (*). By Theorem 6.8.4,

UP+(sp) = UP+(gnd(NF[∧i:b~s,k |•◦φi c≥p(φi ⊃ ψi)])) and

UP+(s ′p) = UP+(gnd(NF[∧i:b~s ′,k |•◦φi c≥p(φi ⊃ ψi)])).

By (*), UP+(sp) = UP+(s ′p), and by Lemma 6.8.3, b~s, k |•◦ φic > p iff b~s ′, k |•◦ φic > p. �

Lemma D.1.4 Let ~s |≈ Ol
kΓ and ~s

′ |≈ Ol
kΓ. Then UP+(sp) = UP+(s ′p) for all p.

Proof. Follows immediately from Lemma D.1.3. �

Theorem 7.4.2 There is an ~s = 〈s1, . . . , sm+1〉 such that ~s |= Ol
kΓ, and for all ~s ′ |≈ Ol

kΓ,
UP+(sp) = UP+(s ′p) for all p.
Proof. Follows immediately from Lemmas D.1.2 and D.1.4. �

D.2 Proof of the monotonicity theorem

Here we prove Theorem 7.4.3, which claims that for proper+ knowledge bases the
effort in limited belief entailments is monotonic. For this section, again let Γ = {φ1 ⇒

ψ1, . . . , φm ⇒ ψm} be proper+.

Lemma D.2.1 Let ~s |≈ Bl
k(φ ⇒ ψ).

(i) ~s |≈ Bl
k+1(φ ⇒ ψ);

(ii) ~s |≈ Bl+1
k (φ ⇒ ψ).

Proof. By assumption, for all p ∈ P, if p ≤ b~s, l |•◦ φc, then sp, k |•◦≈ (φ ⊃ ψ). (i) holds since
by Lemma 6.5.4, for all p ∈ P, if p ≤ b~s, l |•◦ φc, then sp, k + 1 |•◦≈ (φ ⊃ ψ). (ii) holds since
by Lemmas 7.3.3 and 6.5.3 and the concentricity of ~s , for all p ∈ P, if p ≤ b~s, l + 1 |•◦ φc,
then sp, k |•◦≈ (φ ⊃ ψ). �

Lemma D.2.2 LetOl
k |≈ Bl ′

k′(φ ⇒ ψ).
(i) Ol

k+1Γ |≈ Bl ′
k′(φ ⇒ ψ);

(ii) Ol+1
k Γ |≈ Bl ′

k′(φ ⇒ ψ).

196

D.2 Proof of the monotonicity theorem

Proof. (i) Let ~s ′′ |≈ Ol
k+1Γ. Then by Rule BOL6, ~s ′′ = ~s |lk+1 for some ~s such that for all

p, sp is UP+-minimal such that sp, 0 |•◦≈ NF[∧i:b~s,k+1 |•◦φi c≥p(φi ⊃ ψi)]. By Lemma D.1.2
there is an ~s ′′′ such that ~s ′′′ |≈ Ol

kΓ. Then by Rule BOL6, ~s ′′′ = ~s ′ |lk for some ~s ′ such
that for all p, s ′p is UP+-minimal such that s ′p, 0 |•◦≈ NF[∧i:b~s ′,k |•◦φi c≥p(φi ⊃ ψi)]. We first
show by induction on p that, if ~s ′ is l

k -bound-consistent at 1, . . . , p, then ~s is l
k+1-bound-

consistent at 1, . . . , p and UP+(sp) = UP+(s ′p), and otherwise UP+(sp) ⊇ UP+(s ′p).
Afterwards we prove that if ~s ′ |lk |≈ Bl ′

k′(φ ⇒ ψ), which holds by assumption, then also
~s |lk+1 |≈ Bl ′

k′(φ ⇒ ψ).
The base case is trivial. For the induction step suppose the claim holds for p − 1.

First suppose ~s ′ is l
k -bound-consistent at 1, . . . , p. Then by induction and Lemmas 7.3.3,

D.1.1, and 6.8.3 and l
k -bound-consistency of ~s ′, b~s, k + 1 |•◦ φic ≥ p iff b~s ′, k |•◦ φic ≥ p.

Moreover, by induction and Lemmas D.1.1 and 6.8.3, b~s, l |•◦ φic ≥ p iff b~s ′, l |•◦ φic ≥ p.
Thus and by induction, ~s is l

k+1-bound-consistent at 1, . . . , p, and by Theorem 6.8.4,
UP+(sp) = UP+(s ′p). Now suppose ~s ′ is not l

k -bound-consistent at some p ′ ≤ p. Then
by induction and Lemmas 7.3.3, D.1.1, and 6.8.3, b~s, k + 1 |•◦ φic ≥ p if b~s ′, k |•◦ φic ≥ p.
Thus by Theorem 6.8.4, UP+(sp) ⊇ UP+(s ′p).

Now we show the entailment ~s |lk+1 |≈ Bl ′
k′(φ ⇒ ψ). Let j be maximal such that ~s ′ is

l
k -bound-consistent at 1, . . . , j . Observe that by the above induction, UP+((~s |lk+1)p) =
UP+((~s ′ |lk)p) for all p ≤ j (*), and UP+((~s |lk+1)p) ⊇ UP+((~s ′ |lk)p′) for all p > j and
p ′ > j (**).

Now by assumption, ~s ′ |lk |≈ Bl ′
k′(φ ⇒ ψ). Then for all p, if p ≤ b~s ′ |lk, l ′ |•◦ φc, then

(~s ′ |lk)p, k ′ |•◦≈ (φ ⊃ ψ). If b~s ′ |lk, l ′ |•◦ φc ≤ j , then by (*) and Lemma 6.8.3, for all p, if
p ≤ b~s |lk+1, l ′ |•◦ φc, then (~s |lk+1)p, k ′ |•◦≈ (φ ⊃ ψ). Otherwise, by (**) and Lemma 6.5.3
and 6.8.3, for all p, (~s |lk+1)p, k ′ |•◦≈ (φ ⊃ ψ). Thus in either case, ~s |lk+1 |≈ Bl ′

k′(φ ⇒ ψ).
(ii) Let ~s ′′ |≈ Ol+1

k Γ. Then by Rule BOL6, ~s ′′ = ~s |l+1k for some ~s such that for all p,
sp is UP+-minimal such that sp, 0 |•◦≈ NF[∧i:b~s,k |•◦φi c≥p(φi ⊃ ψi)]. By Lemma D.1.2 there
is an ~s ′′′ such that ~s ′′′ |≈ Ol

kΓ. Then by Rule BOL6, ~s ′′′ = ~s ′ |lk for some ~s ′ such that for
all p, s ′p is UP+-minimal such that s ′p, 0 |•◦≈ NF[∧i:b~s ′,k |•◦φi c≥p(φi ⊃ ψi)]. We first show by
induction on p that, if ~s ′ is l

k -bound-consistent at 1, . . . , p, then ~s is l+1
k -bound-consistent

at 1, . . . , p and UP+(sp) = UP+(s ′p), and otherwise UP+(sp) ⊇ UP+(s ′p). Then we prove
that if ~s ′ |lk |≈ Bl ′

k′(φ ⇒ ψ), which holds by assumption, then also ~s |l+1k |≈ Bl ′
k′(φ ⇒ ψ).

The base case is trivial. For the induction step suppose the claim holds for p − 1. First
suppose ~s ′ is l

k -bound-consistent at 1, . . . , p. Then by induction and Lemmas D.1.1 and
6.8.3, b~s, k |•◦ φic ≥ p iff b~s ′, k |•◦ φic ≥ p. Moreover by induction and Lemmas 7.3.3,
D.1.1, and 6.8.3 and l

k -bound-consistency of ~s ′, b~s, l + 1 |•◦ φic ≥ p iff b~s ′, l |•◦ φic ≥ p.
Thus and by induction, ~s is l+1

k -bound-consistent at 1, . . . , p, and by Theorem 6.8.4,

197

D Long Proofs for BOL

UP+(sp) = UP+(s ′p). Now suppose ~s ′ is not l
k -bound-consistent at some p ′ ≤ p. Then

by induction and Lemmas D.1.1 and 6.8.3, b~s, k |•◦ φic ≥ p if b~s ′, k |•◦ φic ≥ p. Thus by
Theorem 6.8.4, UP+(sp) ⊇ UP+(s ′p).

Let j be maximal such that ~s ′ is l
k -bound-consistent at 1, . . . , j . Observe that by the

above induction, UP+((~s |l+1k)p) = UP+((~s ′ |lk)p) for all p ≤ j , and UP+((~s |l+1k)p) ⊇
UP+((~s ′ |lk)p′) for all p > j and p ′ > j (**).

Now by assumption, ~s ′ |lk |≈ Bl ′
k′(φ ⇒ ψ). Then for all p, if p ≤ b~s ′ |lk, l ′ |•◦ φc, then

(~s ′ |lk)p, k ′ |•◦≈ (φ ⊃ ψ). If b~s ′ |lk, l ′ |•◦ φc ≤ j , then by (*) and Lemma 6.8.3, for all p, if
p ≤ b~s |lk, l ′ |•◦ φc, then (~s |lk)p, k ′ |•◦≈ (φ ⊃ ψ). Otherwise, by (**) and Lemma 6.5.3 and
6.8.3, for all p, (~s |lk)p, k ′ |•◦≈ (φ ⊃ ψ). Thus in either case, ~s |lk |≈ Bl ′

k′(φ ⇒ ψ). �

Theorem 7.4.3 If Ol
kΓ |≈ Bl ′

k′(φ ⇒ ψ), then Ol̃
k̃
Γ |≈ Bl̃ ′

k̃′
(φ ⇒ ψ) for all k̃ ≥ k, l̃ ≥ l ,

k̃ ′ ≥ k ′, l̃ ′ ≥ l .

Proof. Follows from Lemmas D.2.1 and D.2.2 by an easy induction on k, l , k ′, l ′. �

D.3 Proof of the soundness theorem

In this appendix we prove that belief entailments with proper+knowledge bases in BOL
are sound with respect to BO, Theorem 7.4.4. For this section, let π and Γ = {φ1 ⇒

ψ1, . . . , φm ⇒ ψm} be proper+.

Lemma D.3.1 π |= φ iff UP+(gnd(π)) |= φ.
Proof. Suppose π =

∧
∀~x j c j . Then w |= π iff w |= c j

~x j
~n for all ~n for all j iff w |= c for

all c ∈ gnd(π) iff (by Lemma 6.3.5) w |= c for all c ∈ UP+(gnd(π)). �

Lemma D.3.2 Suppose ~e is such that w ∈ ep iff w |= ∧i:b~e | φi c≥p(φi ⊃ ψi). Suppose ~s is
such that sp is UP+-minimal such that sp, 0 |•◦≈ NF[∧i:b~s,k |•◦φi c≥p(φi ⊃ ψi)]. Then

(i) b~s, k ′ |•◦ φc ≤ b~e | φc;
(ii) if sp, k ′ |•◦≈ φ for all p ∈ P, then w |= φ for all w ∈ ep and p ∈ P.

Proof. (i) We show by induction on p that b~s, k ′ |•◦ φc ≥ p implies b~e | φc ≥ p. The base
case is trivial. For the induction step suppose b~s, k ′ |•◦ φc ≥ p. By Lemma D.1.1, sp′, k ′ |•◦≈
¬φ for all p ′ < p. By Theorem 6.8.4, UP+(sp′) = UP+(gnd(NF[∧i:b~s,k |•◦φi c≥p′(φi ⊃ ψi)]))
for all p ′ < p. By Lemma 6.8.3 and Theorem 6.5.1, UP+(gnd(NF[∧i:b~s,k |•◦φi c≥p′(φi ⊃
ψi)])) |= ¬φ for all p ′ < p. By Lemma D.3.1 and Theorem 6.9.2,

∧
i:b~s,k |•◦φi c≥p′(φi ⊃

ψi) |= ¬φ for all p ′ < p. By induction, b~s, k |•◦ φic ≥ p ′ implies b~e | φic ≥ p ′ for all
p ′ < p. Thus

∧
i:b~e | φi c≥p′(φi ⊃ ψi) |= ¬φ for all p ′ < p. Thus b~e | φc ≥ p.

198

D.3 Proof of the soundness theorem

(ii) Suppose sp, k ′ |•◦≈ φ for all p ∈ P. In particular, sm+1, k ′ |•◦≈ φ. By Theorem 6.8.4,
UP+(sm+1) = UP+(gnd(NF[∧i:b~s,k |•◦φi c≥m+1(φi ⊃ ψi)])). By Lemma 6.8.3 and Theo-
rem 6.5.1, UP+(gnd(NF[∧i:b~s,k |•◦φi c≥m+1(φi ⊃ ψi)])) |= φ. By Lemma D.3.1 and Theo-
rem 6.9.2,

∧
i:b~s,k |•◦φi c≥m+1(φi ⊃ ψi) |= φ. By (i), b~s, k |•◦ φic ≥ m + 1 implies b~e | φic ≥

m + 1. Thus
∧

i:b~e | φi c≥m+1(φi ⊃ ψi) |= φ. Thus w |= φ for all w ∈ em+1. Since ep ⊆ em+1
for all p ∈ P by Theorem 4.5.3, w |= φ for all p ∈ P and w ∈ ep . �

Lemma D.3.3 Suppose ~e is such that w ∈ ep iff w |= ∧i:b~e | φi c≥p(φi ⊃ ψi). Suppose ~s
is such that sp is UP+-minimal such that sp, 0 |•◦≈ NF[∧i:b~s,k |•◦φi c≥p(φi ⊃ ψi)]. Suppose ~s is
l
k -bound-consistent at 1, . . . , p. Then

(i) b~s, l ′ |•◦ φc ≥ b~e | φc;
(ii) if sp, k ′ |•◦≈ φ, then w |= φ for all w ∈ ep ;

(iii) if sp, l ′ •◦6|≈ φ, then w 6|= φ for some w ∈ ep .

Proof. Note that to show (i) it suffices to establish that b~e | φc ≥ p implies b~s, l ′ |•◦ φc ≥
p for all p ∈ P. We prove this along with (ii) and (iii) by induction on p. The
base case for (i) is trivially true. As for (ii) and (iii), s1 is UP+-minimal such that
s1, 0 |•◦≈ NF[∧i(φi ⊃ ψi)]. By Theorem 6.8.4, UP+(s1) = UP+(gnd(NF[∧i(φi ⊃ ψi)])). If
s1, k ′ |•◦≈ φ, then by Lemma 6.8.3 and Theorem 6.5.1, UP+(gnd(NF[∧i(φi ⊃ ψi)])) |= φ,
and by Lemma D.3.1 and Theorem 6.9.2,

∧
i(φi ⊃ ψi) |= φ, and thus w |= φ

for all w ∈ e1; hence (ii) holds. If s1, l ′ •◦6|≈ φ, then by Lemma 6.8.3 and Theo-
rem 6.7.1, UP+(gnd(NF[∧i(φi ⊃ ψi)])) 6|= φ, and by Lemma D.3.1 and Theorem 6.9.2,∧

i(φi ⊃ ψi) 6|= φ, and thus w 6|= φ for some w ∈ e1; hence (iii) holds.
For the induction step, suppose the lemma holds for p − 1. Suppose b~s, l ′ |•◦ φc < p.

Then sp′, l ′ •◦6|≈ ¬φ for some p ′ < p. By induction and (iii), w 6|= ¬φ for some w ∈ ep′
and for some p ′ < p. Thus b~e | φc < p; so (i) holds. As for (ii) and (iii), sp is UP+-
minimal such that sp, 0 |•◦≈ NF[∧i:b~s,k |•◦φi c≥p(φi ⊃ ψi)]. For one thing, b~s, k |•◦ φic ≥ p
only if (Lemma D.3.2) b~e | φic ≥ p. For another, b~s, k |•◦ φic < p (by assumption)
b~s, l |•◦ φic < p only if (by (i)) b~e | φic < p. Hence, b~s, k |•◦ φic ≥ p iff b~e | φic ≥ p.
Thus sp is UP+-minimal such that sp, 0 |•◦≈ NF[∧i:b~e | φi c≥p(φi ⊃ ψi)]. By Theorem 6.8.4,
UP+(sp) = UP+(gnd(NF[∧i:b~e |•◦φi c≥p(φi ⊃ ψi)])). If sp, k ′ |•◦≈ φ, then by Lemma 6.8.3 and
Theorem 6.5.1, UP+(gnd(NF[∧i:b~e |•◦φi c≥p(φi ⊃ ψi)])) |= φ, and by Lemma D.3.1 and
Theorem 6.9.2,

∧
i:b~e |•◦φi c≥p(φi ⊃ ψi) |= φ, and thus w |= φ for all w ∈ ep ; hence (ii) holds.

If sp, l ′ •◦6|≈ φ, then by Lemma 6.8.3 and Theorem 6.7.1, UP+(gnd(NF[∧i:b~e |•◦φi c≥p(φi ⊃
ψi)])) 6|= φ, and by Lemma D.3.1 and Theorem 6.9.2,

∧
i:b~e |•◦φi c≥p(φi ⊃ ψi) 6|= φ, and thus

w 6|= φ for some w ∈ ep ; hence (iii) holds. �

199

D Long Proofs for BOL

Theorem 7.4.4 IfOl
kΓ |≈ Bl ′

k′(φ ⇒ ψ), thenOΓ |= B(φ ⇒ ψ).
Proof. Let Ol

kΓ |≈ Bl ′
k′(φ ⇒ ψ), ~e |= OΓ. By Lemma D.1.2, there is an ~s |≈ Ol

kΓ.
By Rule BOL6, ~s = ~s ′ |lk for some ~s ′ whose setups s ′p are UP+-minimal such that
s ′p, 0 |•◦≈ NF[∧i:b~s ′,k |•◦φi c≥p(φi ⊃ ψi)].

First suppose~s ′ is l
k -bound-consistent at 1, . . . , b~s, l ′ |•◦ φc. ThenOl

kΓ |≈ Bl ′
k′(φ ⇒ ψ) iff

(by assumption) for all p ∈ P with p ≤ b~s, l ′ |•◦ φc, sp, k ′ |•◦≈ (φ ⊃ ψ) iff (by Lemma 6.8.3
and since UP+(sp) = UP+(s ′p) for all p ≤ b~s, l ′ |•◦ φc) for all p ∈ P with p ≤ b~s ′, l ′ |•◦ φc,
s ′p, k ′ |•◦≈ (φ ⊃ ψ) only if (by Lemma D.3.3) for all p ∈ P with p ≤ b~e | φc and w ∈ ep ,
w |= (φ ⊃ ψ) iff ~e |= B(φ ⇒ ψ).

Now suppose ~s ′ is not l
k -bound-consistent at some p∗ ≤ b~s, l ′ |•◦ φc. Note that if

~s = 〈s1, . . . , sp∗, . . . , s j〉 and ~s ′ = 〈s ′1, . . . , s ′j′〉, then UP+(sp∗) = UP+(sp∗+1) = . . . =

UP+(s j) = UP+(s ′j′) (*). Then Ol
kΓ |≈ Bl ′

k′(φ ⇒ ψ) iff (by assumption) for all p ∈ P with
p ≤ b~s, l ′ |•◦ φc, sp, k ′ |•◦≈ (φ ⊃ ψ) iff (by (*) and Lemmas 6.8.3 and 6.5.3) s ′p, k ′ |•◦≈ (φ ⊃ ψ)
for all p ∈ P only if (by Lemma D.3.2) w |= (φ ⊃ ψ) for all w ∈ ep and for all p ∈ P
only if ~e |= B(φ ⇒ ψ). �

D.4 Proof of the decidability theorem

In this appendix we prove the correctness of our decision procedure for belief entailments
in BOL, Theorem 7.5.4, and the complexity result Theorem 7.5.5. For this section, let
π and Γ = {φ1 ⇒ ψ1, . . . , φm ⇒ ψm} be proper+.

Lemma D.4.1 Let N contain the names from Γ plusmax{k, l } ·v+v names for v ≥ |Γ|w.
Then a sequence of proper+π1, . . . , π j with names names from Γ and v ≥ |πp |w exists such
that 〈gnd(π1), . . . , gnd(π j)〉 |≈ Ol

kΓ and 〈gndN (π1), . . . , gndN (π j)〉 = MOD[N , k, l , Γ].
Proof. Let πp = NF[∧i:b~s,k |•◦φi c≥p(φi ⊃ ψi)] where ~s is such that sp = gnd(πp) for every
p ∈ P. Then ~s and π1, . . . , π j are well-defined and ~s |lk |≈ Ol

kΓ by Lemma D.1.2. Let
~s ′ = 〈gndN (π1), . . . , gndN (π j)〉. We show by induction on p ∈ P that

(i) b~s, k |•◦ φic ≥ p iff p = 1 or S[N , s ′p−1, k,¬φi] = 1;

(ii) ~s is l
k -bound-consistent at p iff for all i,

max{S[N , gndN (πp′), k,¬φi] | p ′ < p} = max{C[N , gndN (πp′), l ,¬φi] | p ′ < p}.
By Lemma D.1.2, only the first m + 1 spheres of ~s differ (modulo UP+), and hence
the same holds for ~s ′. Thus and by (i), ~s ′ is precisely the ~s ′ from Definition 7.5.1.
Moreover, by (ii), the maximal p such that ~s is l

k -bound-consistent in the definition

200

D.4 Proof of the decidability theorem

of ~s |lk (Definition 7.3.2) matches p? in MOD[N , k, l , Γ] (Definition 7.5.1). Thus, since
sp = gnd(πp) iff s ′p = gndN (πp), the lemma follows once (i) and (ii) are proved.

The base case of the induction holds trivially. Now suppose the claim holds for p.
For the induction step for (i), b~s, k |•◦ φic ≥ p iff (by Lemma D.1.1) sp′, k |•◦≈ ¬φi for all
p ′ < p iff (by Lemmas 6.5.3 and 6.8.3) p = 1 or sp−1, k |•◦≈ ¬φi iff (by Theorem 6.8.7)
p = 1 or S[N , s ′p−1, k,¬φi] = 1.

For the induction step for (ii), ~s is l
k -bound-consistent at p iff {i | b~s, k |•◦ φic ≥

p} = {i | b~s, l |•◦ φic ≥ p} iff (by Lemma D.1.1) {i | sp′, k |•◦≈ ¬φi for all p ′ < p} =
{i | sp′, l |•◦≈ ¬φi for all p ′ < p} iff (by construction) {i | gnd(πp′), l |•◦≈ ¬φi for all
p ′ < p} = {i | gnd(πp′), k |•◦≈ ¬φi for all p ′ < p} iff (by Theorems 6.8.7 and 6.8.11) for all
i, max{S[N , gndN (πp′), k,¬φi] | p ′ < p} = max{C[N , gndN (πp′), l ,¬φi] | p ′ < p}. �

Theorem 7.5.4 Let N contain the names from Γ, φ, ψ plus max{k, l , k ′, l ′} · v +v names
for v ≥ |Γ|w and v ≥ |φ |w and v ≥ |ψ |w.
ThenOl

kΓ |≈ Bl ′
k′(φ ⇒ ψ) iff BEL[N , k, l , k ′, l ′, Γ, φ, ψ] = 1.

Proof. Suppose ~s = 〈s1, . . . , s j〉 such that ~s |≈ Ol
kΓ, which exists by Lemma D.1.2, and

~s ′ = 〈s ′1, . . . , s ′j′〉 = MOD[N , k, l , Γ]. Then Ol
kΓ |≈ Bl ′

k′(φ ⇒ ψ) iff (since ~s is unique
modulo UP+ by Lemma D.1.4, and by Lemma 6.8.3) for all p ∈ P, if p ≤ b~s, l ′ |•◦ φc,
then sp, k ′ |•◦≈ (φ ⊃ ψ) iff (by Lemma 6.8.3) sp′, k ′ |•◦≈ (φ ⊃ ψ) for all p ′ ≤ min{p |
sp, l ′ |•◦≈ ¬φ or p = j} iff (by Lemma 6.5.3) sp′, k ′ |•◦≈ (φ ⊃ ψ) for p ′ = min{p | sp, l ′ |•◦≈
¬φ or p = j} iff (by Lemmas D.4.1 and 6.8.3) a sequence of proper+ π1, . . . , π j exists
with names from Γ and v ≥ |πp |w such that UP+(sp) = UP+(gnd(π)) and s ′p = gndN (π)
for all p ∈ P, and gnd(πp′), k ′ |•◦≈ (φ ⊃ ψ) for p ′ = min{p | gnd(πp), l ′ |•◦≈ ¬φ or p = j}
iff (by Theorems 6.8.7 and 6.8.11 and Lemma C.1.17) S[N , s ′p′, k ′, (φ ⊃ ψ)] = 1 for
p ′ = min{p | C[N , s ′p, l ′,¬φ] = 1 or p = j ′} iff BEL[N , k, l , k ′, l ′, Γ, φ, ψ] = 1. �

Next we turn to the complexity.

Lemma D.4.2 MOD[N , k, l , Γ] can be computed in time
O(m2 · (‖Γ‖ +max{k, l })2·(max{k,l }+1) · (‖Γ‖ + |N |)2·|Γ|w ·(max{k,l }+1) · 2k).
Proof. To compute ~s ′ in Definition 7.5.1, O(m2) instances of S[N , s ′p, k,¬φi] need to
be computed. Then to determine ~s we need to compute another O(m2) instances of
S[N , s ′p, k,¬φi] as well as C[N , s ′p, l ,¬φi]. Since |¬φi | ≤ ‖Γ‖ and by Lemmas C.1.18 and
C.1.19, the lemma follows. �

Lemma D.4.3 BEL[N , k, l , k ′, l ′, Γ, φ, ψ] can be computed in time

201

D Long Proofs for BOL

O(f (N , k, l , Γ) + g (N , Γ, l ′, φ) + ℎ(N , Γ, k ′, φ, ψ)) where

f (N , k, l , Γ) = m2 · (‖Γ‖ +max{k, l })2·(max{k,l }+1) · (‖Γ‖ + |N |)2·|Γ|w ·(max{k,l }+1) · 2k ;

g (N , Γ, l ′, φ) = m · (‖Γ‖ + l ′)l ′+1 · |¬φ |l ′+1 ·
(max{|Γ|w, |¬φ |w} + |N |)(max{|Γ|w,|¬φ |w}+|¬φ |w)·(l ′+1);

ℎ(N , Γ, k ′, φ, ψ) = (‖Γ‖ + k ′)k′+1 · |(φ ⊃ ψ)|k′+1 · |N |(|Γ|w+|(φ⊃ψ)|w)·(k′+1) · 2k′ .

Proof. Every setup of MOD[N , k, l , Γ] is gndN (π) for some π with |π | ∈ O(‖Γ‖). Hence
the complexities follow by Lemmas D.4.2, C.1.18, and C.1.19. �

Theorem 7.5.5 Suppose ‖Γ‖ ≥ |(φ ⊃ ψ)|. Let j = max{k, l } and j ′ = {k ′, l ′} and
i = max{ j, j ′}. ThenOl

kΓ |≈ Bl ′
k′(φ ⇒ ψ) can be determined in

O(m2 · (‖Γ‖ + j)2·(j+1) · ((|Γ|w + |(φ ⊃ ψ)|w + 1) · (‖Γ‖ + i + 1))2·|Γ|w ·(j+1) · 2k +
m · (‖Γ‖ + j ′) j′+1 · |(φ ⊃ ψ)| j′+1 ·

((|Γ|w + |(φ ⊃ ψ)|w) · (‖Γ‖ + i + 2))(max{|Γ|w,|Γ|w}+|(φ⊃ψ)|w)·(j′+2)).

Proof. Let N contain the names from Γ and (φ ⊃ ψ) plus (i + 1) ·max{|Γ|w, |(φ ⊃ ψ)|w}
additional names. We can estimate |N | ≤ |Γ|w · ‖Γ‖ + |φ ⊃ ψ |w · |(φ ⊃ ψ)| + (i + 1) ·
max{|Γ|w, |(φ ⊃ ψ)|w} ≤ |Γ|w · (‖Γ‖+ i+1)+ |φ ⊃ ψ |w · (|(φ ⊃ ψ)|+ i+1) ≤ (|Γ|w+ |(φ ⊃
ψ)|w) · (‖Γ‖ + i + 1). Then with Lemma D.4.3 the theorem follows. �

202

Bibliography

Adams, Ernest W. (1965). The Logic of Conditionals. In: Inquiry 8.1-4, pages 166–197
(cited on page 11).

Alchourrón, Carlos E., Peter Gärdenfors, and David Makinson (1985). On the logic
of theory change: Partial meet contraction and revision functions. In: Journal of
Symbolic Logic 50.2, pages 510–530 (cited on pages 14, 15, 104).

Anderson, Alan R. and Nuel D. Belnap (1975). Entailment: The Logic of Relevance and
Necessity. Princeton University Press (cited on page 29).

Aucher, Guillaume (2005). A combined system for update logic and belief revision.
In: Proceedings of the Seventh Pacific Rim International Workshop on Multi-Agents.
Springer, pages 1–17 (cited on page 26).

Baader, Franz and Werner Nutt (2003). Basic Description Logics. In: The Description
Logic Handbook: Theory, Implementation, and Applications. Edited by Franz Baader,
Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter Patel-Schneider,
pages 47–100 (cited on page 28).

Bacchus, Fahiem, Joseph Y. Halpern, and Hector J. Levesque (1999). Reasoning about
Noisy Sensors and Effectors in the Situation Calculus. In: Artificial Intelligence 111.1–
2, pages 171–208 (cited on pages 26, 73, 109).

Baltag, Alexandru and Sonja Smets (2008). A qualitative theory of dynamic interactive
belief revision. In: Texts in logic and games 3, pages 9–58 (cited on page 26).

Belle, Vaishak, Gerhard Lakemeyer, and Hector J. Levesque (2016). A first-order logic of
probability and only knowing in unbounded domains. In: Proceedings of the Thirtieth
AAAI Conference on Artificial Intelligence (AAAI) (cited on page 68).

Belnap, Nuel D. (1977). A useful four-valued logic. In: Modern uses of multiple-valued
logic. Springer, pages 5–37 (cited on page 29).

Ben-David, Shai and Yael Gafni (1989). All we believe fails in impossible worlds. In:
Bar-Ilan Symposium on Artificial Intelligence (cited on pages 9, 10).

Börger, Egon, Erich Grädel, and Yuri Gurevich (1997). The Classical Decision Problem.
Springer (cited on pages 27, 28).

203

Bibliography

Boutilier, Craig (1991). Inaccessible Worlds and Irrelevance: Preliminary Report. In: Pro-
ceedings of the Twelfth International Joint Conference on Artificial Intelligence (IJCAI),
pages 413–418 (cited on page 68).

Boutilier, Craig (1993). Revision Sequences and Nested Conditionals. In: Proceed-
ings of the Thirteenth International Joint Conference on Artificial Intelligence (IJCAI),
pages 519–525 (cited on pages 17, 67, 72, 111).

Boutilier, Craig (1996). Iterated revision and minimal change of conditional beliefs. In:
Journal of Philosophical Logic 25.3, pages 263–305 (cited on pages 17, 72).

Chappell, Timothy (2013). Plato on Knowledge in the Theaetetus. In: The Stanford
Encyclopedia of Philosophy. Edited by Edward N. Zalta (cited on page 7).

Church, Alonzo (1936a). A note on the Entscheidungsproblem. In: Journal of Symbolic
Logic 1, pages 40–41 (cited on pages 10, 26, 37).

Church, Alonzo (1936b). An unsolvable problem of elementary number theory. In:
American Journal of Mathematics 58, pages 345–363 (cited on pages 10, 26, 37).

Clark, Keith L. (1978). Negation as failure. In: Logic and data bases. Springer, pages 293–
322 (cited on page 23).

Claßen, Jens (2013). Planning and Verification in the Agent Language Golog. PhD thesis.
RWTH Aachen University (cited on page 45).

Claßen, Jens and Gerhard Lakemeyer (2006). Foundations for Knowledge-Based Pro-
grams using ES. In: Proceedings of the Tenth Conference on Principles of Knowledge
Representation and Reasoning (KR), pages 318–328 (cited on page 111).

Levesque, Hector J., Ray Reiter, Yves Lespérance, Fangzhen Lin, and Richard Scherl
(1997). GOLOG: A Logic Programming Language for Dynamic Domains. In: The
Journal of Logic Programming 31, pages 59–84 (cited on page 23).

Darwiche, Adnan and Judea Pearl (1997). On the logic of iterated belief revision. In:
Artificial Intelligence 89.1, pages 1–29 (cited on pages 15–17, 104, 106).

Davis, Martin, George Logemann, and Donald Loveland (1962). A Machine Program
for Theorem Proving. In: Communications of the ACM 5.7, pages 394–397 (cited on
page 118).

Davis, Martin and Hilary Putnam (1960). A Computing Procedure for Quantification
Theory. In: Journal of the ACM 7.3, pages 201–215 (cited on page 118).

De Giacomo, Giuseppe, Yves Lespérance, and Fabio Patrizi (2016). Bounded situa-
tion calculus action theories. In: Artificial Intelligence 237, pages 172–203 (cited on
page 29).

Delgrande, James P. (1995). A framework for logics of explicit belief. In: Computational
Intelligence 11.1, pages 47–88 (cited on pages 30, 31).

204

Bibliography

Delgrande, James P. and Yi Jin (2012). Parallel belief revision: Revising by sets of
formulas. In: Artificial Intelligence 176.1, pages 2223–2245 (cited on page 17).

Delgrande, James P. and Hector J. Levesque (2012). Belief Revision with Sensing and Fal-
lible Actions. In: Proceedings of the Thirteenth International Conference on Principles
of Knowledge Representation and Reasoning (KR), pages 148–157 (cited on pages 25,
26).

Demolombe, Robert and Maria del Pilar Pozos Parra (2006). Belief Revision in the
Situation Calculus Without Plausibility Levels. In: Proceedings of the Sixteenth In-
ternational Symposium on Methodologies for Intelligent Systems (ISMIS), pages 504–513
(cited on pages 25, 26).

Fagin, Ronald and Joseph Y. Halpern (1987). Belief, awareness, and limited reasoning.
In: Artificial intelligence 34.1, pages 39–76 (cited on page 31).

Fagin, Ronald, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi (1995). Reasoning
about knowledge. Volume 4. MIT press (cited on pages 7, 9, 40, 54).

Fang, Liangda and Yongmei Liu (2013). Multiagent Knowledge and Belief Change
in the Situation Calculus. In: Proceedings of the Twenty-Seventh AAAI Conference on
Artificial Intelligence (AAAI), pages 304–312 (cited on pages 25, 26).

Fang, Liangda, Yongmei Liu, and Ximing Wen (2015). On the Progression of Knowledge
and Belief for Nondeterministic Actions in the Situation Calculus. In: Proceedings
of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI),
pages 2955–2963 (cited on pages 25, 26).

Fikes, Richard E. and Nils J. Nilsson (1972). STRIPS: A new approach to the application
of theorem proving to problem solving. In: Artificial Intelligence 2.3, pages 189–208
(cited on pages 19, 22).

Fikes, Richard E. and Nils J. Nilsson (1993). STRIPS, a retrospective. In: Artificial
Intelligence 59.1, pages 227–232 (cited on page 19).

Finger, Joseph J. (1987). Exploiting constraints in design synthesis. PhD thesis. Stanford
University (cited on page 20).

Finger, Marcelo and Renata Wassermann (2007). Anytime approximations of classical
logic from above. In: Journal of Logic and Computation 17.1, pages 53–82 (cited on
page 32).

Gärdenfors, Peter (1978). Conditionals and Changes of Belief. In: Acta Philosophica
Fennica 30, pages 381–404 (cited on page 11).

Gärdenfors, Peter (1988). Knowledge in flux: Modeling the dynamics of epistemic states.
The MIT press (cited on page 104).

205

Bibliography

Gärdenfors, Peter and David Makinson (1988). Revisions of knowledge systems using
epistemic entrenchment. In: Proceedings of the Second Conference on Theoretical Aspects
of Reasoning about Knowledge (TARK), pages 83–95 (cited on page 15).

Gelfond, Michael and Vladimir Lifschitz (1993). Representing action and change by
logic programs. In: The Journal of Logic Programming 17.2, pages 301–321 (cited on
pages 19, 25).

Gelfond, Michael and Vladimir Lifschitz (1998). Action languages. In: Linköping Elec-
tronic Articles in Computer and Information Science 3.16 (cited on pages 19, 25).

Gödel, Kurth (1929). Über die Vollständigkeit des Logikkalküls. PhD thesis. University
of Vienna (cited on page 37).

Goldszmidt, Moisés and Judea Pearl (1996). Qualitative Probabilities for Default Reason-
ing, Belief Revision and Causal Modelling. In: Artificial Intelligence 84, pages 57–112
(cited on page 11).

Grädel, Erich, Phokion G. Kolaitis, and Moshe Y. Vardi (1997). On the decision problem
for two-variable first-order logic. In: Bulletin of symbolic logic 3.01, pages 53–69 (cited
on pages 27, 28).

Grove, Adam (1988). Two modellings for theory change. In: Journal of Philosophical
Logic 17.2, pages 157–170 (cited on pages 11, 15, 50).

Haas, Andrew R. (1987). The case for domain-specific frame axioms. In: The Frame
Problem in Artificial Intelligence. Edited by Frank M. Brown, pages 343–348 (cited on
pages 19, 23).

Halpern, Joseph Y. (1999). On the adequacy of modal logic. In: Electronic News Journal
on Reasoning about Actions and Change 3.3 (cited on page 7).

Halpern, Joseph Y. (2015). A modification of the Halpern-Pearl definition of causal-
ity. In: Proceedings of the Twenty-Fourth International Joint Conference on Artificial
Intelligence (IJCAI), pages 3022–3033 (cited on page 11).

Halpern, Joseph Y. and Gerhard Lakemeyer (1995). Levesque’s axiomatization of
only knowing is incomplete. In: Artificial Intelligence 74.2, pages 381–387 (cited on
page 10).

Halpern, Joseph Y., Yoram Moses, and Moshe Y. Vardi (1994). Algorithmic knowl-
edge. In: Proceedings of the Fifth Conference on Theoretical Aspects of Reasoning about
Knowledge (TARK), pages 255–266 (cited on page 31).

Halpern, Joseph Y. and Judea Pearl (2005). Causes and explanations: A structural-model
approach. Part I: Causes. In: British Journal for Philosophy of Science 56.4, pages 843–
887 (cited on page 11).

206

Bibliography

Helmert, Malte (2006). The Fast Downward Planning System. In: Journal of Artificial
Intelligence Research 26 (cited on page 19).

Hintikka, Jaakko (1962). Knowledge and Belief: An Introduction to the Logic of the Two
Notions. Cornell University Press (cited on pages 7, 38).

Hintikka, Jaakko (1975). Impossible possible worlds vindicated. In: Journal of Philosoph-
ical Logic 4.4, pages 475–484 (cited on pages 29, 133).

Hoffmann, Jörg and Bernhard Nebel (2001). The FF planning system: Fast plan gener-
ation through heuristic search. In: Journal of Artificial Intelligence Research 14 (cited
on page 19).

Humberstone, Lloyd (1987). The modal logic of ‘all and only’. In: Notre Dame Journal
of Formal Logic 28.2, pages 177–188 (cited on page 9).

Jin, Yi and Michael Thielscher (2004). Representing Beliefs in the Fluent Calculus.
In: Proceedings of the Sixteenth European Conference on Artificial Intelligence (ECAI),
pages 823–827 (cited on page 24).

Jin, Yi and Michael Thielscher (2007). Iterated belief revision, revised. In: Artificial
Intelligence 171.1, pages 1–18 (cited on page 16).

Kaplan, Aaron N. and Lenhart K. Schubert (2000). A computational model of belief.
In: Artificial Intelligence 120.1, pages 119–160 (cited on page 31).

Katsuno, Hirofumi and Alberto O. Mendelzon (1991). Propositional knowledge base
revision and minimal change. In: Artificial Intelligence 52.3, pages 263–294 (cited on
page 18).

Kern-Isberner, Gabriele (2001). Conditionals in Nonmonotonic Reasoning and Belief
Revision. Springer (cited on pages 11, 112).

Klassen, Toryn Q., Sheila A. McIlraith, and Hector J. Levesque (2015). Towards Trac-
table Inference for Resource-Bounded Agents. In: Proceedings of the Twelfth Inter-
national Symposium on Logical Formalizations of Commonsense Reasoning (Common-
sense) (cited on page 31).

Kleene, Stephen C. (2002). Mathematical logic. Courier Corporation (cited on pages 9,
34, 37).

Konolige, Kurt (1986). A Deduction Model of Belief. In: Research notes in Artificial
Intelligence (cited on page 31).

Kowalski, Robert (1992). Database updates in the event calculus. In: The Journal of Logic
Programming 12.1, pages 121–146 (cited on page 24).

Kowalski, Robert and Marek Sergot (1989). A logic-based calculus of events. In: Foun-
dations of knowledge base management, pages 23–55 (cited on pages 19, 24).

207

Bibliography

Kripke, Saul (1959). A Completeness Theorem in Modal Logic. In: Journal of Symbolic
Logic 24.1 (cited on pages 8, 38).

Kripke, Saul A. (1976). Is There a Problem About Substitutional Quantification? In:
Truth and Meaning. Edited by Gareth Evans and John McDowell. Oxford University
Press, pages 324–419 (cited on page 34).

Lakemeyer, Gerhard (1994). Limited reasoning in first-order knowledge bases. In: Arti-
ficial Intelligence 71.2, pages 213–255 (cited on page 30).

Lakemeyer, Gerhard (1996). Limited reasoning in first-order knowledge bases with full
introspection. In: Artificial Intelligence 84.1, pages 209–255 (cited on page 30).

Lakemeyer, Gerhard and Hector J. Levesque (1998). AOL: a logic of acting, sensing,
knowing, and only knowing. In: Proceedings of the Sixth International Conference on
Principles of Knowledge Representation and Reasoning (KR), pages 316–327 (cited on
page 42).

Lakemeyer, Gerhard and Hector J. Levesque (2002). Evaluation-based reasoning with
disjunctive information in first-order knowledge bases. In: Proceedings of the Eighth
Conference on Principles of Knowledge Representation and Reasoning (KR), pages 73–81
(cited on pages 30, 113, 131, 133, 139, 142).

Lakemeyer, Gerhard and Hector J. Levesque (2004). Situations, Si! Situation Terms,
No! In: Proceedings of the Ninth International Conference on Principles of Knowledge
Representation and Reasoning (KR), pages 516–526 (cited on pages 42, 45, 46).

Lakemeyer, Gerhard and Hector J. Levesque (2005). Only-knowing: Taking it beyond
autoepistemic reasoning. In: Proceedings of the Twentieth National Conference on Ar-
tificial Intelligence (AAAI), pages 633–638 (cited on pages 39, 67).

Lakemeyer, Gerhard and Hector J. Levesque (2009). A Semantical Account of Pro-
gression in the Presence of Defaults. In: Proceedings of the Twenty-First International
Joint Conference on Artificial Intelligence (IJCAI), pages 842–847 (cited on pages 22,
46, 101).

Lakemeyer, Gerhard and Hector J. Levesque (2011). A semantic characterization of a
useful fragment of the situation calculus with knowledge. In: Artificial Intelligence
175.1, pages 142–164 (cited on pages 19, 22, 23, 33, 42–46, 71, 80, 87, 101, 108, 110,
111, 158).

Lakemeyer, Gerhard and Hector J. Levesque (2013). Decidable Reasoning in a Logic of
Limited Belief with Introspection and Unknown Individuals. In: Proceedings of the
Twenty-Third International Joint Conference on Artificial Intelligence (IJCAI) (cited on
pages 30, 113, 114, 126, 131, 133, 142, 144).

208

Bibliography

Lakemeyer, Gerhard and Hector J. Levesque (2014). Decidable Reasoning in a Fragment
of the Epistemic Situation Calculus. In: Proceedings of the Fourteenth International
Conference on Principles of Knowledge Representation and Reasoning (KR), pages 468–
477 (cited on pages 30, 31, 113, 114, 119, 121, 131, 133, 142–144).

Lakemeyer, Gerhard and Hector J. Levesque (2016). Decidable Reasoning in a Logic of
Limited Belief with Function Symbols. In: Proceedings of the Fifteenth International
Conference on Principles of Knowledge Representation and Reasoning (KR). To appear
(cited on pages 30, 31, 113, 114, 131, 133, 142, 144).

Levesque, Hector J. (1984a). A logic of implicit and explicit belief. In: Proceedings
of the Fourth National Conference on Artificial Intelligence, pages 198–202 (cited on
pages 29–32).

Levesque, Hector J. (1984b). Foundations of a functional approach to knowledge
representation. In: Artificial Intelligence 23.2, pages 155–212 (cited on pages 8, 12, 33,
63, 65, 68, 98).

Levesque, Hector J. (1990). All I know: a study in autoepistemic logic. In: Artificial
Intelligence 42.2, pages 263–309 (cited on pages 9, 10, 13, 39, 67).

Levesque, Hector J. and Gerhard Lakemeyer (2001). The Logic of Knowledge Bases. MIT
Press (cited on pages 8, 10, 12, 13, 33–37, 39–41, 63, 65, 67, 68, 174, 176).

Levesque, Hector J. and Gerhard Lakemeyer (2008). Cognitive Robotics. In: Handbook
of Knowledge Representation. Edited by Frank Van Harmelen, Vladimir Lifschitz, and
Bruce Porter. Elsevier, pages 869–886 (cited on page 2).

Levesque, Hector J. and Ray Reiter (1998). High-level robotic control: Beyond planning.
In: AAAI Spring Symposium on Integrating Robotics Research. Volume 37 (cited on
page 2).

Levi, Isaac (1988). Iteration of Conditionals and the Ramsey Test. In: Synthese 76.1,
pages 49–81 (cited on page 67).

Lewis, David (1973). Counterfactuals. John Wiley & Sons (cited on pages 11, 15, 50, 67).
Lewis, David (1979). Counterfactual Dependence and Time’s Arrow. In: Noûs 13,

pages 455–476 (cited on page 11).
Libkin, Leonid (2013). Elements of finite model theory (cited on page 28).
Lifschitz, Vladimir, Leora Morgenstern, and David Plaisted (2008). Knowledge Rep-

resentation and Classical Logic. In: Handbook of Knowledge Representation. Edited
by Frank Van Harmelen, Vladimir Lifschitz, and Bruce Porter. Elsevier, pages 3–88
(cited on page 113).

209

Bibliography

Lin, Fangzhen (1995). Embracing Causality in Specifying the Indirect Effects of Actions.
In: Proceedings of the Fourteenth International Joint Conference on Artificial Intelli-
gence (IJCAI), pages 1985–1991 (cited on page 20).

Lin, Fangzhen (2008). Situation Calculus. In: Handbook of Knowledge Representation.
Edited by Frank Van Harmelen, Vladimir Lifschitz, and Bruce Porter. Elsevier,
pages 649–669 (cited on page 19).

Lin, Fangzhen and Ray Reiter (1994). Forget It! In: Proceedings of the AAAI Fall Sympo-
sium on Relevance, pages 154–159 (cited on pages 82, 90, 110).

Lin, Fangzhen and Ray Reiter (1997). How to progress a database. In: Artificial Intelli-
gence 92.1, pages 131–167 (cited on pages 22, 81, 82, 90, 91, 112).

Liu, Yongmei (2006). Tractable Reasoning in Incomplete First-order Knowledge Bases.
PhD thesis. University of Toronto (cited on pages 30, 113, 114, 128, 131, 133, 143).

Liu, Yongmei and Gerhard Lakemeyer (2009). On First-order Definability and Com-
putability of Progression for Local-effect Actions and Beyond. In: Proceedings of the
Twenty-First International Joint Conference on Artifical Intelligence (IJCAI), pages 860–
866 (cited on pages 22, 112).

Liu, Yongmei, Gerhard Lakemeyer, and Hector J. Levesque (2004). A Logic of Limited
Belief for Reasoning with Disjunctive Information. In: Proceedings of the Ninth In-
ternational Conference on Principles of Knowledge Representation and Reasoning (KR)
(cited on pages 30, 113–115, 128, 131, 133, 143).

Lynch, Christopher (2004). Unsound theorem proving. In: Proceedings of the Workshop
on Disproving: Non-Theorems, Non-Validity, Non-Provability, pages 1–12 (cited on
page 32).

McCarthy, John (1959). Programs with common sense. In: Proceedings of the Symposium
on Mechanization of Thought Processes. Edited by Marvin Minsky. Her Majesty’s
Stationary Office (cited on pages 7, 12, 19).

McCarthy, John (1963). Situations, Actions, and Causal Laws. Technical Report AI
Memo 2. AI Lab, Stanford University (cited on pages 19, 22, 41).

McCarthy, John (1977). Epistemological problems of artificial intelligence. In: Proceed-
ings of the Fifth International Conference on Principles of Knowledge Representation
and Reasoning (KR), pages 1038–1044 (cited on page 21).

McCarthy, John (1980). Circumscription—A Form of Non-Monotonic Reasoning. In:
Artificial Intelligence 13, pages 27–39 (cited on pages 20, 25).

McCarthy, John (1986). Applications of circumscription to formalizing common-sense
knowledge. In: Artificial Intelligence 28.1, pages 89–116 (cited on page 20).

210

Bibliography

McCarthy, John (1997). Modality, si! Modal logic, no! In: Studia Logica 59.1, pages 29–32
(cited on page 7).

McCarthy, John (2007). What Is Artificial Intelligence? Unpublished manuscript (cited
on page 1).

McCarthy, John and Patrick J. Hayes (1969). Some Philosophical Problems from the
Standpoint of Artificial Intelligence. In: Machine Intelligence. Volume 4. Edinburgh
University Press, pages 463–502 (cited on pages 20, 41).

McCarthy, John, Marvin Minsky, Nathan Rochester, and Claude Shannon (1955). A
Proposal for the Dartmouth Summer Research Project on Artificial Intelligence (cited
on page 1).

McDermott, Drew, Malik Ghallab, Adele Howe, Craig Knoblock, Ashwin Ram, Manu-
ela Veloso, Daniel Weld, and David Wilkins (1998). PDDL—The Planning Domain
Definition Language. Technical report (cited on page 19).

McIlraith, Sheila A. (2000). Integrating Actions and State Constraints: A Closed-Form
Solution to the Ramification Problem (Sometimes). In: Artificial Intelligence 116.1-2,
pages 87–121 (cited on page 20).

Miller, Rob, Leora Morgenstern, and Theodore Patkos (2013). Reasoning About Knowl-
edge and Action in an Epistemic Event Calculus. In: Proceedings of the Eleventh
International Symposium on Logical Formalizations of Commonsense Reasoning (Com-
monsense) (cited on page 25).

Moore, Robert C. (1985). Semantical considerations on nonmonotonic logic. In: Artifi-
cial Intelligence 25.1, pages 75–94 (cited on pages 39, 67).

Mortimer, Michael (1975). On languages with two variables. In: Mathematical Logic
Quarterly 21.1, pages 135–140 (cited on page 28).

Nardi, Daniele and Ronald J. Brachman (2003). An Introduction to Description Logics.
In: The Description Logic Handbook: Theory, Implementation, and Applications. Edited
by Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter
Patel-Schneider, pages 5–44 (cited on page 28).

Nayak, Abhaya C. (1994). Iterated belief change based on epistemic entrenchment. In:
Erkenntnis 41.3, pages 353–390 (cited on pages 17, 72).

Nayak, Abhaya C., Maurice Pagnucco, and Pavlos Peppas (2003). Dynamic Belief
Revision Operators. In: Artificial Intelligence 146, pages 193–228 (cited on pages 15–
17, 72, 104, 107).

Neisser, Ulric, Gwyneth Boodoo, Thomas J. Bouchard Jr., A. Wade Boykin, Nathan
Brody, Stephen J. Ceci, Diane F. Halpern, John C. Loehlin, Robert Perloff, Robert

211

Bibliography

J. Sternberg, and Susana Urbina (1996). Intelligence: knowns and unknowns. In:
American psychologist 51.2, page 77 (cited on page 1).

Patel-Schneider, Peter F. (1990). A decidable first-order logic for knowledge representa-
tion. In: Journal of automated reasoning 6.4, pages 361–388 (cited on page 30).

Pearl, Judea (1990). System Z: A natural ordering of defaults with tractable applications
to nonmonotonic reasoning. In: Proceedings of the Third Conference on Theoretical
Aspects of Reasoning about Knowledge (TARK), pages 121–135 (cited on pages 11, 49,
61–63, 68, 151).

Pearl, Judea (2014). Probabilistic reasoning in intelligent systems: networks of plausible
inference. Morgan Kaufmann (cited on page 68).

Pednault, Edwin P. D. (1989). ADL: Exploring the middle ground between STRIPS and
the situation calculus. In: Proceedings of the First International Conference on Principles
of Knowledge Representation and Reasoning (KR). Morgan Kaufmann, pages 324–332
(cited on pages 19, 23).

Peppas, Pavlos (2008). Belief Revision. In:Handbook of Knowledge Representation. Edited
by Frank Van Harmelen, Vladimir Lifschitz, and Bruce Porter. Elsevier, pages 317–
359 (cited on pages 13, 14, 16, 18).

Reiter, Ray (1980). A logic for default reasoning. In: Artificial Intelligence 13.1, pages 81–
132 (cited on pages 39, 67).

Reiter, Ray (1991). The Frame Problem in the Situation Calculus: A Simple Solution
(sometimes) and a Completeness Result for Goal Regression. In: Artificial Intelligence
and Mathematical Theory of Computation. Edited by Vladimir Lifschitz. Academic
Press, pages 359–380 (cited on pages 19–23, 41, 80, 81, 86).

Reiter, Ray (2001). Knowledge in Action: Logical Foundations for Specifying and Imple-
menting Dynamical Systems. The MIT Press (cited on pages 2, 19, 21, 23, 41, 45, 73,
80, 81, 86).

Rott, Hans (2009). Shifting Priorities: Simple Representations for Twenty-Seven Iterated
Theory Change Operators. In: Towards Mathematical Philosophy. Edited by David
Makinson, Jacek Malinowski, and Heinrich Wansing. Volume 28. Springer, pages 269–
296 (cited on page 17).

Sattler, Ulrike, Diego Calvanese, and Ralf Molitor (2003). Relationships with other
Formalisms. In: The Description Logic Handbook: Theory, Implementation, and Appli-
cations. Edited by Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele
Nardi, and Peter Patel-Schneider, pages 142–183 (cited on page 28).

Schaerf, Marco and Marco Cadoli (1995). Tractable reasoning via approximation. In:
Artificial Intelligence 74.2, pages 249–310 (cited on pages 30, 32).

212

Bibliography

Scherl, Richard and Hector J. Levesque (2003). Knowledge, Action, and the Frame
Problem. In: Artificial Intelligence 144.1–2, pages 1–39 (cited on pages 22, 23, 41, 72,
109, 110).

Schubert, Lenhart K. (1989). Monotonic solution of the frame problem in the situation
calculus: an efficient method for worlds with fully specified actions. In: Knowledge
Representation and Defeasible Reasoning. Edited by Henry E. Kyburg Jr., Ronald P.
Loui, and Greg N. Carlson. Kluwer, pages 23–67 (cited on pages 19, 23).

Schwering, Christoph and Gerhard Lakemeyer (2014). A Semantic Account of Iterated
Belief Revision in the Situation Calculus. In: Proceedings of the Twenty-First European
Conference on Artificial Intelligence (ECAI), pages 801–806 (cited on pages 49, 71, 217).

Schwering, Christoph and Gerhard Lakemeyer (2015). Projection in the Epistemic
Situation Calculus with Belief Conditionals. In: Proceedings of the Twenty-Ninth AAAI
Conference on Artificial Intelligence (AAAI), pages 1583–1589 (cited on pages 49, 71,
217).

Schwering, Christoph and Gerhard Lakemeyer (2016). Decidable Reasoning in a First-
Order Logic of Limited Conditional Belief. In: Proceedings of the Twenty-First Euro-
pean Conference on Artificial Intelligence (ECAI). To appear (cited on pages 113, 133,
217).

Schwering, Christoph, Gerhard Lakemeyer, and Maurice Pagnucco (2015). Belief Re-
vision and Progression of Knowledge Bases in the Epistemic Situation Calculus. In:
Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelli-
gence (IJCAI), pages 3214–3220 (cited on pages 67, 71, 112, 217).

Scott, Dana (1962). A decision method for validity of sentences in two variables. In:
Journal of Symbolic Logic 27.377, page 74 (cited on page 28).

Shapiro, Steven, Maurice Pagnucco, Yves Lespérance, and Hector J. Levesque (2011). Iter-
ated belief change in the situation calculus. In: Artificial Intelligence 175.1, pages 165–
192 (cited on pages 25, 26, 104, 109, 110).

Spohn, Wolfgang (1988). Ordinal Conditional Functions: A Dynamic Theory of Epis-
temic States. In: Causation in Decision, Belief Change, and Statistics. Edited by William
L. Harper and Brian Skyrms, pages 105–134 (cited on pages 17, 26, 112).

Stalnaker, Robert C. (1968). A theory of conditionals. In: Studies in Logical Theory.
Oxford University Press, pages 98–112 (cited on pages 11, 67).

Tarski, Alfred (1935). Der Wahrheitsbegriff in den formalisierten Sprachen. In: Studia
Philosophica 1, pages 261–405 (cited on page 34).

213

Bibliography

Tarski, Alfred (1944). The Semantic Conception of Truth and the Foundations of
Semantics. In: Philosophy and Phenomenological Research 4.3, pages 341–376 (cited on
page 34).

Thielscher, Michael (1997). Ramifications and causality. In: Artificial Intelligence 89.1,
pages 317–364 (cited on page 21).

Thielscher, Michael (1998). Introduction to the fluent calculus. In: Linköping Electronic
Articles in Computer and Information Science 3.14 (cited on pages 19, 24).

Thielscher, Michael (1999). From situation calculus to fluent calculus: State update
axioms as a solution to the inferential frame problem. In: Artificial Intelligence 111.1,
pages 277–299 (cited on page 24).

Thielscher, Michael (2000). Representing the Knowledge of a Robot. In: Proceedings
of the Seventh International Conference on Principles of Knowledge Representation and
Reasoning (KR), pages 109–120 (cited on page 24).

Thielscher, Michael (2005). FLUX: A Logic Programming Method for Reasoning Agents.
In: Theory and Practice of Logic Programming 5.4–5, pages 533–565 (cited on page 24).

Turing, Alan (1936). On computable numbers, with an application to the Entschei-
dungsproblem. In: Proceedings of the London Mathematical Society 42, pages 230–265
(cited on pages 10, 26, 37).

Van Benthem, Johan (2007). Dynamic logic for belief revision. In: Journal of Applied
Non-Classical Logics 17.2, pages 129–155 (cited on pages 26, 111).

Van Ditmarsch, Hans (2005). Prolegomena to dynamic logic for belief revision. In:
Synthese 147.2, pages 229–275 (cited on page 26).

Van Ditmarsch, Hans, Wiebe van der Hoek, and Barteld Pieter Kooi (2007). Dynamic
epistemic logic. Springer (cited on page 26).

Vardi, Moshe Y. (1986). On epistemic logic and logical omniscience. In: Proceedings
of the First Conference on Theoretical Aspects of Reasoning about Knowledge (TARK),
pages 293–305 (cited on page 31).

Vassos, Stavros, Gerhard Lakemeyer, and Hector J. Levesque (2008). First-Order Strong
Progression for Local-Effect Basic Action Theories. In: Proceedings of the Eleventh In-
ternational Conference on Principles of Knowledge Representation and Reasoning (KR),
pages 662–672 (cited on pages 22, 112).

Vassos, Stavros and Hector J. Levesque (2013). How to progress a database III. In:
Artificial Intelligence 195, pages 203–221 (cited on pages 22, 81).

Waldinger, Richard (1981). Achieving several goals simultaneously. In: Readings in
artificial intelligence. Edited by Bonnie Lynn Webber and Nils J. Nilsson. Morgan
Kaufmann, pages 250–271 (cited on page 21).

214

Bibliography

Zhang, Hantao and Mark E. Stickel (1996). An efficient algorithm for unit propagation.
In: Proceedings of the Fourth International Symposium on Artificial Intelligence and
Mathematics (cited on pages 189, 190).

215

Statement of Originality

Parts of this thesis have been published in the following papers.

Christoph Schwering and Gerhard Lakemeyer (2014). A Semantic Account of Iterated
Belief Revision in the Situation Calculus. In: Proceedings of the Twenty-First European
Conference on Artificial Intelligence (ECAI), pages 801–806.

Christoph Schwering and Gerhard Lakemeyer (2015). Projection in the Epistemic
Situation Calculus with Belief Conditionals. In: Proceedings of the Twenty-Ninth AAAI
Conference on Artificial Intelligence (AAAI), pages 1583–1589.

Christoph Schwering, Gerhard Lakemeyer, and Maurice Pagnucco (2015). Belief Re-
vision and Progression of Knowledge Bases in the Epistemic Situation Calculus. In:
Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelli-
gence (IJCAI), pages 3214–3220.

Christoph Schwering and Gerhard Lakemeyer (2016). Decidable Reasoning in a First-
Order Logic of Limited Conditional Belief. In: Proceedings of the Twenty-First Euro-
pean Conference on Artificial Intelligence (ECAI). To appear.

I carried out this research under the supervision and guidance of my co-authors, Gerhard
Lakemeyer and Maurice Pagnucco. To each paper I contributed the question under
investigation, drafted the solution, and carried out most of the technical work and of
the presentation.

217

	Introduction
	Motivation
	Contributions
	Outline

	Relevant Literature
	Knowledge and belief
	Modal logic for knowledge
	Conditionals
	A functional view

	Belief revision
	Postulates for belief revision
	Postulates for iterated belief revision
	Revision operators
	Belief update

	Actions and change
	Problems
	The projection problem
	Theories of action
	Actions and belief revision

	Decidable first-order reasoning
	Restricting the language
	Restricting inference

	Logical Foundations
	Standard names
	The language L
	The semantics of L
	Relationship to classical first-order logic
	Modelling knowledge
	The language OL
	The semantics of OL
	Modelling actions
	The language ES
	The semantics of ES
	Discussion

	Conditional Belief and Only-Believing
	Conditional belief versus knowledge
	The language BO
	The semantics of BO
	Properties of conditional belief
	Unique-model property of only-believing
	Relationship to OL
	Relationship to System Z
	Representation theorem
	Discussion

	Actions and Belief Revision
	Informing versus sensing
	The language ESB
	The semantics of ESB
	The belief projection problem
	Projection by regression
	Forgetting in only-believing
	Revision of only-believing
	Projection by progression
	Representation theorem
	Belief revision postulates
	Sensing in ESB
	Discussion

	Limited Objective Reasoning
	Why incomplete and unsound reasoning matter
	The language L-
	Setups, unit propagation, and subsumption
	A sound semantics of L-
	Soundness and eventual completeness
	A complete semantics of L-
	Completeness and eventual soundness
	Decision procedures for proper+ knowledge bases
	A normal form
	Discussion

	Limited Conditional Belief
	Approximating plausibilities and spheres
	The language BOL
	The semantics of BOL
	Soundness for proper+ knowledge bases
	Decision procedure for proper+ knowledge bases
	Discussion

	Conclusion
	Summary
	Future Work

	Long Proofs for BO
	Proof of the OL embedding theorem
	Proof of the Z-ordering theorem

	Long Proofs for ESB
	Proof of the BO embedding theorem
	Proof of the regression theorems
	Proof of the revision theorems
	Proof of the progression theorems
	Proof of the representation theorems

	Long Proofs for L-
	Proof of the decidability theorems
	Proof of the normal form

	Long Proofs for BOL
	Proof of the unique-model property
	Proof of the monotonicity theorem
	Proof of the soundness theorem
	Proof of the decidability theorem

	Bibliography
	Statement of Originality

