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Chapter 1

Introduction

1.1 Motivation

In the future, cars are expected to drive more and more autonomously. This develop-
ment has been, and will be, gradually. For example, a driving assistance technology
called cruise control has undergone a steady improvement. Cruise control is intended
for highway traffic. Initially, it simply maintained a fixed speed set by the driver, then
it was extended to slow down the vehicle when the traffic demands it. Recent variants
of the system even control the steering wheel in order to keep the car in the lane.

Extrapolating this gradual development shows that it is unlikely that cars will suddenly
drive autonomously flawlessly in all situations. The first areas of application will
be rather simple scenarios such as highway traffic. When the autonomously driving
vehicle gets into a situation it cannot control, the driver needs to be adverted to
take over control of and responsibility for the car. Such situations may occur due to
construction zones or reckless human drivers, for example. Since it takes some time
for the human to be ready to drive the car (about three to five seconds), incontrollable
situations need to be recognized in advance.

This work is concerned with the problem of recognizing the plan of other traffic par-
ticipants. The word plan means a driver’s intention and the actions to achieve his or
her goal. If such plans could be recognized online, that is, while they are pursued and
while the associated actions are being carried out, possible future situations could be
predicted and they could evaluated by their risk potential.

In this thesis, typical behavior patterns of traffic participants are specified in terms
of programs written in a programming language specifically designed for this purpose.
By program, we mean an abstract specification of an agent’s behavior. For example,
such a program might state that to overtake another vehicle, a car needs to swing out,
pass the other car and it finally needs to go back into the lane. In contrast, a plan
denotes the concrete actions an agent has carried out or will carry out to achieve his
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or her goal.1 However, both terms are obviously closely related as a plan is a concrete
instantiation of an abstract program in a concrete situation.

As part of the trend to more sophisticated driver assistance systems, cars will be
equipped with more and more sensors to percept their environment. Further, car to
car communication will provide means to exchange sensor data. We assume that at
least each car’s position is known to the other cars.

Hence, a driver’s plan is recognized if the respective program can be executed in
harmony with the environment’s observations. The actual plan is exactly the chosen
execution of the program. Note that multiple different programs may explain the
observations, and even for a single program, there may be different ways to execute it
in accordance with the observations. The goal of this work is to define a semantics of a
programming language that serves this purpose, and to show how program execution
and observations can be incorporated.

The basis for the programming language to be defined is Golog (Levesque et al., 1997).
Golog is a high-level robot control language that provides the modeler with great
expressive power: it includes conditional statements, loops, and even nondeterministic
constructs. Based on the situation calculus (McCarthy and Hayes, 1969; Reiter, 1991),
Golog has a sound logical foundation. This has led to a number of dialects of Golog,
which will be exploited to form a new language.

1.2 Requirements

The programs that specify how drivers behave in traffic constitute the so-called plan
library. According to the convention from Section 1.1, the term should be “program
library” rather than “plan library.” However, we stick with “plan library” for historical
reasons.

The idea is to find a set of plans, one for each vehicle, from the plan library, where
each plan explains the observations made by a car using its sensors. We assume that
at least the global position of each vehicle is accessible. Then, the plans could be
extrapolated to determine whether or not a critical situation will occur.

There are multiple aspects of plan recognition in an automobile environment that we
want to look into:

Continuous Time. Since there are many physical values involved in the automobile
domain, time must be handled explicitly, that is, quantitatively. Furthermore,
continuous change is required so that, for example, the position of a car at a
certain point in time can be determined.

1An exception from this rule will be the term “plan library” in the upcoming section which simply
means a predefined set of programs and therefore should rather be “program library.”
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While observations are associated with explicit timestamps, the modeling lan-
guage should support a rather descriptive representation of time. That is, the
modeler should not be forced to write “change lane at time 50, pass the other
car and return to the original lane at time 100.” Instead, in the plan library,
time should be implicit such as in “change lane when you are near the other car,
pass it and change lane back when you are far enough ahead.”

Concurrency. There are two kinds of concurrency that need to be considered:

• Different actors act at the same time. For example, two cars might change
lanes simultaneously.

• Even isolated actors do things concurrently. For example, a driver should
indicate while changing the lane.

The first kind of concurrency is only used internally in the plan recognition
system. The second type, however, may be used by the modeler in programs of
the plan library.

Robustness. There is not one unique way to overtake a car, for instance. Therefore,
the plan recognition should be robust. At least the following kinds of robustness
exist:

• Time: Timing constraints should not be too fixed. Different drivers usually
change lanes at different points in time and distances in order to overtake
another car.

• Actions: In some cases, some actions might be left out in reality. For
example, indicating during a lane change might be skipped.

• Observations: Assume that the trace of a car during a lane change is de-
scribed by some function. In reality, drivers will not drive exactly on this
line. If there are only few observations, then timing robustness might ar-
range the actions so that they explain the observations. If there are more
observations than actions that should explain them, probably some kind of
tolerance towards data deviation is necessary. A further source of uncer-
tainty is sensor noise.

1.3 Approach

The expected input to our plan recognition method is a sequence of time-stamped
observations. Then, the problem is to execute a program from the plan library in
such a way that it explains the observations. Hence, the problem of plan recognition
actually becomes a planning problem. The question is whether or not there is some
way to achieve the goal, that is, explains the observations. This makes demands on the
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Interpreter
For each program,
look for an execution
that complies with all
observations.

Plan Library

proc overtake(V,W )

behind(V,W )?;

leftLaneChange(V );

wait for behind(W,V );

rightLaneChange(V )

proc straight(V )

. . .

. . .

Observations

at time 0: pos(A) = (10,−2)

at time 1: pos(A) = (25,−2)

at time 2: pos(A) = (40, 0)

at time 3: pos(A) = (55, 2)

. . .

Set of candidate plans
that explain the observations.

Figure 1.1: General structure of our approach to plan recognition. Given some can-
didate programs from the plan library and a sequence of observations, the interpreter’s
task is to search for an execution of the programs in accordance with the observations.
A successful execution corresponds to a recognized plan.

robustness of the program, especially with respect to timing. The general structure is
depicted in Figure 1.1.

The underlying formalism is the situation calculus (McCarthy and Hayes, 1969; Reiter,
1991), a logic language. Plans are formulated in a dialect of the situation calculus-
based programming language Golog (Levesque et al., 1997). Observations are repre-
sented as first-order sentences about what holds in the world at a certain point in
time.

It looks as a much simpler approach to plan recognition to completely leave out actions
and define plans as sequences of logic formulas like Nagel and Arens (2005). For
example, a passing maneuver could be described as one car being in the left lane and
faster than another car. But with such a purely declarative way of plan recognition,
extrapolation of plans appears to be impossible. This is because one only knows what
would probably hold at some later point in time, but nothing about how these changes
are achieved. Precise knowledge about the actions that change(d) the world and when
they happen(ed) seems to be necessary to accurately recognize an agent’s plan. The
recognized plan should reflect reality as well as possible, because this knowledge is
needed to continue the plan in simulation and check for critical situations.

Hence, one goal of this work is to bridge relatively declarative plans on the one side
and concrete situation terms with actions and timestamps on the other side.

The presented approach is not specific to automotive applications. It should be appli-
cable in other domains, particular ones which inhere physical values and/or time.
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1.4 Outline

The next section gives an overview of existing work in the field of plan recognition.
Chapter 3 formally introduces the situation calculus and Golog. Chapter 4 exemplifies
the modeling language. The subsequent chapter defines the semantics of an extension
of the situation calculus, focusing on the core aspects of plan recognition in the appli-
cation domain: the handling of time, concurrency and robustness. Then, Chapter 6
discusses ways to do plan recognition by executing a Golog program that explains
observations of the environment. Finally, Chapter 7 presents testing results of the
proposed plan recognition framework. Chapter 8 concludes.





Chapter 2

Related Work

This chapter shortly describes some of the related work in the fields of plan recognition,
temporal and spatial reasoning, and automotive-specific work.

2.1 Plan Recognition

There are three different types of plan recognition (Armentano, 2005; Carberry, 2001):

• Intended plan recognition: The user tries to suggest to the system what he is
doing.

• Keyhole plan recognition: The user does not know or care that a system tries to
recognize his plans.

• Obstructed plan recognition: The user tries to mislead the system.

Most approaches deal with keyhole and/or intended plan recognition. The model
consists of a set of domain-specific recipes to achieve some goal, the plan library. Each
recipe is some structure containing actions each of which may have a corresponding
precondition and a definition of its effects (Carberry, 2001). The task of the system
is to infer the agent’s goal.

Generally, most work on plan recognition can be grouped in probabilistic approaches
and consistency-based approaches (Armentano, 2005). Probabilistic algorithms usu-
ally use Hidden Markov Models or Bayesian Networks to rank the plans in the plan
library by the probability that the plan is the user’s intention. Consistency-based pro-
cedures determine all plans that do not contradict the user’s actions and thus might
be the user’s intention.
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2.1.1 First-Order Logic as Modeling Language

Kautz and Allen (1986) propose a consistency-based approach to plan recognition. The
user provides an action taxonomy which defines specializations and decompositions of
actions.

In logic, the specialization and decomposition relationships are defined with the binary
predicate # which asserts that an action variable is an instance of an action type.
#(e, type) is also read as “a type-action occurred.” For example, #(e,maneuver)
holds if e is an instance of a maneuver-action. Specialization is then expressed with
axioms like

∀e .#(e, passingManeuver) ⊃ #(e,maneuver)

which represents that maneuver specializes to passingManeuver.

Decomposition is used to define the way an action is executed. This is meant not only
in a sequential way but may also impose constraints on timing. A passing maneuver
might be decomposed as

∀e .#(e, passingManeuver) ⊃ #(S(1, e), changeLane) ∧
#(S(2, e), pass) ∧
#(S(3, e), changeLaneBack) ∧
startPos(S(2, e)) = endPos(S(1, e)) ∧
startPos(S(3, e)) = endPos(S(2, e)) ∧
Starts(T (S(1, e)), T (e)) ∧
During(T (S(2, e)), T (e)) ∧
Finished(T (S(3, e)), T (e)) ∧
Meets(T (S(1, e)), T (S(3, e)))

where S(i, e) is the i-th sub-action of e and T (e) is the time interval at which e
occurs. The temporal relationships Starts, During, Finished and Meets are taken
from Allen’s (1983) Interval Algebra, an interval-based logic for qualitative reasoning
over time (cf. Section 2.2.1). The decomposed passingManeuver can still be further
specialized, for example, to illegalPassingManeuver where changeLane specializes
to changeLaneToRight (overtaking on the right lane is not allowed on many country’s
highways).

With circumscription (McCarthy, 1980) of #, the following assumptions are enforced:

1. The known ways of action specializations are the only ones.

2. All actions are purposeful. That is, if some action occurred and it is part of
the decomposition of a bunch of complex actions, one of these complex actions
occurred.
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From observed actions, one can infer the underlying plans using nonmonotonic deduc-
tion. For example, changeLane might be a part of a maneuver to leave the highway
and it might also be part of passingManeuver, and pass might be part of some
third plan in addition to being part of passingManeuver. Then, an observation of a
changeLane action can be explained by a passing maneuver or a leaving maneuver.
An additional observation of a pass action reduces the set of consequences to only the
passingManeuver plan.

The theory lacks a concept of action effects on predicates; actions must be sensed
directly. An observation could be that #(E1, changeLaneToRight) holds. With As-
sumption 1, one can deduce that #(E1, changeLane). With this knowledge and As-
sumption 2, one can further deduce that a passing maneuver occurs or occurred. For
this passing maneuver, the above decomposition axiom gives a prediction like, for
example, the overtaking car will pass the other car and then change the lane back.

A key feature of this approach to plan recognition is specialization of actions. For
domains like the cooking world in (Kautz and Allen, 1986), specialization appears to
be very useful: there are many kinds of meals that can be cooked, one of which is a
noodle dish, and there are again many kinds of noodles and sauces. For automotive
driving, specialization seems to be less useful, because action hierarchies seem to be
rather flat.

According to Charniak and Goldman (1991), the approach essentially boils down to
minimal set covering. Furthermore, they state that this is the wrong tool for plan
recognition and abduction in general. Two common plans might be better explanation
of some observations than a single very uncommon plan.

As a consequence of their criticism of Kautz and Allen (1986), Charniak and Goldman
(1991) propose a probabilistic model of plan recognition.

As in (Kautz and Allen, 1986), actions are compositions of other actions. Plans are
simply more complex actions. They are represented similarly to (Kautz and Allen,
1986) as decomposition entailments. The antecedent asserts that some variable is an
instance of the complex action, i.e. the plan. The consequent then asserts that the sub-
actions are again certain actions. In a somewhat adapted syntax, a plan decomposition
could look like

Inst(e, passingManeuver) ⊃ Inst(gotoFastLaneStep(e), changeLane) ∧
Inst(passStep(e), pass) ∧
Inst(gotoSlowLaneStep(e), changeLane) ∧
agent(gotoFastLaneStep(e)) = agent(passStep(e)) ∧
agent(passStep(e)) = agent(gotoSlowLaneStep(e)).

Plan schemas like this one are transformed into Bayesian networks whose root nodes
are the top-level plans. The random variables either represent propositions like equal-
ity constraints in the example, or instance constraints. Propositions are Boolean ran-
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dom variables whereas the sample space of instance constraints is the set of potential
types.

2.1.2 Plan Recognition in the Situation Calculus

One plan recognition framework for ConGolog (Giacomo et al., 2000) was proposed by
Goultiaeva and Lespérance (2006). ConGolog is an extension of Golog (Levesque et al.,
1997), a high-level robot control programming language based on the situation calculus
(McCarthy and Hayes, 1969; Reiter, 1991). The details of both, the situation calculus
and Golog are explained in Section 3.1 and Section 3.2. For now, it is only relevant
that ConGolog provides a way to execute a given program step-by-step. Programs
usually consist of nested sequences, conditional statements, loops, and, at the lowest
level, primitive actions.

The approach of Goultiaeva and Lespérance (2006) starts off with a plan library con-
sisting of ConGolog programs. As further input, it expects a sequence of primitive
actions. For such a stream of actions, a set of candidate plans is thinned out incre-
mentally. A plan is a valid candidate if the observed action sequence is a prefix of
some deduction of the plan (in grammatical terms).

Ideas from Goultiaeva and Lespérance (2006) are used in Chapter 6. However, this
approach is not enough for plan recognition in highway traffic. For one, a sensor
for primitive actions is unrealistic in this scenario. For another, ConGolog and as a
consequence the plan recognition mechanism do not include an explicit representation
of time.

2.1.3 Markov Model-based Approaches

Bui et al. (2002) model the plan library as hierarchy of a Markov Decision Processes.
Markov Decision Processes can be used to model dynamic domains where actions may
have nondeterministic effects, that is, an action performed in a given state leads to a
certain new state with some probability. A mapping from states to actions is called a
policy. At a higher level of the hierarchy, the policy chooses a lower-level sub-policy
in each state. Then, the problem of plan recognition becomes essentially the problem
of recognizing the agent’s top-level policy.

Bui et al. (2002) approach this problem with what they call Abstract Hidden Markov
Model and particle filtering. This solution mainly focuses on the uncertainty in plan
recognition. They identify three sources of uncertainty: the refinement at each level in
the plan hierarchy is nondeterministic and can therefore result in different sub-plans.
Similarly, at the leaf-level of the hierarchy actions are nondeterministic, too, that is,
they have unpredictable effects. The third source of uncertainty stems from the fact
that in reality sensors are noisy.



2.1 Plan Recognition 11

Another probabilistic approach is proposed by Geib and Goldman (2009). They use
simple yet powerful grammars represented as trees to express plans. Nodes in these
trees can be AND or OR nodes which means that either all or one of the children has to
be executed, respectively. Constraints on the execution ordering of the children can be
imposed; particularly partial orderings can be expressed elegantly. Additionally to this
grammar, probabilities must be defined: for each plan the prior probability that it is
executed, and given such a plan the conditional probability for certain observations.

At any time, there is a pending set of actions. Each action in this set is a candidate
for the next observed action, because it would contribute to the agent’s goal and it is
“enabled” by the previously executed action. Starting with an initial pending set, this
set changes with each performed action. This execution model is a Hidden Markov
Model, because the observer neither knows the goals nor the pending sets (Geib and
Goldman, 2009). The actual plan recognition is then done by sampling the agent’s
goals and plans.

The pending set approach allows to recognize interleaved plans and plans with common
goals.

2.1.4 Plan Recognition as Planning

Ramirez and Geffner (2009) established a new class of plan recognition systems. In-
stead of starting with a plan library, they require a library of goals an agent might
have. A goal G from the goal library is then considered to be an agent’s goal if there
is some optimal plan that leads to G and is compatible with the observations.

The plan is determined by means of a STRIPS (e.g., Russell and Norvig, 2003) domain
theory that describes available actions and their effects. An off-the-shelf planner is
then applied to this planning domain with a candidate goal picked from the goal
library. Besides A∗ and other optimal planning algorithms, also heuristic planners can
be used to improve the approach’s scalability.

As most other plan recognition systems, Ramirez and Geffner (2009) assume to observe
actions directly. However, it is probably easy to integrate propositional observations
with the presented approach.

Ramirez and Geffner (2010) extended their system to probabilistic plan recognition.
The described goal library needs to be enriched with prior probabilities Pr(G) for each
goal G and with probabilities Pr(O | G) for each observation given a certain goal.
Using Bayes’ rule, the posterior probabilities Pr(G | O) for G given the observations
can be determined.
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2.2 Temporal and Spatial Modeling

This section is concerned with spatio-temporal modeling and reasoning. At first,
some qualitative approaches are presented. The second half deals with numerical
approaches.

2.2.1 Qualitative Modeling

Most of the literature about temporal planning is about a qualitative representation
(Nau et al., 2004).

Allen’s (1983) Interval Algebra is based on intervals consisting of a starting and an
ending timestamp and thirteen simple binary relations over intervals. These include,
for example, equal, before and overlap. The algebra allows indefiniteness of two inter-
vals’ relation. For example, by requiring two intervals to be before or after another,
one states they neither overlap nor meet each other. Therefore, there are 213 possible
relations between two intervals.

As an answer to Interval Algebra’s intractability, Vilain et al. (1986) propose a Point
Algebra. By only considering points, the Point Algebra reduces the number of simple
relations to three, namely <, = and >. Due to disjunctions, each pair of time points
is in one of seven different relations. For example, the relation <= specifies that the
time points are either related by < or =. Similarly, <=> essentially says nothing and
<> expresses that they are unequal.

Generally, qualitative temporal and spatial reasoning systems are very similar and
each can often be applied in the respective field of the other.

A calculus similar to Interval and Point Algebra but dedicated to spatial reasoning
is the Region Connected Calculus (Randell et al., 1992). Regions can be said to be
disconnected, partially overlapping or (non)tangential proper parts of each other, for
example. However, the applicability of the Region Connected Calculus in the present
domain appears to be questionable. For one, borders intuitively seem not to be that
important in traffic. To put it crudely, whether two cars are partially overlapping or
tangential or non-tangential proper parts of each other, the important thing is simple:
they crashed. For another, the calculus looks rather one-dimensional; the relations
express information on a very abstract level and not in a two-dimensional Cartesian
plane, for example. The prevalent state in car traffic is the disconnected relation, while
all other relations could be combined to crashed.

The Qualitative Trajectory Calculus (Van de Weghe et al., 2006) is an approach to
combine qualitative temporal and spatial reasoning at once. It attempts to diversify
the disconnected relation and incorporate movement. They introduce binary relations
+, 0, − where + and − represent propositions such as “faster” and “slower,” respec-
tively. Assuming continuous change, the Qualitative Trajectory Calculus deduces that,
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if first + holds and then − holds at a later point in time, then 0 must hold sometime
in between. This calculus has been used to model a passing maneuver by Van de
Weghe et al. (2005). They basically draw a reference line between the overtaking car
a and the slower car b. The movement is then modeled in terms of the direction of
each car with respect to the reference line and with respect to a perpendicular line
point. Assuming that both cars are in the same lane driving behind each other, the
first − and + in the four-tuple (−,+,+,−) express that a moves towards b and b
moves away from a. Analogously, the second + and − mean that a moves to the right
of the reference line and b moves to the left of the reference line. While the calculus
provides a way to model the relative position and movement, the provided information
seems to be simplistic. It seems that, given only a sequence of four-tuples, one cannot
reconstruct the actual events on the road, because the cars’ positions on the road are
not known. For example, (0, 0,−,+) may either mean that a and b are next to each
other and a is faster than b, or it may mean that both vehicles drive at the same speed
on the right lane and a changes to the left lane. Since Van de Weghe et al. (2005)
give no practical results, it is not clear how the Qualitative Trajectory Calculus should
be used. Additionally, the fact that a’s and b’s behavior to each other is represented
in each four-tuple is not intuitive. In fact, one usually does not say that “b moves
towards a” when a is faster than b. The expression is rather used when b is oncoming
traffic.

2.2.2 Quantitative Modeling

In the present domain, a quantitative representation of time appears to be more rea-
sonable due to physical effects. Moreover, not only time is variable, but parameters
of actions may be, too. Time again depends on these parameters. For example, the
effects of an action that sets the velocity of a car to a certain value at a specific point
in time depend on both, the velocity and the time.

Approaches like temporal constraint networks (Dechter et al., 1991) seem not to be
able to handle such dependencies. Their objective is to reason about metric time
intervals with unary and binary constraints. A binary constraint

a1 ≤ Xj −Xi ≤ b1 ∨
...

an ≤ Xj −Xi ≤ bn

restricts the time distance between the events Xi and Xj to be in one of the intervals
[ai, bi], 1 ≤ i ≤ n. The class of simple temporal constraint satisfaction problems
(TCSPs) defined by Dechter et al. (1991) is restricted to problems where for each
pair of events at most one interval constraint exists. Simple TCSPs are solvable in
polynomial time (Dechter et al., 1991).
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Time constraint networks are based on having constant lower and upper bounds of all
points in time. In the present domain, however, these bounds strongly depend on the
physical values such as velocity and/or acceleration. When these are not constant but
variables, too, binary constraints will not suffice. And even if the physical values are
all known in advance, it might be possible but cumbersome to derive the lower and
upper bounds.

More powerful tools like linear or even nonlinear constraints appear to be a better
choice to express the physical relationships. It is not required to compute a solution
that is optimal with respect to some objective function, though, because no such func-
tion exists. The question is rather whether or not the constraint system is consistent
and to determine any solution.

Linear programs are known to be solvable efficiently. Although the most widely spread
algorithm, Simplex, has an exponential worst-case runtime, linear programs can be
solved in polynomial time with, among others, Karmarkar’s interior point algorithm
(Zimmermann, 2005, pp. 163ff).

There are various forms of nonlinear programming. In quadratic programming, the
constraints are still linear, but the objective function may be quadratic (Zimmermann,
2005, pp. 208ff). Using quadratic programming, one can solve linear least-squares
problems. This capability could be used to bring in line a number of measurements
and a linear model. Another branch of nonlinear programming deals with nonlin-
ear constraints and linear objective functions. In convex optimization, interior point
methods are used for a subclass called semidefinite programming (Boyd and Vanden-
berghe, 2004). Boyd and Vandenberghe (2004) state that convex optimization has a
wide range of applications, but it is not clear whether or not it lends itself to simple
physical equations.

2.3 Automotive Scene Identification

The idea to recognize the current driving situation1 is not entirely new. This section
shortly presents some of this work.

Meyer-Delius et al. (2009) model each situation pattern with a Hidden Markov Model.
Given a library of Hidden Markov Models λ1, . . . , λn, the situation i is considered to
be present as long as λi recognizes the generated state sequence. They distinguish
between passing maneuvers, aborted passing maneuvers and following.

Stiller et al. (2008) describe situations in terms of first-order logic formulas. Using these
formulas and Markov Logic Networks, they do probabilistic inference. The system’s
focus appears to lie on rather qualitative questions such as whether or not some thing
is a pedestrian.

1In this section, the term “situation” is not used in the sense of the situation calculus.
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An approach that seems to be similar to Ramirez and Geffner (2009) is presented
by Dagli et al. (2002). They start off with a set of predefined goals and motivations
for each driver and do planning to determine the actors’ possible plans. Actions
represent continuous physical processes that are either of longitudinal or latitudinal
kind. Examples are accelerate, remain longitudinal from the longitudinal group and
lane change left/right from the lateral from. A longitudinal and a lateral action may
be executed synchronously; their temporal relation can be specified in terms of Allen’s
(1983) Interval Algebra. Apparently, actions and particularly action sequences do not
have any formal semantics. Completion of an action is said to change the “discretely
represented situation model,” but (Dagli et al., 2002) lacks a detailed explanation of
this change. Consequently, while sketching a number of ideas, Dagli et al. (2002) miss
on giving a formal definition of their system.

Nagel and Arens (2005) represent situations by states of a finite state machine. In
the terminology of Nagel and Arens (2005), these automata are situation graphs.
Situation graphs can be refined hierarchically and thus constitute a tree of situation
graphs. The chronology is defined by the possible transitions. Each situation has an
associated propositional logic formula. The problem of plan recognition is then to find
an execution of this automaton in synchronisation with the observations such that
each situation’s formula holds. A transition triggers at the moment the current state’s
formula does not hold anymore due to changed observations. To break the tie when
multiple transitions could be triggered, transitions are labelled with priorities and the
highest prioritized transition whose destination state’s formula holds is taken.

2.4 Summary

Existing work on plan recognition is rather general. Much effort is put into how to
formulate and represent plans and the relationships of actions among each other. Most
work does not discuss the characteristics of different domains, but stick to discrete,
rather coarse-grained example domains like kitchen behavior with a focus on cooking
recipes (Kautz and Allen, 1986), computer security (Geib and Goldman, 2009), the
shopping world or story understanding (Charniak and Goldman, 1991). The only
exception is the human behavior tracking by Bui et al. (2002) which includes the
trajectory of the human being as a non-discrete feature.

Furthermore, all approaches assume the existence of an action sensor instead of sup-
porting some kind of observations of the environment. Some (e.g., Geib and Goldman,
2009) view determining the actions as a separate problem called activity recognition.
This splits the whole job into two parts similar to how parsing is divided into lexi-
cal and syntactic analysis. However, in the present domain actions have continuous
effects. This makes it difficult to deduce the actions directly from the observations.
Keeping activity and plan recognition together allows to give hints to the activity
recognition by pruning the search space to those actions that are actually allowed.
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This idea is similar to DTGolog proposed in (Boutilier et al., 2000a,b) which aims at
marrying agent programming with planning. The planning search space is narrowed
by the general structure dictated by the program. In contrast, if activity and plan
recognition are separated, the information flow is a one-way street.

Except for (Goultiaeva and Lespérance, 2006) and Ramirez and Geffner (2009), all
mentioned approaches lack a notion of change induced by actions as provided by the
situation calculus and STRIPS.

As a consequence, the situation calculus and Golog appear to solve many issues ad-
dressed directly or indirectly by the discussed papers. The situation calculus is a logic
for reasoning about actions and change. Golog, as a high-level programming language
based on the situation calculus, includes a well-structured and powerful representation
of programs, i.e. plan templates.

Considering the existing work for temporal and spatial reasoning, it appears that
quantitative approaches are the first choice. However, for higher level plan recognition
the quantitative frameworks might be useful.

The published work to plan recognition specific to the field of driver assistance systems
and autonomous driving is generally vague when it comes to the modeling part and
the semantics.
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Foundations

This chapter introduces the situation calculus and Golog, a high-level programming
language based on the situation calculus.

3.1 Situation Calculus

The situation calculus is a sorted second-order language to reason about dynamic
systems (Reiter, 2001, p. 47) with actions and situations. Predicates and functions
whose values depend on the situation are called fluents (relational or functional, re-
spectively).

McCarthy’s frame problem is to formalize which fluents are not changed by which
actions (McCarthy and Hayes, 1969, pp. 30f). A solution of the frame problem due to
Reiter (1991) is to associate a successor state axiom with each fluent. Such a successor
state axiom is composed of a positive and a negative effect axiom of the fluent. For
each relational fluent F (~x), the positive effect axiom γ+

F (~x, a, s) is intended to hold iff
the action a executed in s “switches F (~x) on.” Analogously, the negative effect axiom
is intended to hold iff the action a executed in s “switches F (~x) off.” There should
be no situation s in which γ+

F (~x, a, s) and γ−F (~x, a, s) both hold. The successor state
axiom defines whether or not F (~x) holds in do(a, s):

Poss(a, s) ⊃
(
F (~x, do(a, s)) ≡ γ+

F (~x, a, s) ∨ F (~x, s) ∧ ¬γ−F (~x, a, s)
)
.

The definitions for functional fluents are omitted but analogous. The predicate Poss(a, s)
is, like the effect axioms, provided by the modeler and holds iff action a is possible
in situation s. The situation constant S0 denotes the initial situation which is also
specified by the modeler.

A basic action theory D consists of some foundational axioms Σ, the unique name
axioms Duna, the first-order axiomatization of the initial world DS0 , precondition
axioms Dap and successor state axioms Dss (Reiter, 2001, p. 60):

D = Σ ∪ Duna ∪ DS0 ∪ Dap ∪ Dss.
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The foundational axioms ensure that, for example, S0 6= do(a, s). The unique name
axioms ensure that two different action names actually mean different actions, i.e. the
interpretation cannot map two names to the same objects.

With regression (Reiter, 2001, p. 61ff), situation terms can be eliminated in a goal
formula. In order to be regressable, a formula must not mention situation terms that
are not rooted in S0, quantify over situations, all action arguments in Poss must be
some action term, and the formula must not use = or v, which denotes the predecessor
relation. The original formula W and the regressed formula R[W ] are equivalent:

D |= W ≡ R[W ].

The result of regression is a formula whose only situation term is S0. The regressed
formula can be decided with Duna ∪ DS0 . Regression is a syntactical operation (Fritz
and McIlraith, 2009).

3.2 Golog

Golog (Levesque et al., 1997) is a programming language based on the situation cal-
culus.

The primitives of this language are the actions of the situation calculus. These actions
are called primitive actions. The execution of a program that consists of a single
action a succeeds if Poss(a, s) holds in the current situation s. A more complex
program succeeds if there is a path through the program consisting of primitive actions
(a1; . . . ; an) such that Poss(ai, do(ai−1, do(ai−2, . . . do(a1, S0) . . .))) holds for all i.

A special kind of action is the test action φ? where φ is a situation-suppressed formula.
It succeeds iff φ holds in the current situation. A test action is not a situation calculus
action but a Golog language feature. Hence, the “execution” of test actions is not
reflected in situation terms.

Constructs known from imperative languages are the sequence operator, conditional
statements, loops and procedures. Nondeterministic operators include πx . σ(x) which
picks an argument x for σ, σ1 |σ2 branches to either σ1 or σ2, and σ∗ repeats σ zero
or more times.

Golog programs are intended to be executed in some situation s and lead to a situation
s′. Execution is controlled by the ternary macro Do(δ, s, s′) which expands into a
second-order situation calculus formula that holds iff executing the Golog program δ
in situation s can lead to situation s′ (Reiter, 2001, p. 111). The Do macro is defined
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as follows:

Do(α, s, s′)
def
= Poss(α[s], s) ∧ s′ = do(α[s], s)

Do(φ?, s, s′)
def
= φ[s] ∧ s = s′

Do(σ1;σ2, s, s
′)

def
= ∃s′′ . Do(σ1, s, s

′′) ∧Do(σ2, s
′′, s′)

Do(σ1 |σ2, s, s
′)

def
= Do(σ1, s, s

′) ∨Do(σ2, s, s
′)

Do(πv . σ, s, s′)
def
= ∃x .Do(σvx, s, s′)

Do(σ∗, s, s′)
def
= ∀P .

(
(∀s1 . P (s1, s1)) ∧

(∀s1, s2, s3 . Do(σ, s1, s2) ∧ P (s2, s3) ⊃ P (s1, s3))
)
⊃

P (s, s′).

In fact, this only defines the core of the language; conditional statements (if) and
loops (while) can be easily defined using the given constructs, namely tests (φ?),
nondeterministic iteration (∗) and nondeterministic branch (|). Furthermore, Golog
supports procedures which are defined below.

The syntax φ[s] and a[s] restores the situation variable s in φ and a, respectively. The
idea of suppressing situations is that one does not want to talk about situations in
Golog programs as every relational and functional fluent call should automatically refer
to the current situation. For example, the situation-suppressed action buy(cheapest)
becomes buy(cheapest(s)), because cheapest is a functional fluent.

The necessity of second-order logic stems from the definition of the nondeterministic it-
eration σ∗ and from the definition of procedures. In the above macro rule for iteration,
P is the smallest relation of situations s and s′ such that s′ is reachable from s by zero
or more executions of σ. This reflexive transitive closure is not first-order-definable
which is why second-order logic is needed (Reiter, 2001, p. 112).

Second-order logic is also needed in order to define procedure calls (Reiter, 2001,
p. 115). Imagine a sequence of procedure definitions P1(~v1) σ1, . . . , Pm(~vm) σm where
Pi is the name, ~vi the argument vector and σi the body of the i-th procedure. The
helper macro definition

Do(P (~t), s, s′)
def
= P (~t[s], s, s′)

defines that call to procedure P with arguments ~t in s leads to s′ iff P (~t[s], s, s′) holds.
P is then defined in second-order logic as the smallest set of tuples (~v, s1, s2) closed
under the execution of P ’s body:

Do({P1(~v1) σ1, . . . , Pm(~vm) σm} σ, s, s′)
def
=

∀P1, . . . , Pm .
( m∧
i=1

∀~v, s1, s2 . Do(σi, s1, s2) ⊃ Pi(~v, s1, s2)
)
⊃ Do(σ, s, s′).

This semantics is called evaluation semantics. The advantage of defining Do as macro
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and not as ordinary predicate is that Golog programs are macro-expanded and never
occur as logical terms. This keeps the theory simpler, because interpretations do not
have to assign values to Golog program constructs and situation-suppressed fluents.
On the downside, quantification over Golog programs is not possible. Closely related
with this, Do allows only to execute a complete program and not just a part of it.
Incremental program executing comes in handy for, e.g., interleaved concurrency and
plan recognition.

The transition semantics defined by Giacomo et al. (2000) resolves these issues. Transi-
tion semantics is based on the predicate Trans as opposed to the evaluation semantics’
Do macro. Trans(σ, s, δ, s′) succeeds if there is a transition from situation s to s′ with
respect to the first action of the program σ where δ is the rest of the program σ af-
ter this transition step. If this action is a test action φ?, such a transition exists for
s′ = s if the logical formula φ holds in s. If, on the other hand, the next action of
σ is a primitive action a, a transition exists for s′ being the a-successor situation of
s if a is executable in s, i.e. Poss(a, s) holds. In both cases, δ is the remainder of
σ after executing its next action. The appendix of (Giacomo et al., 2000) shows how
Golog programs can be encoded as first-order terms which is needed to quantify over
programs; the following definition of Trans abstracts from this:

Trans(Nil, s, δ, s′) ≡ False
Trans(α, s, δ, s′) ≡ δ = Nil ∧ Poss(α[s], s) ∧ s′ = do(α[s], s)

Trans(φ?, s, δ, s′) ≡ δ = Nil ∧ φ[s] ∧ s′ = s (3.1)

Trans(πv . σ, s, δ, s′) ≡ ∃x . Trans(σvx, s, δ, s′)
Trans(σ1;σ2, s, δ, s

′) ≡ ∃σ′1 . T rans(σ1, s, σ
′
1, s
′) ∧ δ = [σ′1, σ2] ∨

Final(σ1, s) ∧ Trans(σ2, s, δ, s
′)

Trans(σ1 |σ2, s, δ, s
′) ≡ Trans(σ1, s, δ, s

′) ∨
Trans(σ2, s, δ, s

′)

Trans(σ∗, s, δ, s′) ≡ ∃δ′ . T rans(σ, s, δ′, s′) ∧ δ = [δ′, σ∗].

Additionally to Trans, a Final predicate is needed to determine when program exe-
cution may stop:

Final(Nil, s) ≡ True
F inal(a, s) ≡ False
F inal(φ?, s) ≡ False

F inal(πv . σ, s) ≡ ∃x . F inal(σvx, s)
Final(σ1;σ2, s) ≡ Final(σ1, s) ∧ Final(σ2, s)

Final(σ1 |σ2, s) ≡ Final(σ1, s) ∨ Final(σ2, s)

Final(σ∗, s) ≡ True.

In fact, the given definitions of Trans and Final are incomplete: Giacomo et al.
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(2000) also define conditional statements (if) and loops (while) by means of Trans
and Final. The reason is that by this, the respective branching condition and the first
action of the branch can be executed atomically, that is, without any concurrently
running program getting in between. This is called the synchronized if-then-else and
while-loop. However, we refrain from these features in the following in order to keep the
formulas shorter and clearer. Furthermore, Section 5.4.4 provides a similar language
feature, which could be used to transform conditional statements and loops into their
synchronized versions.

The behavior of the classic Do macro can be simulated using the reflexive transitive
closure of Trans and asserting that the resulting rest program is final:

Do(σ, s, s′)
def
= Trans∗(σ, s, δ, s′) ∧ Final(δ, s′).

T rans∗ denotes the reflexive transitive closure of Trans:

Trans∗(σ, s, δ, s′)
def
= ∀P .

(
(∀σ1, s1 . P (σ1, s1, σ1, s1)) ∧
(∀σ1, s1, σ2, s2, σ3, s3 .

P (σ1, s1, σ2, s2) ∧ Trans(σ2, s2, σ3, s3) ⊃
P (σ1, s1, σ3, s3)

)
⊃

P (σ, s, δ, s′).

The definitions of Trans and Final are bundled in C. The theory is no longer just
D but D ∪ C, so a formula φ that mentions the new Do (and/or Trans etc.) holds iff
D ∪ C |= φ.

3.3 Notation

Usually, uppercase roman letters denote predicates and constants, use of small letters
represents variables and non-nullary functions. Variables without a quantifier are
implicitly universally quantified. a often stands for a primitive action and s for a
situation.

The Greek symbols σ, δ are used for possibly complex Golog programs. Variables of
sort time (which will be introduced later) are represented by τ and probabilities by p.
σvx denotes the term σ with all occurrences of v substituted with x.

At a later point, we will distinguish between time-stamped and non-time-stamped
primitive actions. The former is usually denoted by a, the latter by α. This matter
will be amplified when time is introduced. Stochastic actions, which will be introduced
later, too, are denoted by β. Finally, γ stands for an action that is either non-time-
stamped primitive, stochastic or a test.



22 Chapter 3 Foundations

Golog programs will not mention situation terms. To restore the suppressed situation
arguments in a test action φ?, we write φ[s] for a situation s. Similarly, we write
α[s, τ ] to restore s in all fluents mentioned in the non-time-stamped primitive action
α, evaluate them at time τ and append a new timestamp parameter τ to α, thus
making α[s, τ ] a time-stamped primitive action.

The notations do(~a, s) and do([a1, . . . , an], s) are shorthands for do(an, . . . do(a1, S0) . . .).

The sequence operator associates to the right, that is, σ1;σ2;σ3 = (σ1; (σ2; (σ3))).

The used logical operators are universal and existential quantification (∀, ∃), conjunc-
tion and disjunction (∧, ∨), implication (⊃) and negation (¬). The logical conjunction

(∧) has higher binding precedence than disjunction, e.g. φ ∧ ψ ∨ χ def
= (φ ∧ ψ) ∨ χ.

Bracket usage is reduced with the dot-notation unless it is confusing, e.g. φ∧∃x . ψ def
=

φ ∧ ((∃x)ψ).



Chapter 4

Modeling

The goal of this chapter is to explore modeling in the car traffic domain from the
perspective of plan recognition. Basic action theories for the rudimentary physics of a
vehicle are developed. It is exemplarily shown how a plan library could be constituted
using such a basic action theory’s primitive actions and fluents.

The following example models a passing maneuver on a two-lane road. This scenario is
well-suited as example because it requires time and continuous fluents. Additionally,
it involves multiple drivers and is safety-critical.

Compared to the real world, the modeling world is simplified in that actions like
changing acceleration, velocity or yaw are executed instantaneously. Figure 4.1 shows
a car (solid) overtaking another vehicle (hatched). The dashed and dotted rectangles
represent an instantaneous change of the overtaking car’s yaw.

At some points in the following, actions will have a parameter τ . This parameter
represents the time at which an action is executed. Generally, the idea is not to specify
this time at the modeling level. At execution time, these parameters are added. As a
consequence, the actions appearing in successor state axioms and precondition axioms
are time-parameterized. The exact definition of time is given in Section 5.1.

γ = 45

γ = −45

Y

X

Figure 4.1: Passing maneuver with instantaneous changes of velocity and yaw.
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4.1 Passing Maneuver with Instantaneous Velocity and Yaw

The first attempt to model a passing maneuver makes use of the two actions

• setY aw(γ) with angle γ ∈ [−π, π) and

• setV eloc(v) with velocity v ∈ Q

to instantaneously change the orientation of the car with respect to the road and to
change the velocity, respectively. For both of these actions, there is a functional fluent,
yaw and veloc, respectively, which is only changed by the respective action.

The third functional fluent, pos, denotes the position of a given car. The position
of a car is represented in simplified terms as point in a two-dimensional Cartesian
coordinate system. As depicted in Figure 4.1, the Y-coordinate is the lateral position,
and the X-coordinate is the longitudinal position of the car.

In contrast to veloc, pos is a continuous fluent. This means that the return type of pos
is a function of time like in cc-Golog (Grosskreutz and Lakemeyer, 2003). While the
definition of this function is constant per situation, it can be evaluated with different
points in time during a single situation. pos thus yields different positions at different
specific points in time in a single situation.

These functions are restricted to be at most polynomial for practical reasons. In
the presented example, they are even linear. In logic, polynomial functions can be
represented as terms with functors constant, linear etc. In general, a polynomial∑n

i=0 ai · (τ − τ0)i would be represented as term polyn(a0, . . . , an, τ0). Variables that
denote such a term have a superscript t, e.g. et. A term et can be evaluated at a time
τ with the function val(et, τ).

Since veloc should simply return the velocity set by the last setV eloc action, its suc-
cessor state axiom is:

v = veloc(do(a, s)) ≡ (∃τ)a = setV eloc(v, τ) ∨
v = veloc(s) ∧ (∀v′, τ)a 6= setV eloc(v′, τ).

Time does not play any role in the behavior of veloc. The definition of yaw is analo-
gous.

The fluent pos returns a tuple of functions of time for the X- and Y-coordinates of the
car. Evaluated at a point in time, these functions return the two-dimensional position
of the car at this time. If the velocity or yaw of the car is changed (instantaneously) at
time τ0, the functions change. Then, for example, the X-coordinate is the sum of the
old X-coordinate at time τ0 (∗) and the change of the X-coordinate due to the (possibly
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new) velocity and the (possibly new) yaw (∗∗). This can be expressed semi-formally
by

x(τ) = x(τ0)︸ ︷︷ ︸
(∗)

+ cos(yaw(τ0)) · veloc(τ0) · (τ − τ0)︸ ︷︷ ︸
(∗∗)

.

The function of the Y-coordinate is analogous. In the following successor state axiom,
start(s) denotes the time at which the situation s starts, or, in other words, the time
at which the change of velocity or yaw occurs. The actual definition of start is not
relevant for now. Hence, the successor state axiom for pos is:

(xt1, y
t
1) = pos(do(a, s)) ≡ ∃τ0, x

t
0, y

t
0, x0, y0, v, γ .(

a = setV eloc(v, τ0) ∧ γ = yaw(s) ∨
a = setY aw(γ, τ0) ∧ v = veloc(s)

)
∧

(xt0, y
t
0) = pos(s) ∧

x0 = val(xt0, τ0) ∧
y0 = val(yt0, τ0) ∧
xt1 = linear(x0, cos(γ) · v, τ0) ∧
yt1 = linear(y0, sin(γ) · v, τ0) ∨

(xt1, y
t
1) = pos(s) ∧

(∀v, τ)a 6= setV eloc(v, τ) ∧
(∀γ, τ)a 6= setY aw(γ, τ).

In Figure 4.2, the procedure overtake models a passing maneuver in the scenario
sketched in this section. Actions and fluents have an additional parameter that rep-
resents the acting driver. onLeft/RightLane and behind can be defined as macros
using the pos fluent, e.g.

onLeftLane(v, s, τ)
def
= ∃xt, yt .(xt, yt) = pos(v, s) ∧ 0 m < val(yt, τ) ≤ 5 m.

To improve readability, the syntax is assimilated to classical programming languages a
bit, e.g., loop and pick stand for σ∗ and πv . σ, respectively. There are two threads of
execution which are delimited by the keyword concurrently with. The first thread
cares about changing the lane, the second manages the speed. This program is highly
nondeterministic:

• nondeterministic concurrency (σ1 ‖ σ2, cf. Section 5.2),

• nondeterministic choice of an argument for each primitive action (πv . σ), and

• nondeterministic iteration of each primitive action (σ∗).

The idea of the latter two kinds of nondeterminism is that drivers are expected to
dangle a bit during the lane change. Section 5.3 argues that nondeterminism should
not lead to counter-intuitive behavior like in cc-Golog (Grosskreutz and Lakemeyer,
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proc overtake(V,W )

behind(V,W ) ?;

onRightLane(V ) ?;

onRightLane(W ) ?;

begin

loop % steer to the left lane

pick γ do

γ ≥ 0◦ ?;

setY aw(V, γ)

endpick

endloop;

setY aw(V, 0◦);

onLeftLane(V ) ?;

wait for behind(W,V );

loop % steer back to the right lane

pick γ do

γ ≤ 0◦ ?;

setY aw(V, γ)

endpick

endloop;

setY aw(V, 0◦);

onRightLane(V ) ?

concurrently with

loop % in the meantime, accelerate

pick v do

setV eloc(V, v)

endpick

endloop

end;

onRightLane(W ) ?;

behind(W,V ) ?

endproc

Figure 4.2: Passing maneuver of V against W .
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2003). Nondeterminism blows up the search space, of course, which is why Section 5.4
introduces other ways of achieving robustness.

4.2 Improving Realism with Preconditions

The instantaneous actions used in the previous section are generally unrealistic. How-
ever, using preconditions, it is possible to enforce some plausibility, while still keeping
the equations that model the physics linear. As explained in Section 2.2.2, linear
(in)equations have the advantage over nonlinear constraints that they can be solved
efficiently.

For example, if the car is stopped at the moment τ0 and a setV eloc(30 m/s) occurs
at time τ , it is clear that τ − τ0 ≥ 5 s, because the top acceleration of fast cars is
about 6 m/s2. Similarly, the deceleration in cars is at most 10 m/s2. The following
precondition results:

Poss(setV eloc(v, τ), s) ≡ τ 6= start(s) ∧

−10 m/s2 ≤ v − val(veloc(s), start(s))
τ − start(s)

≤ 6 m/s2.

Due to the monotonicity of time, which will be axiomatized in Section 5.1, τ ≥ start(s)
holds. Hence, the inequations can be expressed as sums

−v + val(veloc(s), start(s))− 10 m/s2 · τ + 10 m/s2 · start(s) ≤ 0 m/s and

v − val(veloc(s), start(s))− 6 m/s2 · τ + 6 m/s2 · start(s) ≤ 0 m/s.

Obviously, these inequation is linear.

A similar heuristic can be used for setY aw. In order to achieve a yaw γ, a car can drive
along the segment of a circle d with some radius r as visualized in Figure 4.3. The
driver has to drive along the thick circular segment d until he reaches the tangent point.
The length of this segment is d = α · r. Since δ = 90◦− γ, β = δ and α = 90◦−β = γ,
for a given speed v it takes time γ·r

v to achieve a yaw of γ. Generally, radius r of

this circle grows with the car’s speed v. An approximation is r(v) = r0 + v2

g·µ where

r0 = 5 m is the turning radius of the car, g = 9.81 m/s2 is the gravitational acceleration
and µ = 0.8 is the stiction (all numbers are just estimations). For velocity v and yaw

γ, t(v, γ) = γ·r(v)
v is the minimum time needed to achieve yaw γ. Figure 4.4a displays

t(v, γ). The resulting precondition axiom is simple:

Poss(setY aw(γ, τ), s) ≡ τ − start(s) ≥ t(val(veloc(s), start(s)), γ).

Unfortunately, this inequation is only linear if at least veloc or γ is constant.
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r

d

β
α

γ δ

Figure 4.3: Trajectory d to achieve yaw γ.

To keep things linear and the solution space convex, the constraint τ ≥ t(v, γ) could be
approximated with planes in the intervals v ∈ [7 m/s, 60 m/s] (which is about 25 km/h
to 216 km/h) and for γ ∈ [0, π] (γ can be 180◦ if the driver wants to change from −90◦

to 90◦). The approximation shown in Figure 4.4b consists of the two tangential planes
in points (7, 0) and (60, π)

τ ≥ t(7, 0) + (v − 7) · ∂t(v, γ)

∂v
(7, 0) + (γ − 0) · ∂t(v, γ)

∂γ
(7, 0)

τ ≥ t(60, π) + (v − 60) · ∂t(v, γ)

∂v
(60, π) + (γ − π) · ∂t(v, γ)

∂γ
(60, π).

Multiple constraints τ ≥ c1 · v + c2 · γ + c3 have the effect of taking the maximum of
all approximating planes.

4.3 Passing Maneuver with Instantaneous Acceleration and
Yaw

Actions do not have to be as high-level as setV eloc. For example, acceleration could
be changed instantaneously with an action setAccel.

Then, veloc simply returns the value set by the last setV eloc but becomes a continuous
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(a) Exact function t(v, τ).

 10
 20

 30
 40

 50
 60 0

 0.5
 1

 1.5
 2

 2.5
 3

 0

 5

 10

 15

 20

 25

Time [s]

Velocity [m/s]

Yaw [rad]

Time [s]

(b) Approximations with maximum of two tangen-
tial planes.
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(c) Exact and approximated (dashed) function.

Figure 4.4: Dependency of time on velocity and yaw.

fluent. The successor state axiom is:

vt1 = veloc(do(a, s)) ≡ ∃τ0, f, v
t
0, v0 .

a = setAccel(f, τ0) ∧
vt0 = veloc(s) ∧
v0 = val(vt0, τ0) ∧
vt1 = linear(v0, f, τ0) ∨

vt1 = veloc(s) ∧ (∀f, τ)a 6= setAccel(f, τ).

The situation gets worse when looking at pos: the degrees of the polynomials in its
successor state axiom increase by one, too, and hence become quadratic functions:

(xt1, y
t
1) = pos(do(a, s)) ≡ ∃τ0, x

t
0, y

t
0, x0, y0, v, f, γ .(

a = setAccel(f, τ0) ∧ γ = yaw(s) ∨
a = setY aw(γ, τ0) ∧ f = accel(s)

)
∧

(xt0, y
t
0) = pos(s) ∧

x0 = val(xt0, τ0) ∧
y0 = val(yt0, τ0) ∧
v = val(veloc(s), τ0) ∧
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xt1 = quadratic(x0, cos(γ) · v, 1
2 · cos(γ) · f, τ0) ∧

yt1 = quadratic(y0, sin(γ) · v, 1
2 · sin(γ) · f, τ0) ∨

(xt1, y
t
1) = pos(s) ∧

(∀f, τ)a 6= setAccel(f, τ) ∧
(∀γ, τ)a 6= setY aw(γ, τ).

Nonlinear functions raise problems when it comes to solving systems of inequations.
Hence, caution should be exercised when introducing polynomial functions. For this
very reason, we stick with linear constraints in our implementation and examples.

4.4 Summary

This chapter demonstrated how a program in a plan library for car traffic might look
like. The two main components of such a plan library are

• the basic action theory consisting of primitive actions and fluents with their
respective preconditions and successor state axioms, and

• programs using these actions and fluents.

Finding a good basic action theory is not trivial and depends on the application.
The general tradeoff between expressiveness and tractability of arithmetic constraints
complicates this task.

This thesis focuses on the formal definition of a Golog dialect as modeling language
for plan recognition. The language as such imposes no limitations on the types of
constraints.

For practical purposes, however, one might want to stick with linear constraints as far
as possible. Section 4.2 has shown that some of the characteristics of car traffic can
be approximated using linear inequations.
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Semantics

This thesis’ approach to plan recognition is, given a sequence of observations and
a candidate program, to search for an execution of the program which entails all
observations. In a sense, the real world happenings represented by the observations
are (tried to be) replicated in the fictional model. If the fictional execution is congruous
with the observations, the program is assumed to be executed in reality and the plan
is recognized. In its final stage, the system not only returns definitive yes/no answers,
but assigns confidences to the candidate programs instead.

This chapter is about the language in which such candidate programs are written.
For one, the language needs to support modeling as done in Chapter 4. For another,
the execution model must somehow integrate the execution of programs with checking
whether or not observations holds.

The proposed language is a dialect of Golog (cf. Section 3.2). A central issue is
the handling of time. The goal is to pair descriptive modeling in programs with
quantitative timestamps in situation terms.

Further topics of this chapter are concurrency and nondeterminism in Section 5.2 and
Section 5.3, respectively. We argue that in this Golog dialect, both features can coexist
without leading to anomalies.

Section 5.4 shows that robustness can be modeled using probabilities and decision
theory. This gives rise to the aforementioned confidences that a certain candidate pro-
gram explains the observations. Also, this semantics allows to define atomic complex
actions, that is, sub-programs that are executed isolated from concurrently running
programs.

5.1 Time

Chapter 4 sketched when and how time could be used. In fact, the presented program
did not contain any reference to time at all. However, the successor state axiom
for pos used time to determine the current position, and preconditions even imposed
constraints on the timing. The definition of time, namely the function start, was left
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unclear in the previous chapter. This section discusses time in the situation calculus
and proposes a notion of time that allows modeling as done in the previous section.

5.1.1 Temporal Sequential Golog and cc-Golog

There are different extensions of the situation calculus and Golog in order to support
time. In temporal sequential Golog (Reiter, 1998), each action is parameterized with
the time at which it is executed. As a consequence, time is modeled rather explicitly
in the basic action theories and situation terms contain timestamps.

In contrast to this notion of time, cc-Golog (Grosskreutz and Lakemeyer, 2000a) pro-
vides a special primitive action, waitFor, which controls the lapse of time. waitFor(φ)
advances to the earliest upcoming point in time at which φ holds.

With cc-Golog, a program to overtake another car v on a highway could end with an
action sequence like

. . . ;waitFor(distanceTo(v) ≥ securityDistance); changeLaneRight.

Due to waitFor’s behavior in cc-Golog, the overtaking car would execute changeLane-
Right directly after it has reached the security distance. This is called least time point
semantics and means that each waitFor action is executed as early as possible. In
reality, however, drivers usually wait a little longer before they go back into the lane.
Hence, cc-Golog’s semantics of waitFor is not the right choice for plan recognition.

Temporal sequential situation terms match observations pretty well, because both
have an explicit associated timestamp. But cc-Golog’s implicit and descriptive model
of time appears to be more natural for the modeling part in a continuous environment
such as automotive domains.

5.1.2 Combining Temporal Sequential Golog and cc-Golog

The presented model of time is intended to bridge both approaches: in our Golog
dialect, time is constrained in programs descriptively with waitFor (and/or similar)
actions in the fashion of cc-Golog. At execution side, time is allowed to pass indef-
initely after each action. In fact, time advances at least to the point at which the
next primitive action is executable. The time at which a primitive action is executed
is encoded as parameter of this action in the same way like in temporal sequential
Golog.
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To implement the described model, the rule for primitive actions in the transition
semantics is replaced with the following definition:

Trans(α, s, δ, s′) ≡ δ = Nil ∧ (5.1)

∃τ . τ ≥ start(s) ∧
Poss(α[s, τ ], s) ∧
s′ = do(α[s, τ ], s).

Recall that α denotes a single, non-time-stamped primitive action. The notation α[s, τ ]
restores s and τ in all fluents that occur in α, and also appends the timestamp τ as
additional parameter to the action α. The given Trans axiom imposes a monotonicity
constraint on time. Additionally, the precondition axiom of α[s, τ ] may constrain τ
further. As long as τ meets the monotonicity constraint (τ ≥ start(s)) and potential
constraints of Poss, time may pass freely. The function start, which denotes the
starting time of a situation, is defined as

start(S0) = T0 and start(do(a, s)) = time(a)

where T0 is a constant such as 0 defined in DS0 and time extracts the timestamp of an
action, i.e. time(α[s, τ ]) = τ . The time function is borrowed from sequential temporal
Golog (Reiter, 2001, p. 152ff). For each action A(~x, τ), an axiom time(A(~x, τ)) = τ
must be added to the basic action theory D. Furthermore, the definition of start is
added to D.

In cc-Golog, only the waitFor action induces lapse of time and this is realized in
cc-Golog’s start function. In contrast, with the described semantics, any action can
control time using its precondition axiom, because time goes by freely modulo the
potential constraints imposed by Poss. For example, waitFor could be defined with
the precondition

Poss(waitFor(φ, τ), s) ≡ φ[s, τ ].

The notation φ[s, τ ] stands for the logical formula φ with all suppressed situations
restored by s and all occurrences of continuous fluents evaluated with val, e.g. (f(~x) <
3)[s, τ ] = (val(f(~x, s), τ) < 3). Like every action, waitFor is given an additional time
parameter by the above Trans axiom. cc-Golog’s waitFor does not have a time
parameter; instead, start unwinds the situation term back to the last waitFor action
and checks for which time in point the condition holds.

The new sort of timestamps may be, for example, the real or rational numbers.

In cc-Golog, waitFor actions have least time point semantics (Grosskreutz and Lake-
meyer, 2000a). This means that waitFor(φ) is executed at the earliest point in time
τ at which φ[s, τ ] holds. This can be achieved with the above semantics by modifying
the Poss(waitFor(φ, τ), s) formula given above to

Poss(waitFor(φ, τ), s) ≡ φ[s, τ ] ∧ (∀τ ′)(start(s) ≤ τ ′ ∧ τ ′ < τ ⊃ ¬φ[s, τ ′]).
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That precondition fails same like cc-Golog’s when no least time point exists like in
conditions such as τ > 3. However, probably the benefit of the least time point
semantics would be rather small, because all subsequent non-waitFor actions are
neither executed immediately nor do they underlie the least time point semantics unless
that is explicitly expressed in their preconditions. So time could still pass indefinitely
after a waitFor action. On the downside, the least time point semantics leads to
anomalies with concurrent nondeterministic programs (Grosskreutz and Lakemeyer,
2003). Dropping the least time point semantics allows for nondeterministic programs
as explained in Section 5.3.

The proposed changes to the semantics do not make test actions obsolete. While
waitFor actions are primitive actions and therefore occur with an associated time-
stamp in situation terms, test actions are “timeless” and never occur in situation
terms. A test may quite mention continuous fluents, but they are not evaluated au-
tomatically. Instead, a continuous fluent returns a term such as linear(1, 2, 3), which
may then be evaluated using val at a specific point in time. In contrast to tests,
waitFor actions implicitly evaluate continuous fluents by plugging in the action’s ex-
ecution timestamp.

In contrast to cc-Golog, however, waitFor is not a special primitive action anymore
but can be easily defined by the user. The reason is that control of time is moved
from cc-Golog’s start function to the actions’ preconditions (and Trans additionally
ensures monotonicity of time).

This notion of time can be summarized as follows:

• Actions in programs are timeless.

• When executed, actions are passed to Trans.

• Trans adds a time parameter to each primitive action which is constrained by

– Trans itself to ensure that time increases monotonically, and

– the action’s precondition like in waitFor or as shown in Section 4.2.

• The time-stamped primitive actions form situation terms.

5.2 Concurrency

As mentioned in the introduction, different actors typically act simultaneously on the
road. This kind of concurrency is not needed by the modeler, because the programs in
the plan library refer to a isolated drivers only. But the language still has to support
concurrency in order to reflect that plans are executed concurrently in the situation
terms.
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If n actors act simultaneously, the goal of plan recognition is to find a program σ = σ1 ‖
. . . ‖ σn which explains the observations, that is, find an execution of the concurrent
programs such that all observations are entailed. In which interleaved order the σi are
executed, is not known except for the constraints imposed by the observations. Which
interleaving of the σi actually appears in reality is not even known, so the semantics
of ‖ can be defined to be any interleaving of its operands:

Trans(σ1 ‖ σ2, s, δ, s
′) ≡ ∃δ′ . T rans(σ1, s, δ

′, s′) ∧ δ = δ′ ‖ σ2 ∨ (5.2)

∃δ′ . T rans(σ2, s, δ
′, s′) ∧ δ = σ1 ‖ δ′

Final(σ1 ‖ σ2) ≡ Final(σ1) ∧ Final(σ2).

This is the same like the semantics of ‖ in ConGolog (Giacomo et al., 2000).

This concurrency operator can also be used to model that a single driver does multiple
things concurrently, of course. This is the second kind of concurrency mentioned in
Section 1.2. It is actually used in Figure 4.2 on page 26 to express that accelerating
happens sometime during the lane changes. If an actor performs multiple things in
parallel, such as indicating during a lane change, this can be very well modeled with
processes. Processes consist of a pair of actions startAction and an endAction and a
fluent acting which is true between the start and end of the process.

5.3 Nondeterminism

In cc-Golog, nondeterministic features of Golog are disallowed due to their counter-
intuitive behavior with respect to cc-Golog’s semantics (Grosskreutz and Lakemeyer,
2003, pp. 193, 196f). The reason is that in cc-Golog, σ1 ‖ σ2 executes a first action of
σ1 or σ2 depending on which one is possible earlier:

Trans(σ1 ‖ σ2, s, δ, s
′) ≡ ¬Final(σ1, s) ∧ ¬Final(σ2, s) ∧

(
∃δ1 . T rans(σ1, s, δ1, s

′) ∧ δ = δ1 ‖ σ2 ∧(
∀δ2, s2 . T rans(σ2, s, δ2, s2) ⊃ start(s′) ≤ start(s2)

)
∨

∃δ2 . T rans(σ2, s, δ2, s
′) ∧ δ = σ1 ‖ δ2 ∧(

∀δ1, s1 . T rans(σ1, s, δ1, s1) ⊃ start(s′) < start(s1)
))
.

Hence, interleaving of actions itself is deterministic. This semantics is intended in
scenarios like the following (Grosskreutz and Lakemeyer, 2003, p. 193):

(waitFor(batteryIsEmpty); charge)︸ ︷︷ ︸
σ1

‖ doSomething︸ ︷︷ ︸
σ2

.

The left program, σ1, should only be executed when the battery is empty. Waiting
until the battery is empty doing nothing and then going to charge is obviously not the
intended behavior.
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Nondeterministic features like the branch | do not work with this semantics: Assume
that primitive action a is possible at time 1, b at 2 and c at 3. Let the program be
(a | c) ‖ b. One has to consider both parts of the disjunction in cc-Golog’s concurrency
semantics to see the anomaly. When the interpreter first executes a | c and there
branches to a, it has to assert that all situations resulting from b cannot occur earlier
than do(a, S0). Since

1 = start(do(a, S0)) ≤ start(do(b, S0)) = 2

holds, this is the case and hence, do([a, b], S0) is reachable. But if b is executed first,
the interpreter has to check that all situations that result from a | c occur later than
do(b, S0). This is not the case, because do(a, S0) is reachable by a | c and

2 = start(do(b, S0)) < start(do(a, S0)) = 1

fails. Therefore, do([b, c], S0) is not entailed by cc-Golog’s semantics of concurrency,
even though it conforms to the monotonicity of time start(do(b, S0)) ≤ start(do([b, c],
S0)). For this reason, nondeterministic features are not part of cc-Golog.

Since the semantics described in Section 5.1 does not include cc-Golog’s least time
point concept, ConGolog’s definition of interleaved concurrency as defined in Sec-
tion 5.2 suffices. Nondeterministic language constructs like ‖ and π seem not to lead
to unintuitive results. Due to existentially quantified time, the interpreter has the free-
dom to search for any execution (modulo the program structure) that is feasible.

In reality, it might be better to refrain from nondeterminism for performance reasons.
This section simply argued that nondeterminism does not interfere with the other
language features.

5.4 Robustness

Section 1.2 distinguished three relevant kinds of robustness: robust timing constraints,
optionality of some types of actions, and tolerance towards deviations of observation
and expected fluent values.

Timing robustness is an inherent part of the notion of continuous time presented in
Section 5.1.

Optional actions can be achieved with simple nondeterminism like

. . . ; (optionalAction |Nil); . . . .
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To save space, a keyword opt could be introduced with the following semantics:

Trans(opt(σ), s, δ, s′) ≡ Trans(σ |Nil, s, δ, s′)
Final(opt(σ)) ≡ True.

An example for the use of opt is the “optional” indicating during a lane change.

This section deals with fluent value robustness. The goal is to prepare the language
to handle discrepancies between reality, that is observations, on the one side and the
model’s fluent values on the other side. How this semantics pays off is shown in
Section 6.5.

It might be desirable to measure the deviation somehow quantitatively in order to
obtain a confidence in a certain plan explaining the observations. This would of course
imply abandoning the pure consistency-basedness of the approach.

In the following, existing work related to robustness is discussed. Then, an approach
is developed based on some of this work.

5.4.1 Non-Probabilistic Robustness

The overtake procedure from Figure 4.2 on page 26 tackles the problem using ex-
cessive nondeterminism: the lane change of a car is explained by a nondeterministic
repetitions of nondeterministically picking an angle γ ≥ 0 and performing setY aw(γ).
Consequently, for any sequence of observations of a lane changing car a correspond-
ing sequence of setY aw actions can be found. This means that robustness is kind
of built-in into the model, because discrepancies between the model and reality do
not even occur. Unfortunately, nondeterminism very badly affects performance due
to the high number of actions and the quadratically increasing number of interleaving
combinations when concurrency is involved.

Gspandl et al. (2011) propose a way to handle sensed deviations of reality from the
model by inserting additional actions. These actions restore consistency between the
fluent values and reality. Whereas Figure 4.2 explains the deviations “in advance,”
the explaining actions are inserted after an inconsistency has been detected. This
is, of course, much more suitable when it comes to managing belief online during
program execution, but in the present scenario the upcoming observations are known
in advance. Since each explaining action is still discrete, the whole approach boils down
to the same number of actions like the robustness-by-nondeterminism approach.

Fuzzy fluents can be used to determine the degree by which some predicate holds. A
fuzzy logic integration with the situation calculus has been proposed by Ferrein et al.
(2008). However, at the lowest level the fluents still have quantitative values, the fuzzy
predicates are stacked on these quantitative fluents. Therefore, when an observation
is checked in a situation, from both directions qualitative values clash. Hence, fuzzy
logic does not tackle the actual problem.
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5.4.2 Probabilistic Extensions of the Situation Calculus and Golog

There are various probabilistic extensions of the situation calculus and Golog.

Bacchus et al. (1999) combine stochastic actions and a possible worlds approach to
handle noise in the situation calculus. Stochastic actions have a nominal value set
by the agent, and an actual value that is chosen by nature. When an action a is
executed and s is among the situations currently considered possible, this leads to new
situations do(a′, s) where a′ is indistinguishable from a. For example, move(3, y) with
nominal value 3 and unknown actual value y might have indistinguishable outcomes
move(3, 2) and move(3, 4). An action likelihood function l(a, s) yields the probability
for a being executed in s. Each situation in the initial epistemic state is assigned a
weight, and while the epistemic state emerges, the weight is updated considering the
action’s likelihood. The probability that a formula φ holds in s is determined as the
division of (a) the sum of the weights of the possible situations and (b) the sum of
the weights of all situations considered possible. The point of the epistemic state is
that sense action thin it out and thereby gain knowledge. The likelihood l(a, s) being
a fluent allows for a powerful context dependent error model. The formalization in
(Bacchus et al., 1999) requires l(a, s) to be a finite discrete probability distribution.
Continuous distributions are simply discretized.

Mateus et al. (2001) propose a variant of the situation calculus that also supports
continuous probabilistic actions. However, they do not axiomatize the integration
and differentiation operators, whereas Bacchus et al. (1999) do formalize their sum.
Furthermore, their approach really changes the situation calculus in that the primitive
actions itself become nondeterministic.

Boutilier et al. (2000a,b) propose a decision-theoretic dialect of Golog called DTGolog.
This approach is the only one of those presented which is not limited to the situation
calculus but also defines the semantics of a Golog variant. In contrast to stGolog, (Re-
iter, 2001, Chapter 12), DTGolog also supports nondeterminism. DTGolog amalga-
mates Golog with fully observables Markov Decision Processes. The stochastic actions
of (Boutilier et al., 2000a,b) are similar to those proposed by Bacchus et al. (1999),
but it goes without the epistemic state. In DTGolog, the outcome actions represent
the different transitions an action can induce in a Markov Decision Process. At non-
deterministic choice points, it chooses the branch or value, respectively, that promises
the highest reward value (roughly speaking).

The following distinguishes between nondeterminism and stochastic actions. Even
though stochastic actions are kind of inherently nondeterministic, this is not what is
meant by nondeterminism. Stochastic actions mean actions where nature chooses the
outcome, whereas nondeterminism allows the agent to choose. Examples for nonde-
terministic features are the pick operator πv . σ and branching σ1 |σ2.

Reiter’s (2001) stochastic actions and decision-theoretic Golog are based on Bacchus
et al. (1999) and Boutilier et al. (2000a,b). The primitive actions A1(~x1), . . . , Ak(~xk)
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that are potential outcomes of a stochastic action B(~x) are enumerated in a macro:

choice(B(~x), a)
def
= a = A1(~x1) ∨ . . . ∨ a = Ak(~xk). Additionally, a macro prob0(α, β, s)

specifies the probability that nature chooses α as outcome of β in s. Using these
macros, he defines the stochastic Golog dialect stGolog. stGolog only handles de-
terministic programs. Since at each execution of a stochastic action nature picks one
randomly, the execution of a program yields a tree with situation terms and associated
probabilities at the leaves. The probability that a formula φ holds after executing a
program σ is the sum of the probabilities of all situations s in the respective tree for
which φ[s] holds.

A different way to integrate probabilities and the situation calculus is described by Fritz
and McIlraith (2009). The values of fluents are interpreted as random variables with
associated probability distributions. For example, the price of some product might
be normally distributed around some measured price µ with deviation σ increasing
with time. The regressed goal formula then contains probability distribution terms,
e.g., fN (price, 13, 1) < 11. They compute the probability that the goal formula holds
considering the random variables. This gives what they call the plan’s robustness.

5.4.3 Robustness through Stochastic Actions

As described above, nondeterminism is computationally very expensive. This makes
robustness by measuring the deviation interesting. The modeler might want to express
that the car should accelerate with “about 3 m/s2.” Fuzzy logic (Ferrein et al., 2008)
would lend itself to model an expression like “about 3 m/s2,” but it appears difficult
to value the deviation of measurements from 3 m/s2. Probability as quantified belief
might be suited better. More precisely, the car’s acceleration might be a random
variable X with a Gaussian distribution with mean µ = 3 m/s2 and deviation σ =
0.5 m/s2.

Random variables as proposed by Fritz and McIlraith (2009) can express exactly this.
But for an observation accel = 3.5 m/s2, there is no intuitive way to get a probability
that this holds. Perhaps one would measure this by 1 − Pr(X ≥ 3.5 m/s2) or so.
Another critical point is how a single random variable X could explain two different
measurements, because X can take only one actual value.

Outline

Stochastic actions similar to (Bacchus et al., 1999; Mateus et al., 2001; Boutilier et al.,
2000a,b; Reiter, 2001) can be used to overcome these limitations. Each stochastic
action has potentially countably infinitely many outcomes. The driver, from the per-
spective of plan recognition being a part of nature, chooses one of these outcome ac-
tions. An action likelihood function prob0(β, α, s) denotes the probability that, when
stochastic action β is to be executed in s, nature chooses α as outcome.
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S0, (β1;β2)

do(a13, S0), β2 do([a13, a24], S0), p = 1
4

p = 1

p = 1
4

do(a12, S0), β2

do([a12, a23], S0), p = 1
3p = 2

3

do([a12, a22], S0), p = 1
6

p =
1
3p = 1

2

do(a11, S0), β2 do([a11, a21], S0), p = 1
4

p = 1

p =
1
4

Figure 5.1: Tree of situation terms induced by executing two stochastic actions.
β1 has outcome actions a11, a12, a13 in S0 with probabilities 1

4 ,
1
2 and 1

4 , respectively.
When β2 is executed in do(a11, S0), nature may choose only a21. In do(a12, S0), nature
may choose a22 or a23 with probabilities 1

3 and 2
3 , respectively. In do(a13, S0) nature

picks a24.

As in stGolog (Reiter, 2001), executing a deterministic program σ involving stochastic
actions induces a tree with situation terms and their probabilities at the leaves. For
each leaf situation term s holds Do(σ, S0, s) and its probability is the product of the
probabilities of all outcome actions in s. Such a tree is depicted in Figure 5.1. Then,
the probability that φ holds after executing σ is the sum of all leaf situations s for
which φ[s] holds.

The modeler supplies macros Choice(β, α) and prob0(β, α, s). Choice(β, α) indicates
that α is a potential outcome action of stochastic action β and prob0(β, α, s) is a
function that returns the likelihood that nature chooses α as outcome of β in s. The
action α is not time-stamped, because the time parameter is added at execution time.
prob0 being situation-dependent allows for a context-sensitive error model as in (Bac-
chus et al., 1999). The modeler is responsible to ensure that prob0(β, α, s) defines a
valid probability distribution. The distribution is assumed to be discrete; continuous
distributions need to be discretized as in (Bacchus et al., 1999). The axiomatizer has
to ensure that for any non-time-stamped primitive action α and stochastic action β

D |= Choice(β, α) ∧ (∃τ . τ ≥ start(s) ∧ Poss(α[s, τ ], s)) ⊃ prob0(β, α, s) > 0

and

D |= (∃α .Choice(β, α) ∧ ∃τ . τ ≥ start(s) ∧ Poss(α[s, τ ], s)) ⊃∑
{α |Choice(β,α)∧
∃τ . τ≥start(s)∧
Poss(α[s,τ ],s)}

prob0(β, α, s) = 1.
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The sigma sign is axiomatized below in Formula (5.5) on page 45. It is important to
note that prob0 refers to the non-time-stamped actions. Besides this, both demands
are equal to (12.2) and (12.3) by Reiter (2001, pp. 341f). The summation condition
matches Reiter’s prob macro, because it sums prob0 of all possible outcome actions
while it skips the impossible ones. Reiter’s prob returns prob0 for each possible and
executable outcome action and returns 0 otherwise.

In contrast to (Reiter, 2001), this Choice allows an infinite number of outcome actions.
This is relevant, because a discretely distributed random variable may have an infinite
number of values with positive probability. Since the sum’s formalization (5.5) requires
the set under the

∑
symbol to be at most countably infinite, the number of outcome

actions needs to be countable, too:

D |= ∀β . ∃f . ∀α .Choice(β, α) ⊃ (∃i)f(i) = α.

Here, i is of sort natural numbers and f is a second-order function variable. This
means that for each stochastic action β, there is a mapping from the natural numbers
to the outcome actions.

The new sort of probabilities is assumed to be the set of real numbers with their
standard interpretation.

An approach alternative to probabilities would be to assign weights to situations. As
done by Bacchus et al. (1999), weights can then be normalized to 1.

Similar to DTGolog (Boutilier et al., 2000a,b), nondeterminism in programs is resolved
by choosing the branch which maximizes the probability that some situation- and
time-suppressed goal formula holds after executing the program. In the field of plan
recognition, this formula might express that all observations are entailed by the current
situation.

In fact, DTGolog does not optimize with respect to a goal formula, but maximizes
the value of a reward function. While in DTGolog, rewards are added up along the
path of execution, this Golog dialect will only consider a single situation’s reward (see
definition of value (5.4) below). Hence, optimizing the probability that goal formula
φ holds can thus be captured by the simple reward function

r (s) =

{
1 if φ[s]

0 else.
(5.3)

In the following, this is called the standard reward function if φ holds if all obser-
vations are entailed. Of course, φ has to be known in advance in order to resolve
nondeterminism that way. Like in DTGolog, optimization could be done modulo a
certain horizon to improve performance.

The concept of reward functions is superior to logical goal formulas, because it allows
to rate situations not only as “good” and “bad” but also allows statements in between.
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This comes in handy when not all observations are known in advance and/or the search
horizon is limited. In realistic scenarios, the set of observations grows as time goes by.
The reward function could map each situation to the number of entailed observations.
Then, the candidate program could be executed incrementally corresponding to the
number of occurred observations and the reward function would guide the interpreter a
reasonable way through the program. This is explored in detail in the next chapter.

A difference to DTGolog is that DTGolog uses evaluation semantics and defines
BestDo, a variant of Do that resolves nondeterminism. To preserve the support of
concurrency, the ideas of BestDo must be transferred to Trans. Fritz and McIlraith
(2006) propose a semantics using BestTrans, but their goal is just synchronous exe-
cution of programs and not concurrency. Furthermore, they use lists for bookkeeping
of branching decisions. Lists, however, are not a typical construct used in logic.

To incorporate the probabilities, the predicate Trans is replaced with a function
transPr similar as in pGolog (Grosskreutz, 2000; Grosskreutz and Lakemeyer, 2000b).
The probabilities in pGolog stem from choice points augmented with the likelihood
of each branch. In pGolog, transPr(σ, s, δ, s′) = p holds if σ executed in s leads to
s′ with remaining program δ with probability p. Where Trans fails, transPr returns
probability 0.

Since nondeterminism is resolved by choosing the best branch, an additional parameter
r for transPr is needed for the reward function to value branches. The semantics is
defined by the function

transPr(r , σ, s, δ, s′) = p

which holds if

• r denotes a functional fluent that returns some non-negative reward for each
situation,1

• a single transition – that is, the next primitive, stochastic or test action – of σ
in s leads to s′,

• the rest of σ after this transition is δ,

• nondeterminism in σ is resolved by inspecting all possible executions and choos-
ing the branch that maximizes the expected reward (for the special case of the
standard reward function (5.3) this means: the nondeterminism in σ is resolved
by branching in a way that maximizes the probability that the observations are
entailed after executing σ), and

• p is the probability of getting to s′ by a single transition of σ in s (for non-
stochastic actions, this is either 0 or 1).

Before transPr can be defined, a number of helper macros and predicates have to be
introduced. These include

1For readability, reward functions are given and used in normal mathematical style in the following.
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• value to compute the estimated reward value after executing a given program
in a given situation,

• the Do and Trans∗ equivalents doPr and transPr∗,

• Next and MaybeF inal that are used to decompose a program into an atomic
(that is, primitive, stochastic or test) action and a remainder,

• transAtPr to execute an atomic action, and finally

• transPr and Final that mimic the behavior of Trans and Final in the tradi-
tional transition semantics.

Rating Situations with value

There are many ways to combine the rewards of a situation and its ancestor situa-
tions. For example, DTGolog adds up the rewards of all situations. In the present
domain, the intention is rather that there should be one situation that explains all
observations. Hence, the value of a branch should be the maximum encountered re-
ward along this path. However, by modifying the reward functions, one can reproduce
either behavior.

Figure 5.2 visualizes the potential outcomes of executing a deterministic program
consisting of a sequence of two stochastic actions. For example, if outcome action a11

occurs, the reward of 1 is worse than the average reward of the children 1
2 · 3 + 1

2 · 2.
Similarly, the children of do(a12, S0) have a higher average reward than 4 even though
one child is worse than do(a12, S0). In the third branch, do(a13, S0)’s reward of 4 is
better than its children’s average of 2. Note that the initial situation has a reward
of 31

3 , but it does not win even though its children have an average reward of only 3
and its grandchildren have an average reward of 31

6 . This is because the descendant
situations marked with the double ellipses have a better average reward of 1

3 · (
1
2 ·

(3 + 2 + 10 + 0) + 4) = 35
6 . Hence, the function value should pick these situations to

determine the estimated reward.

A set S of situations from a situation tree is called a path cover if, for any path from the
root to a leaf in the situation tree, there is one s ∈ S that lies on the path. Obviously,
a single situation can cover multiple paths, but no path may have two of its situations
in the path cover. A path cover is called optimal if the average reward of its situations
is greater or equal than any other path cover’s. The root node is always a trivial path
cover. In Figure 5.2, the nodes with double ellipses are an optimal path cover.

Consider a situation tree induced by executing σ in s. The following macro asserts
that the path cover {s} is optimal, that is, no path cover has a higher estimated reward
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S0, r = 31
3

do(a13, S0), r = 4

do([a13, a22], S0), r = 2p = 1
2

do([a13, a21], S0), r = 2p =
1
2

p = 1
3

do(a12, S0), r = 4

do([a12, a22], S0), r = 0p = 1
2

do([a12, a21], S0), r = 10p =
1
2

p = 1
3

do(a11, S0), r = 1

do([a11, a22], S0), r = 2p = 1
2

do([a11, a21], S0), r = 3p =
1
2

p =
1
3

Figure 5.2: Value determination of two sequential stochastic actions. Each node
represents one of the outcomes of a stochastic action. It is labelled with the reached
situation’s reward. The edges’ labels are the probabilities of the respective outcomes.
The double ellipses mark those situations that maximize the average reward.

than the root node:

Best(r , σ, s) def
= ∀P .

(
∀s′, s′′ . P (s′) ∧ P (s′′) ⊃ s′ 6< s′′

)
⊃∑

{(p,s′) | ∃δ . transPr∗(r ,σ,s,δ,s′)=p∧
p>0∧P (s′)}

p · r (s′) ≤ r (s).

The sigma sign is axiomatized below; the summation iterates over all values for p and
s′ that make the sum’s condition true. Notice that the set of (p, s′) is not uncountable
even though probabilities and situations are. This is because there are only countably
many transitions of σ and at each transition, at most countably infinitely many out-
come actions yield a positive return value of transPr. The second-order variable P
represents an arbitrary set of situations which are pairwise non-descendants/ancestors,
or in other words, for all paths from from s to a leaf situation, at most one situation
from this path is contained in P . For all situations which are not reachable from s by
σ, p = 0 holds and therefore the addends have no effect. Hence, the situations in P
with a positive probability form either a path cover or a subset of a path cover. This
captures that in Figure 5.2, S0 is better than its children, and it is also better than its
grandchildren, but there still is a path cover that is even better than S0: considering
the situations with double ellipses, each one is from a different branch and therefore
they form a valid path cover, and their average reward is better than S0’s. Recall that
transPr∗ resolves nondeterminism in σ, hence, the situations with p > 0 stem only
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from different outcome actions and not from nondeterministic program constructs.

What value still needs to do is taking the earliest situation which maximizes the
estimated reward. Using Best, the function value can be defined as

value(r , σ, s) def
=

∑
{(p,s′) | ∃δ . transPr∗(r ,σ,s,δ,s′)=p∧

p>0∧Best(r ,δ,s′)∧
¬∃s′′,δ . transPr∗(r ,σ,s,δ,s′′)>0∧
Best(r ,δ,s′′)∧ s′′<s′}

p · r (s′). (5.4)

This determines the maximum reward of each branch and calculates the average. In
terms of Figure 5.2, the first Best in the sum’s condition holds for situations whose
reward is better than its descendants’. For example, it succeeds for do(a13, S0), but
also for its children do([a13, a21], S0) and do([a13, a22], S0). The second Best rules
out these children. Therefore, the whole definition of value sums the reward values
multiplied with the probabilities. Again, the set under the sigma sign is countable
for the same reasons as with the definition of Best above. Note that in contrast to
DTGolog, value does not take into account whether or not a branch is executable in
total, that is, leads to a final configuration.

The sigma signs in Best and value still need to be axiomatized. The following defini-
tions refers to the general case ∑

{~x |Φ[ ~X/~x]}

ν(~x)

where the set under the sigma sign {~x | Φ[ ~X/~x]} is countable and all addends are non-
negative real numbers: ν(~x) ≥ 0. Φ mentions some constants X1, . . . , Xn which are
taken together in ~X and substituted by ~x. For the sake of readability, the constants ~X
and the variables ~x had the same names in the above applications, and the substitution
was omitted. The sum can be formalized in second-order logic similar to (Bacchus
et al., 1999):

sumν(Φ( ~X)) = v
def
= ∃f, g . (∀~x)

(
Φ[ ~X/~x] ⊃ (∃i)~x = g(i)

)
∧ (5.5)

(∀i, j)
(
Φ[ ~X/g(i)] ∧ Φ[ ~X/g(j)] ∧ i 6= j ⊃ g(i) 6= g(j)

)
∧

f(0) = 0 ∧
(∀i)

(
(Φ[ ~X/g(i)] ⊃ f(i+ 1) = f(i) + ν(g(i))) ∧

(¬Φ[ ~X/g(i)] ⊃ f(i+ 1) = f(i))
)
∧

(∀i)
(
f(i) ≤ v ∧

(∀v′)(f(i) ≤ v′ ⊃ v ≤ v′)
)
.

All variables i and j are supposed to be natural numbers, which can be easily defined
with 0, 1 and + (Bacchus et al., 1999). The second-order function g enumerates all
vectors ~x for which the sum’s condition Φ holds and f(i+1) sums the values ν(~x) of all
vectors g(0), . . . , g(i). Note that g “contains” each ~x for which Φ[ ~X/~x] holds. Other
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values of g are not defined, which is not critical, because they are not referenced. Since
all values of g are distinct, each ~x with Φ[ ~X/~x] is counted only once. The last two
lines assert that v is the least upper bound of f . The sum macro is only satisfiable if
the sum converges.

The restriction to converging series is actually relevant. For example, value(r , α∗, s)
is undefined if the reward function r increases with each α. It is the axiomatizer’s
job to ensure that the combination of reward function and programs has no such
effect. Alternatively, one might drop the nondeterministic iteration (and thereby,
while loops, which are defined in terms of nondeterministic iteration and tests) and
recursive procedure calls. However, there are realistic scenarios in which actions in a
nondeterministic loop have no effect on the reward at all.

Reflexive Closure transPr∗ and doPr

To ease the definition of functions, the following macro is frequently used in the fol-
lowing:

if ξ then φ else ψ
def
= ξ ∧ φ ∨ ¬ξ ∧ ψ.

Variables quantified in ξ are also intended to be visible in φ. Sometimes, a special
quantifier, ∃1, is used inside ξ. The idea is that the condition might hold for several
different values of the existentially quantified variables, but to ensure determinism,
the condition should succeed for only a single value for each variable. This behavior
can be defined as

if χ ∧ ∃1~x . ξ then φ else ψ
def
=

if χ ∧ ∃~x . ξ ∧
(
∀~x′ . ξ~x~x′ ⊃ ~x ≤ ~x

′) then φ else ψ

where ~x′ is a vector of new variables that do not occur in ξ and ≤ is some total
ordering, e.g., the lexicographical one. χ is optional.

The reflexive transitive closure of transPr is second-order defined as

transPr∗(r , σ, s, δ, s′) = p
def
= (5.6)

if ∃p′ .∀f .
(
∀r ′, σ1, s0 . f(r ′, σ1, s0, σ1, s0) = 1

)
∧(

∀r ′, σ1, δ1, δ2, s0, s1, s2, p1, p2 .

p1 > 0 ∧ f(r ′, σ1, s0, δ1, s1) = p1 ∧
p2 > 0 ∧ transPr(r ′, δ1, s1, δ2, s2) = p2 ⊃
f(r ′, σ1, s0, δ2, s2) = p1 · p2

)
⊃

f(r , σ, s, δ, s′) = p′

then p = p′ else p = 0.
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This definition is analogous to transPr∗ in (Grosskreutz, 2000; Grosskreutz and Lake-
meyer, 2000b). The macro doPr uses transPr∗ to execute the program, but stops at
the first point it is final:

doPr(r , σ, s, s′) = p
def
=

if ∃p′ . transPr∗(r , σ, s, s′) = p′ ∧ Final(r , σ, s′) ∧
(∀s′′)

(
s v s′′ ∧ s′′ < s′ ⊃ ¬Final(r , σ, s′′)

)
then p = p′ else p = 0.

Decomposing Programs with Next and MaybeF inal

The Next predicate is very similar to the Trans predicate in the standard transition
semantics. Next(σ, γ, δ) holds if there is an execution of σ such that the next atomic
action is γ and the remaining program is δ. Thus, in contrast to Trans, Next does
not actually execute actions and create new situations. Instead, it breaks down the
program up to the level of primitive, stochastic and test actions.

Next(Nil, γ, δ) ≡ False (5.7)

Next(α, γ, δ) ≡ γ = α ∧ δ = Nil

Next(β, γ, δ) ≡ γ = β ∧ δ = Nil

Next(φ?, γ, δ) ≡ γ = φ? ∧ δ = Nil

Next(πv . σ, γ, δ) ≡ ∃x .Next(σvx, γ, δ)
Next(σ1 |σ2, γ, δ) ≡ Next(σ1, γ, δ) ∨Next(σ2, γ, δ)

Next(σ1;σ2, γ, δ) ≡ ∃σ′1 . Next(σ1, γ, σ
′
1) ∧ δ = σ′1;σ2 ∨

MaybeF inal(σ1) ∧Next(σ2, γ, δ)

Next(σ1 ‖ σ2, γ, δ) ≡ ∃σ′1 . Next(σ1, γ, σ
′
1) ∧ δ = σ′1 ‖ σ2 ∨

∃σ′2 . Next(σ2, γ, σ
′
2) ∧ δ = σ1 ‖ σ′2

Next(σ∗, γ, δ) ≡ ∃σ′ . Next(σ, γ, σ′) ∧ δ = σ′;σ∗.

Recall that α stands for a single non-time-stamped primitive action and β denotes a
single stochastic action. In Next and in the following, γ stands for an action that is
either non-time-stamped primitive, stochastic or a test.

MaybeF inal(σ) is intended to succeed if there is a way to branch in the possibly non-
deterministic program σ that is final, hence the “maybe.” The definition is essentially
the same as Final in the standard transition semantics:

MaybeF inal(Nil) ≡ True
MaybeF inal(α) ≡ False
MaybeF inal(β) ≡ False
MaybeF inal(φ?) ≡ False
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MaybeF inal(πv . σ) ≡ ∃x .MaybeF inal(σvx)

MaybeF inal(σ1 |σ2) ≡MaybeF inal(σ1) ∨MaybeF inal(σ2)

MaybeF inal(σ1;σ2) ≡MaybeF inal(σ1) ∧MaybeF inal(σ2)

MaybeF inal(σ1 ‖ σ2) ≡MaybeF inal(σ1) ∧MaybeF inal(σ2)

MaybeF inal(σ∗) ≡ True.

The motivation behindNext andMaybeF inal is the following: transPr picks that one
out of all possible decompositions (γ; δ) which maximizes the reward after its execution
where γ is a single atomic action. This property is crucial to handle concurrency,
because it allows to steadily push back the concurrency in σ to δ until δ is Nil.

In contrast to original ConGolog’s Final, MaybeF inal has no parameter for the sit-
uation term. This is because we go without synchronized conditional statements
and loops for simplicity (cf. Section 3.2). Furthermore, this definition of Next and
MaybeF inal does not include recursive procedures. However, this feature can be
integrated the same way as in ConGolog (Giacomo et al., 2000).

Stepwise Execution with transAtPr, transPr and Final

In comparison to the standard Trans, execution of atomic actions is moved to a
separate function called transAtPr. transAtPr(r , γ, δ, s, s′) = p is read as

• the primitive, stochastic or test action γ leads from s to s′,

• the timestamp of an executed primitive action maximizes the reward r after
executing δ in s′,

• for primitive and test actions, p = 1 and p = 0 indicate success and failure,
respectively; for stochastic actions, p is the probability that the outcome action
reflected in s′ is chosen and executed successfully.

The function is defined as follows:

transAtPr(r , α, δ, s, s′) = p ≡ (5.8)

if ∃1τ . τ ≥ start(s) ∧ Poss(α[s, τ ], s) ∧ s′ = do(α[s, τ ], s) ∧(
∀τ ′, s′′ . τ ′ ≥ start(s) ∧ Poss(α[s, τ ′], s) ∧ s′′ = do(α[s, τ ′], s) ⊃
value(r , δ, s′) ≥ value(r , δ, s′′)

)
then p = 1 else p = 0

transAtPr(r , β, δ, s, s′) = p ≡ (5.9)

if ∃α, p′ . Choice(β, α) ∧ transAtPr(r , α, δ, s, s′) · prob0(β, α, s) = p′ ∧ p′ > 0

then p = p′ else p = 0

transAtPr(r , φ?, δ, s, s′) = p ≡ (5.10)

if φ[s] ∧ s′ = s then p = 1 else p = 0.
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With all these tools in hand, transPr(r , σ, δ, s′) simply needs to choose that partition
(γ; δ) of σ which maximizes the reward after executing the total program. The resulting
definition of transPr is concise:

transPr(r , σ, s, δ, s′) = p ≡ (5.11)

if ∃1γ1, δ1 . Next(σ, γ1, δ1) ∧(
∀γ2, δ2 . Next(σ, γ2, δ2) ⊃ value(r , (γ1; δ1), s) ≥ value(r , (γ2; δ2), s)

)
then

(
if δ = δ1 then p = transAtPr(r , γ1, δ1, s, s

′) else p = 0
)

else p = 0.

A configuration is considered final if there is a final branching of σ and all ongoing
executions of σ do not yield a higher reward:

Final(r , σ, s) ≡MaybeF inal(σ) ∧ value(r , Nil, s) ≥ value(r , σ, s). (5.12)

Why Program Decomposition is Crucial

Why is it necessary to introduceNext instead of fusing DTGolog-style resolving of non-
determinism into the Trans predicate? The reason is concurrency. As shown in rule
(5.2) for σ1 ‖ σ2, one of the concurrent subprograms, say σ1, is chosen nondeterminis-
tically and is then transitioned. σ1 itself may be nondeterministic, too. For example,
one might have σ1 = ((σ1,1 |σ1,2);σ′1). Then, to decide whether to branch to σ1,2 or
σ1,2, the interpreter needs to determine whether ((σ1,1;σ′1) ‖ σ2) or ((σ1,2;σ′1) ‖ σ2) is
the better choice.

Keeping track of σ2 as the concurrently running program does not solve the problem,
because σ1,1 and σ1,2 might contain further nested concurrency.

With Next, σ1 ‖ σ2 is decomposed in all possible ways. One decompositions is
(γ; ((σ′1,1;σ′1) ‖ σ2)), that is, σ1,1 is split into γ and σ′1,1. The analogous decompo-
sition for the case that the interpreter branches to σ1,2 is (γ; ((σ′1,2;σ′1) ‖ σ2)) where
σ1,2 itself is decomposed into γ and σ′1,2. Further decompositions exist for the case
that the interpreter actually transitions σ2 before σ1.

This behavior cannot be achieved with classic Trans, because it recursively disassem-
bles the program following its abstract syntax tree. During this, Trans does not keep
track of the remaining program, which would be needed to resolve nondeterminism.

The described procedure continuously pushes back the concurrency operator: for some
program (α1;α3) ‖ α2, the interpreter might choose the decomposition into α1 and
α3 ‖ α2. Then, the interpreter might pick α2 which means the remainder is α3 ‖ Nil.
Finally, α3 is transitioned and the remainder Nil ‖ Nil is final.
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Well-Definedness of the Semantics

In the following, some properties of this semantics are proven. To begin with, it is
shown that the semantics is well-defined. From now on, C denotes the axiomatization
of the new transPr semantics.

Furthermore, we assume in all proofs that r and σ (and other executed programs) do
not lead to a loop with ever-increasing reward. Otherwise, the sums in value and Best
were undefined as argued above.

Theorem 5.1. transPr returns a new configuration for each input configuration:

∀r , σ, s . ∃δ, s′, p . transPr(r , σ, s, δ, s′) = p.

Proof. We show that for any input configuration, we can determine an output config-
uration by simply following the definition of transPr and its helpers.

transPr leads to recursive evaluations of itself via transAtPr and value. One needs
to show that at each recursion step, the programs shrink and eventually are Nil at
which point the recursion ends, or that the literals that recursively rely on transPr
(such as value comparisons) are otherwise decidable.

• Consider the subformula

∀γ2, δ2 . Next(σ, γ2, δ2) ⊃ value(r , (γ1; δ1), s) ≥ value(r , (γ2; δ2), s)

of transPr (5.11). In the following, superscript n distinguishes the variables at
depth of recursion n from previous and subsequent recursion steps of transPr.
Let (γni ; δni ), i ∈ {1, 2} be two decompositions of σn in transPr. value uses
transPr∗ which leads to a recursive evaluation of transPr for σn+1 = (γni ; δni )
(or real subprograms). The only decomposition of σn+1 is simply (γn+1

i ; δn+1
i ) =

(γni ; δni ), because γni is an atomic action. Therefore, the literal

value(r , (γn+1
1 ; δn+1

1 ), s) ≥ value(r , (γn+1
2 ; δn+1

2 ), s)

is trivially true.

• After transPr has chosen a decomposition (γn1 ; δn1 ) of σn, it evaluates transAtPr
to execute γn1 taking account of the remaining program δn1 . transAtPr (5.8) then
proceeds with

value(r , δn1 , s
′) ≥ value(r , δn1 , s

′′)

which finally leads to recursive evaluations of transPr. The program which
transPr executes at recursion step n+1 is a subprogram of the program at step
n: σn+1 = δn1 . For sufficiently great n, it is σn+1 = δn1 = Nil. At this point,
there is no decomposition of σn+1 and the recursion ends.

This procedure leads to a successor configuration for any input configuration.
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Corollary 5.2. transPr∗ and doPr return a successor configuration for each input
configuration.

Proof. Follows from Lemma 5.1.

Lemma 5.3. transAtPr is a well-defined function:

D ∪ C |= transAtPr(r , γ, δ, s, s′) = p1 ∧ transAtPr(r , γ, δ, s, s′) = p2 ⊃ p1 = p2.

Proof. The rules (5.8) and (5.10) are both functions, because all variables mentioned
in the condition of the if-then-else construct are either free or quantified with ∃1.
(5.9) is a function, because the outcome action of the stochastic action is uniquely
determined by s and s′.

Theorem 5.4. transPr is a well-defined function:

D ∪ C |= transPr(r , σ, s, δ, s′) = p1 ∧ transPr(r , σ, s, δ, s′) = p2 ⊃ p1 = p2.

Proof. Due to the ∃1 quantor in the outer if-then-else construct, the decomposition
(γ1; δ1) in (5.11) is unique. And since transAtPr is a well-defined function according
to Lemma 5.3, transPr is so, too.

Theorem 5.5. transPr∗ is a well-defined function:

D ∪ C |= transPr∗(r , σ, s, δ, s′) = p1 ∧ transPr∗(r , σ, s, δ, s′) = p2 ⊃ p1 = p2.

Proof. To prove the claim, one needs to prove that f in (5.6) is a function. This can
be shown by induction. Fixate r ′, σ1 and s0.

Base step. Let k = 0. f(r ′, σ1, s0, σ1, s0) = 1 is a well-defined function that applies
transPr up to k times to σ1 in s0. Furthermore, for those resulting situations s1

that are the result of applying transPr exactly k times, no super-situation s′1 = s1 is
reached by f .

Inductive step. Assume f(r ′, σ1, s0, δ1, s1) = p1 > 0 is a well-defined function that
applies transPr up to k times. Furthermore, assume that for all resulting situations
s1 there are no super-situations s′1 = s1 reached by f .

According to Theorem 5.4, transPr itself is a well-defined function. One needs to
show that f is still a well-defined function if mappings

f(r ′, σ1, s0, δ2, s2) = p1 · p2

are added for all transPr(r ′, δ1, s1, δ2, s2) = p2 > 0. Particularly, this means that each
argument tuple of f uniquely determines the result. To distinguish the original and
the modified f , the former is called f1 and the latter is denoted by f2 in the following.
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• If δ1, s1 is the result of less than k applications of transPr, then f1 already covers
what happens when transPr is applied to δ1, s1.

• Assume δ1, s1 is the result of exactly k applications of transPr. There are three
different cases:

– If transPr chooses a test action, the result of transPr is is δ2 = δ and
s2 = s1. Even though this mapping is already covered by f1, there is no
conflict, because p1 · p2 = p1. This is because for test actions, p2 is either 0
or 1 and the first case is ruled out by requiring p2 > 0.

In this case, there is no other result of transPr besides δ2 = δ and s2 = s1.
Thus, there is no super-situation s′2 = s2 reached by f2.

– If transPr performs a primitive action, say a, the new situation is s2 =
do(a, s1). Since there is no super-situation s′1 = s1 reached by f1, particu-
larly s2 is not reached by f1.

Since the result of executing a primitive action is unambiguous, there are
no other resulting situations except s2 and therefore no super-situations of
s2 are reached by f2.

– If transPr executes a stochastic action, this potentially results in different
s2. However, they are pairwise incomparable, that is, for two outcome
situations s2 and s′2 holds s2 6< s′2 and s′2 6< s2. For each s2, the same
reasoning as for primitive action applies.

The induction proves that f in (5.6) is a function. Due to the if-then-else construct,
transPr∗ itself is a well-defined function, too.

Trans is a Special Case of the transPr Semantics

The goal of the next theorems is to show that the new semantics includes the Trans
semantics for non-stochastic programs as special case. To show relationships between
the new transPr semantics and the old Trans semantics, both axiom sets are needed.
Since both axiomatizations define distinct symbols, the union C∪C′ can be used, where
C′ stands for the old transition semantics.2

Lemma 5.6. If there is a transition in the nondeterministic interpreter, the program
can also be partitioned:

D ∪ C ∪ C′ |= (∃s′)Trans(σ, s, δ, s′) ⊃ (∃γ)Next(σ, γ, δ).

Proof. The proposition holds because the functionality of Next is basically a subset
of Trans.

2Strictly speaking, this is not correct, because C′ defines the binary relation Final and C defines a
ternary Final. We assume an appropriate renaming to ensure uniqueness of the relation symbols.
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Lemma 5.7. If a transition with respect to Next and transAtPr of non-stochastic
σ in s leads to remaining program δ in s′, Trans allows a transition of σ in s to the
same remaining program δ and the same new situation s′:

D ∪ C ∪ C′ |= Next(σ, γ, δ) ∧ transAtPr(r , γ, δ, s, s′) > 0 ⊃ Trans(σ, s, δ, s′).

Proof. γ is is an atomic action, therefore transAtPr being positive implies that γ is
executable in s. This implies that Trans can execute γ with the same new situation
s′:

• If γ is a primitive action, then Trans (5.1) can choose the same timestamp as
transAtPr (5.8).

• γ cannot be a stochastic action, because σ is assumed to be non-stochastic.

• For a test action γ, the resulting situation s′ is the same as s in both, Trans
(3.1) and transAtPr (5.10).

And since γ is a first action of σ according to Next, Trans considers executing γ.

The reverse direction of Lemma 5.7 does not hold, because the executed action’s
timestamp that is valid in Trans is not necessarily optimal in transAtPr. However,
a relaxed version holds:

Lemma 5.8. If a transition with respect to Trans of σ in s leads to a remaining
program δ in some situation, Next and transAtPr allow a transition of σ in s to the
same remaining program δ:

D ∪ C ∪ C′ |= (∃s′)Trans(σ, s, δ, s′) ⊃
∃γ .Next(σ, γ, δ) ∧ (∃s′)transAtPr(r , γ, δ, s, s′) > 0.

Proof. The first part of the conclusion, the existence of a partition, follows from
Lemma 5.6. And if γ is possible in Trans, it is also possible in transAtPr:

• If γ is a primitive action and Trans (5.1) can execute it, there are one or multiple
points in time at which γ’s precondition holds. In particular, one of these points
in time maximizes the reward after executing (γ; δ). transAtPr (5.8) picks this
point in time.

• If γ is stochastic, Trans cannot succeed.

• For a test action γ, the resulting situation s′ is equal to s in both, Trans (3.1)
and transAtPr (5.10).

Therefore, transAtPr is positive.
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Theorem 5.9. A non-stochastic program σ can be transitioned with respect to transPr
if and only if it can be transitioned with respect to Trans:

D ∪ C ∪ C′ |= (∃δ, s′, p)(transPr(r , σ, s, δ, s′) = p ∧ (p > 0 ∨ r (s′) = 0)) ⊂ (5.13)

(∃δ, s′)Trans(σ, s, δ, s′).

The ⊃-direction of the equality is even stronger, because the result of transitioning a
program with respect to transPr is also a valid result with respect to Trans:

D ∪ C ∪ C′ |= transPr(r , σ, s, δ, s′) > 0 ⊃ Trans(σ, s, δ, s′). (5.14)

Proof. The⊂-direction (5.13): Assume (∃δ, s′)Trans(σ, s, δ, s′) holds. Due to Lemma 5.8
there is a decomposition (γ; δ) such that γ can be executed by transAtPr. In par-
ticular, there is a decomposition that maximizes the estimated reward after executing
σ in total. Let s′ be the resulting situation of executing γ with transAtPr. Assume
r (s′) > 0 holds. The facts that transAtPr can execute γ and that r (s′) > 0 guarantee
that value(r , σ, s) > 0, because value stops executing σ when no more reward im-
provement is possible and with s′ there is at least one successor situation with positive
reward. Consequently, transPr chooses a decomposition that is transitionable at least
once and returns its probability. Since the value is positive and the value includes the
probability as a factor, this probability must be positive.3

The ⊃-direction (5.14): Assume transPr(r , σ, s, δ, s′) > 0 holds. Then there is some
partition (γ; δ) of σ such that γ can be executed by transAtPr in s leading to s′. This
means

Next(σ, γ, δ) ∧ transAtPr(r , γ, δ, s, s′) > 0

holds. With Lemma 5.7 the claim follows.

Corollary 5.10. Trans∗ can execute a non-stochastic program σ if transPr∗ can:

D ∪ C ∪ C′ |= ∃δ, s′ . transPr∗(r , σ, s, δ, s′) > 0 ⊃ Trans∗(σ, s, δ, s′).

Proof. Theorem 5.9 propagates to the recursive closures of transPr and Trans.

Corollary 5.11. If doPr can execute a program σ, Do can execute σ, too, as long as
it is non-stochastic:

D ∪ C ∪ C′ |= ∃δ, s′ . doPr(r , σ, s, δ, s′) > 0 ⊃ Do(σ, s, s′).

3 If r (s′) = 0, transPr might encounter a scenario in which all alternatives give a reward of 0. For
example, transPr might branch to σ1 in σ1 |σ2 because

value(r , σ1, s) = 0 ≥ 0 = value(r , σ2, s).

However, it might be the case that σ1 could not be transitioned even once, whereas σ2 might fail
later. In this scenario, Trans would perform a single transition of the program by branching to
σ2, while transPr would fail immediately, that is, return 0.
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Proof. Both, doPr and Do, use the transitive closures of transPr and Trans, respec-
tively. doPr, however, may fail earlier than Do, namely when the program is final
with respect to the transPr semantics. This is the case when executing the program
does not improve the estimated reward (cf. Final (5.12)).

Note that the reverse does not hold, that is, executability with respect to Do does not
imply executability with respect to doPr. This is because the reward function r could
doPr “trap” the interpreter and lead to a non-executable action.

Short Summary

The presented semantics of stochastic actions has the following distinguishing fea-
tures:

• The probability distribution refers to the non-time-stamped actions. For this
reason, τ is chosen deterministically in the α transition.

• Nondeterminism at agent’s choice points is resolved by choosing the branch that
maximizes the reward very similar to DTGolog.

• In contrast to DTGolog, concurrency is supported. The Next predicate ex-
tracts all possible next atomic actions (stochastic, primitive or test) and their
remainders, so that concurrency is pushed back to the remainder continuously.
For example, the nondeterministic program σ1 ‖ σ2 could be converted into
(γ1; (δ1 ‖ σ2)) or (γ2; (σ1 ‖ δ2)) where the next transition of γi is deterministic.

5.4.4 Atomic Complex Actions

In general imperative programming, complex operations can be made atomic using,
for example, semaphores or test-and-set instructions. Many modern programming lan-
guages provide higher-level constructs for mutual exclusion such as Ada 95’s protected
types (Taft and Duff, 1997, p. 159) and Java’s synchronized keyword (Gosling et al.,
2005, p. 554). The following presents a high-level Golog construct concerning this
matter.

The above semantics supports concurrency. Critical sections can be guarded by special
purpose fluents that represent locks. Let there be two actions, lock and unlock, and
one fluent Locked with obvious meanings. The lock is then implemented in lock’s
precondition and Locked’s successor state axiom:

Poss(lock, s) ≡ ¬Locked(s)

Poss(unlock, s) ≡ True
Locked(do(a, s)) ≡ a = lock ∨ Locked(s) ∧ a 6= unlock.



56 Chapter 5 Semantics

This appears to be similarly tedious like low-level locking in traditional programming
languages. Therefore, it would be desirable to define a new keyword that marks
sections that are executed atomically.

The semantics defined in Section 5.4.3 is based on the decomposition of a program σ
into a next atomic action γ and a remaining program δ. This is done by Next. Up to
now, only primitive, stochastic and test actions were considered atomic. From now on,
programs of the form atomic(σ) are meant by atomic, too. Hence, Next’s definition
(5.7) can be extended with

Next(atomic(σ), γ, δ) ≡ γ = atomic(σ) ∧ δ = Nil.

transAtPr can be modified to handle the new atomic actions atomic(σ):

transAtPr(r , atomic(σ), δ, s, s′) = p ≡ transPr∗(r , σ; δ, s, δ, s′) = p.

Handing over δ to transPr∗ as parameter for the remaining program ensures that only
the complex action σ is executed and no part of δ. This modification, however, means
that neither transAtPr nor transPr necessarily perform a exactly one transition.

Hence, looking for an alternative way of implementing the atomic construct is worth-
while. Instead of adjusting transAtPr, one can replace the Next used in transPr’s
definition (5.11) with Next′ defined as

Next′(σ, γ, δ)
def
= ∀P .

(
∀σ′, γ′, δ′ . Next(σ′, γ′, δ′) ⊃ P (σ′, γ′, δ′)

)
∧ (5.15)(

∀σ′, σ′′, γ′, γ′′, δ′, δ′′ .
P (σ′, γ′, δ′) ∧ γ′ = atomic(σ′′) ∧Next(σ′′; δ′, γ′′, δ′′) ⊃
P (σ′, γ′′, δ′′)

)
⊃

P (σ, γ, δ) ∧ (∀σ′)γ 6= atomic(σ′).

P denotes the transitive closure of re-applying Next if γ′ is a complex atomic ac-
tion. For each complex atomic action γ′ = atomic(σ′′), Next is recursively applied to
σ′′; δ′.

Even if σ′ contains concurrency above the level of γ′ = atomic(σ′′), then γ′ and thus
σ′′ are free of this concurrency, because Next pushes back the concurrency to δ′. The
subsequent call to Next for σ′′; δ′ does not change this, because concurrency in δ′

cannot spread to σ′′.

Since Next′ is only called from transPr, it is guaranteed that there is no other program
running concurrently with σ at the time of calling.
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5.5 Summary

This chapter proposed a semantics that enriches ConGolog with a flexible, descriptive,
continuous model of time (cf. Section 5.1). After showing that this notion of time is not
contrary to nondeterminism and concurrency (cf. Section 5.2, Section 5.3), DTGolog-
like stochastic actions and decision theory were integrated (cf. Section 5.4).

Combining DTGolog with concurrency is mentioned as future work in (Boutilier et al.,
2000a,b). It turned out that it is necessary to abandon the Trans semantics in fa-
vor of a new Next predicate for program decomposition, transAtPr for execution of
primitive, stochastic and test actions, and a relatively concise definition of transPr
that puts things together (cf. Section 5.4.3). A lucky side effect of this semantics is
that complex atomic actions can be supported by the language as described in Sec-
tion 5.4.4.

The final version of the semantics is given in Section 5.4.3 with a little modification
in Section 5.4.4.

The presented action language is influenced by several existing Golog dialects: Con-
Golog for concurrency (Giacomo et al., 2000), temporal sequential Golog and cc-
Golog for time (Reiter, 1998; Grosskreutz and Lakemeyer, 2000a, 2003), and finally
stGolog, DTGolog and pGolog for robustness (Reiter, 2001; Boutilier et al., 2000a,b;
Grosskreutz, 2000; Grosskreutz and Lakemeyer, 2000b).





Chapter 6

Plan Recognition

Chapter 5 defined the semantics of a Golog dialect that handles programs like the
passing maneuver from Figure 4.2 on page 26 and defines some features beyond. Up
to now, this was not specific to plan recognition, although the semantics was designed
with plan recognition in mind.

This chapter presents a new approach to plan recognition based on this language: a
program is a solution of the plan recognition problem if its execution is consistent with
the observations.

The first section gives an intuitive definition of plan recognition in the form a first-order
logic formula. Subsequent ways of plan recognition are compared with this formula’s
semantics to verify their reasonableness.

The second section develops a procedure for incremental plan recognition based on
iteratively filtering a set of candidates in the fashion of Goultiaeva and Lespérance
(2006). Up to this point, the non-probabilistic semantics is used, that is, the Trans
predicate before Section 5.4.

Section 6.3 then integrates plan recognition into the Golog program. This is done
by exploiting the decision-theoretic properties of the new transPr semantics from
Section 5.4.3. All following parts rely on the plan recognition by program execution
approach developed in this section. In particular, the simple heuristic defined in this
section is used in our implementation described in the next chapter.

After the next section shortly describes how multiple agents are modeled in this frame-
work, Section 6.5 uses the probabilistic features of the transPr semantics to do robust
plan recognition. For one, this allows to handle discrepancies between the agent’s
actions and the program, and for another it provides a way to model sensor noise.

Finally, an example of how the plan recognition system works in a very simple world
is given in Section 6.6.
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S0 s′ s′′
=do(a,s′)

sv < v

start(s′)
τ

start(s′′)

• . . . • • . . . • . . .

Figure 6.1: TimeSit(s′, τ, s) holds if τ belongs to s′ on the way to s.

6.1 Plan Recognition by Satisfiability

The plan recognition presented by Goultiaeva and Lespérance (2006) expects an ob-
served situation as input which is basically a sequence of primitive actions. They then
iteratively filter the set of potentially executed plans by checking whether or not the
next observed action might be the next action of the respective program.

However, directly observing actions is not realistic in automobile scenarios, although
in the future such information might be distributed via car-to-car communication. At
least today, periodic observations of the environment seem to be more realistic. An
observation at time T is a first-order sentence Φ that describes what is true in the real
world at point in time T. The fluents in Φ are all situation- and time-suppressed.

Observation sentences may be of any form, particularly, they may be disjunctions.
This is simply due to the fact that observations are only tested, they are not added to
the knowledge base. In reality, though, observations are rather conjunctions such as
pos = (50,−3) ∧ veloc = 25 ∧ yaw = 0.

The following macro asserts that time τ belongs to situation s′ on the way to situation
s as visualized in Figure 6.1:

TimeSit(s′, τ, s)
def
= s′ v s ∧ τ ≥ start(s′) ∧ (6.1)(
∀s′′ . s′ < s′′ ∧ s′′ v s ⊃ τ < start(s′′)

)
.

The problem of plan recognition then reduces to finding a program σ such that

D ∪ C |= ∃s .Do(σ, S0, s) ∧ ∃s′ . T imeSit(s′,T, s) ∧ Φ[s′,T]

holds. T is not quantified because it is the observation’s timestamp. If there is such
a program σ, then during its execution there will be a situation at time T in which Φ
holds, i.e. the situation matches the observation at time T.

If there are multiple observations Φ1, . . . ,Φn, then the task is to find a program σ such
that

D ∪ C |= ∃s .Do(σ, S0, s) ∧ ∃s1, . . . , sn .
n∧
i=1

TimeSit(si,Ti, s) ∧ Φi[si,Ti] (6.2)
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holds.

6.2 Incremental Plan Recognition

Formula (6.2) does not provide any means for incremental plan recognition, i.e. for
handling a stream of incoming observations. In style of Goultiaeva and Lespérance
(2006), we define a set allConsistP lans which contains all situations consistent with
the observations and the accompanying remaining program of the plan that resulted
in the respective situation. As mentioned above, the approach of Goultiaeva and
Lespérance (2006) expects a stream of actions as input. Since here observations are
logical formulas with a corresponding timestamp, the input of allConsistP lans is a
stream of observations.

If there is a unique model M0 such that M0 |= D ∪ C, i.e. if information about the
initial situation S0 is complete, allConsistP lans can be defined as follows:

allConsistP lans([ ]) = {(σ, S0) | σ ∈ plan library} (6.3)

allConsistP lans([(Φ,T) | Ψ]) = {(δ, S′) | (σ, S) ∈ allConsistP lans(Ψ) and

M0 |= ∃s′′ . T rans∗(σ, S, δ, s′′) ∧
Trans∗(waitFor(now = T); Φ?, s′′, Nil, S′)}.

In this definition, [ ] denotes the empty list and [(Φ,T) | Ψ] takes the head element,
the observation of formula Φ at point in time T, out of the list such that Ψ is the
rest. This list is assumed to be ordered latest-observation-first. C and Trans are
those defined before Section 5.4, that is, the normal transitional semantics with time,
nondeterminism and concurrency (cf. Section 5.1, Section 5.2, Section 5.3). Further-
more, the fluent now is the identity of the time: now(s) = linear(0, 1, 0). Recall that
according to the definition of linear in Section 4.1, now is evaluated in a situation s
at time τ the following way:

val(now(s), τ) = val(linear(0, 1, 0), τ) = 0 + 1 · (τ − 0) = τ.

It is not sufficient to define now(s) = start(s).

Strictly speaking, the test of Φ? does not work, because Φ involves continuous fluents
which need to be evaluated. There is a number of solutions to this small problem. One
way would be to modify the Trans clause for tests (3.1) so that continuous fluents are
evaluated. Replacing φ[s] with φ[s, start(s)] is enough for that. An alternative way is
to move the test simply into the waitFor action, thus getting waitFor(now = T∧Φ).
The definition of allConsistP lans refrains from this solution in favor of the “illegal”
test of Φ in order to make clear that the interpreter does not wait for Φ getting true.

The above formula takes a remaining program σ and the corresponding situation S
from a recursive call and runs σ until the latest observation Φ at time T holds. This
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is done as follows: The first call to Trans∗ determines the remainder of σ and an
intermediate situation s′′. Starting from s′′, the waitFor(now = T) shifts time to the
point of the latest observation and the subsequent test Φ? asserts that the observation
holds in S′ at time T. The waitFor is necessary to enforce future executions starting
at S′ to begin not before time T.

This definition is not equivalent to the definitions from Section 6.1 due to a small
difference: According to the definition of the TimeSit (6.1), the time interval of a
situation excludes the start of the successive situation. From this follows that for two
situations s < s′ with start(s) = start(s′), an observation is never tested in s but only
in s′. The idea is that the actions that lead from s to s′ might influence the truth value
of the observation. For example, a database might be inconsistent in s but consistency
could be re-established immediately in s′. An observation of an inconsistent database
should therefore not be entailed, because there was no point in time at which this could
have been observed. Using allConsistP lans, however, this is not the case, because
inconsistency holds in s.

A way to simulate the behavior of TimeSit (6.1) is to additionally execute a waitFor
action that enforces time to advance really after T . This can be incorporated into
Formula (6.3) as follows:

allConsistP lans([(Φ,T) | Ψ]) = {(δ, S′) | (σ, S) ∈ allConsistP lans(Ψ) and (6.4)

M0 |= ∃s′′ . T rans∗(σ, S, δ, s′′) ∧
Trans∗(waitFor(now = T); Φ?;waitFor(now > T), s′′, Nil, S′)}.

Modifying the conjunction modeled by M0 in Formula (6.3), for example by adding

∀s′′′ . T rans∗(δ, s′′, δ′, s′′′) ⊃
(
∃a . s′′′ = do(a, s′′) ⊃ start(s′′) < start(s′′′)

)
,

does not do the trick. The problem is that at this state, it is not yet known which
branch of δ will be taken. If δ = α1;α∗2 and α2 is executable immediately after α1, the
above formula will fail. One could greedily apply Trans until no subsequent immediate
action is possible, but this would constrain the time variables of “future” actions too
early.

6.3 Plan Recognition by Program Execution

The concept of allConsistP lans can be merged into the program itself. At first, non-
incremental plan recognition based on executing a specific program is described. The
next subsection provides a way for incremental plan recognition exploiting the decision-
theoretic part of the semantics from Section 5.4.3. Finally, the last subsection suggests
how heuristic and thus realistic plan recognition can be carried out.
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While to the previous two sections used the Trans semantics, this section starts using
the transPr semantics due to its decision-theoretic resolving of nondeterminism and
atomic actions.

6.3.1 Non-Incremental Plan Recognition by Program Execution

Observations can actually be converted into a program itself. Each observation φ at
time τ is represented by an action observe(τ, φ) whose precondition is

Poss(observe(τ, φ, τ ′), s) ≡ τ = τ ′ ∧ φ[s, τ ].

The observe action is very similar to the aforementioned waitFor action. Both have
no explicit effects in terms of effect axioms, but they force time to advance to a certain
point in time τ . But for one, the name observe better captures the intention of such an
action, and for other, the action name will be used in the incremental plan recognition
to distinguish it from other actions.

A sequence of observations φ1, . . . , φn with accompanying timestamps τ1, . . . , τn is
turned into a program

θ = observe(τ1, φ1); . . . ; observe(τn, φn).

A program σ is consistent with these observations, if σ ‖ θ can be executed by the
interpreter.

The action observe(T,Φ) very much resembles the combination of waitFor(now = T)
and Φ? in allConsistP lans. In Formula (6.3), it is valid to split now = T and Φ into
two actions, because they are executed isolated from the main program σ. In σ ‖ θ,
however, atomicity of observation-specific actions needs to be ensured to prevent that
an action of σ could screw itself in between a waitFor and a test action. The primitive
action observe is atomic by definition.

The semantics of σ ‖ θ correspond to the original definition of allConsistP lans in
(6.3). To correctly emulate TimeSit’s (6.1) behavior, (6.3) is slightly changed to (6.4)
by adding an action waitFor(now > T) which prevents an observation from being
entailed by a situation with a timespan of zero. Using the new atomic complex actions
from Section 5.4.4, the required atomicity can be ensured:

atomic(observe(T,Φ);waitFor(now > T)).

This avoids that any other action from the candidate program σ gets between observe(T,Φ)
and waitFor(now > T).
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6.3.2 Incremental Plan Recognition by Incremental Program Execution

As argued in Section 6.2, observations are not known in advance but come in as a
stream. Hence, the observation program cannot be constructed in advance either. To
solve this problem, the candidate program σ, whose consistency with the observations
is to be checked, could be executed incrementally using transPr∗. Each time new
observations occur, these need to be merged into the program.

Given a candidate program σ from the plan library, the initial state of the plan recog-
nition system is {(σ, S0, 1)}, meaning that the program σ needs to be executed starting
in S0 and the probability of σ being successfully executed up to now is 1. The recur-
sion proceeds as follows: If (δ, s, p) is in the current state and the observation φ with
τ just came in, (δ′, s′, p′) is added to the successor state for all

p′ = p · transPr∗(r , δ ◦ observe(τ, φ), s, δ′, s′)

where ◦ is an operation defined below that merges δ and the observation. Note that
since transPr∗ also succeeds for zero applications of transPr, each successor state
also contains its predecessor.

Without loss of generality, we assume that no two observations have the same time-
stamps. Observations with equal timestamps can simply be merged into a single
observe action by conjunction.

The standard reward function (5.3) is not applicable in this scenario where observations
are not known in advance. A suitable reward function is

r (s) =


0 if s = S0

1 + r (s′) else if (∃τ, φ, s′)s = do(observe(τ, φ, τ), s′)

r (s′) else.

(6.5)

which counts the number of observe actions in the situation term s. This reward is the
number of entailed observations. Obviously, it can be easily implemented as functional
fluent.

Before allConsistP lans is defined for incremental program execution, the merge op-
eration ◦ is still left to be defined. The solution is to execute σ and the observe action
concurrently:

p′ = p · transPr∗(r , δ ‖ observe(τ, φ), s, δ′, s′).

The following results show that the sequential observation program from Section 6.3.1
and merging the observe actions into the program using the concurrency operator are
equivalent.

Lemma 6.1. Concurrency is an commutative and associative operation:

D ∪ C |= transPr(r , σ1 ‖ σ2, s, δ, s
′) = transPr(r , σ2 ‖ σ1, s, δ, s

′).
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and

D ∪ C |= transPr(r , σ1 ‖ (σ2 ‖ σ3), s, δ, s′) = transPr(r , (σ1 ‖ σ2) ‖ σ3, s, δ, s
′).

Proof. Both properties follow from the definition of Next.

Lemma 6.2. Given n subsequent observation actions O1, . . . , On with timestamps
τ1 < . . . < τn, sequential and concurrent execution behave the same way:

D ∪ C |= ∀σ . doPr(r , σ ‖ (O1; . . . ;On), s, δ, s′) =

doPr(r , σ ‖ (O1 ‖ . . . ‖ On), s, δ, s′).

Proof. If executing σ ‖ (O1; . . . ;On) returns 0, then σ ‖ (O1 ‖ . . . ‖ On) returns 0, too.

If executing σ ‖ (O1 ‖ . . . ‖ On) returns p > 0, particularly O1, . . . , On succeed. Since
observe’s precondition requires each Oi to be executed at time τi, the only possible
ordering is O1; . . . ;On. Therefore, the same probability p > 0 is returned by the
sequential program.

Theorem 6.3. For a candidate program σ and observation actions O1, . . . , On, se-
quential and concurrent execution of the Oi are equivalent:

D ∪ C |= doPr(r , σ ‖ (O1; . . . ;On), s, δ, s′) =

doPr(r , ((σ ‖ Oi1) ‖ . . . ‖ Oin), s, δ, s′)

where {i1, . . . , in} = {1, . . . , n}.

Proof. Due to Lemma 6.1, the program (((σ ‖ O1) ‖ O2) . . . ‖ On) can be brought into
the form σ ‖ (O1 ‖ . . . ‖ (On−1 ‖ On)). According to Lemma 6.2, the concurrency
operators connecting the Oij can be replaced with sequence operators.

Finally, the incrementally growing set of consistent plans allConsistP lans originally
defined in Formula (6.3) can be redefined as follows:

allConsistP lans([ ]) = {(σ, S0, 1) | σ ∈ plan library}
allConsistP lans([(Φ,T) | Ψ]) = {(δ, S′, P · P ′) |

(σ, S, P ) ∈ allConsistP lans(Ψ) and

M0 |= transPr∗(r , σ ‖ observe(T,Φ), S, δ, S′) = P ′ ∧ P ′ > 0}.
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Again, to make it completely compatible with TimeSit (6.1), the atomic construct
can be used:

allConsistP lans([(Φ,T) | Ψ]) = {(δ, S′, P · P ′) |
(σ, S, P ) ∈ allConsistP lans(Ψ) and

M0 |= transPr∗(r , σ ‖ atomic(observe(T,Φ);waitFor(now > T)),

S, δ, S′) = P ′ ∧ P ′ > 0}.

6.3.3 Heuristic Incremental Plan Recognition

In practice, the set allConsistP lans tends to become too large. This is because it
never commits itself to some state. Instead, there are two sources of the blowup:

• Stochastic actions may have countably infinitely many outcome actions. For
each outcome action, there is a single distinguished successor configuration in
allConsistP lans.

• transPr∗ performs a nondeterministic number of transitions. Therefore, for each
possible number of transitions, (at least) one configuration occurs in allConsist-
Plans. Particularly early configurations such as (σ, S0, 1) always remain in the
set.

With respect to the first issue, a real world implementation could either restrict the
axiomatizer to a subclass of stochastic actions so that it suffices to always consider
one outcome action, for example the most probable one. However, it appears difficult
to find an expressive class due to the interdependencies of effects and preconditions.
An alternative solution is sampling. Program execution is simply repeated a number
of times, and for each encountered stochastic action, an outcome action is picked at
random. The following assumes that, whatever solution is chosen, a stochastic action
leads only to a single successor configuration just like normal primitive actions.

Regarding the second point, it is clearly not practical that each configuration is kept
in the allConsistP lans set. Instead of using transPr∗, one might apply transPr
whenever the situation allows it.

At this point, reward values and probabilities of transPr from Section 5.4.3 come
in very handy. We assume that the reward function (6.5) is used which counts the
number of observations explained so far.

First of all, a horizon should be introduced for the value function. As a consequence,
the interpreter might not choose the optimal branch in all cases, but optimizing the
value with respect to the complete program is not only computationally expensive,
but even impossible when observations are not known in advance.

Then, if h is the horizon, h observations should be kept in a queue during execution at
any time. Observations must be held back so that the interpreter can do a reasonable
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job resolving nondeterminism. This is because the reward function (6.5) returns the
number of observe actions in the given situation term, and therefore value determines
the estimated reward of a program with a lookahead of h transitions.

Hence, instead of using transPr∗ with its whole string of successor configurations, the
interpreter may always trigger a transition whenever at least h observations are in the
queue. After each transition, the interpreter might need to wait until the queue of
observations has grown to at least h elements and may then proceed with the next
transition. This for one guarantees that the interpreter always does an informed choice,
and for other it rules out the possibly vast number of successor triples that are due to
succeeding and preceding situations returned by transPr∗.

Due to this heuristic, the state of the plan recognition system no longer is the evergrow-
ing allConsistP lans. Instead, for each candidate program σ, there is only one triple
(δ, s, p) in each state (ignoring stochastic actions for the aforementioned reasons).

Since committing to a unique configuration runs the danger of leading to a bad choice,
the interpreter may keep the n best configurations per program at any point of time.
Note that “best” is meant with respect to the estimated reward, which is exactly the
criterion by which transPr resolves nondeterminism. We assume that at each itera-
tion, a list of n configurations exists that represents the best ones up to now. Hence,
we start off with n copies of the initial configuration (σ, S0, 1). Whenever enough ob-
servations are buffered so that a transition can be triggered, for each configuration the
n best successors are determined. For this, transPr needs be modified appropriately
so that it not only computes the single best successor configuration but the n best
configurations. Out of these n ·n new configurations, we pick the n best ones, that is,
those triplets (σ, s, p) who maximize the estimated reward p · value(r , σ, s). Then, the
system waits for the next observation and repeats this procedure.

The rest of this subsection is a runtime analysis depending on the horizon.

For each function transPr, transAtPr, value and transPr∗ we add a new version
with superscript h which denotes the current horizon. Hence, transPr∗h is a variant
of transPr∗ which performs a nondeterministic number of 0 to h transitions. This
function is called in valueh, which again is called by transPrh+1 and transAtPrh.
This implements the limited lookahead.

A real world implementation of transPrh might work like this: After determining
all decompositions (γ; δ) of the input program, the (non-complex) atomic action γ
is executed using transAtPrh−1, and then valueh−1 is computed for the remaining
program δ, which by means of transPr∗h−1 leads to a recursive call of transPrh−1.

Ignoring the call to valueh−1 in transAtPrh−1’s rule for primitive actions (5.8),1 the
cost of executing γ is O(1). However, transPrh still needs to call valueh−1 which calls

1This is quite realistic, because timestamps are solver variables in the implementation and not directly
subject to value optimization.
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transPr∗h−1 and ultimately leads to transPrh−1. The number of transitions induced
by transPrh is thus O(t1(h)) for

t1(h) = K · (1 + t2(h− 1))

where t2(h) is the number of transitions induces by transPr∗h:

t2(h) = if n = 0 then 0 else t1(h) + t2(h).

The equations can be resolved starting with t2(h):

t2(h) = if n = 0 then 0 else t1(h) + t2(h− 1)

=
n∑
i=1

t1(i)

=
n∑
i=1

K · (1 + t2(i− 1))

= h ·K +K ·
n∑
i=1

t2(h− 1)

= h ·K +K ·
[
(h− 1) ·K +K ·

[
(h− 2) ·K +K ·

[
. . . ·

[
K +K · t(0)

]
. . .
]]]

= h ·K1 + (h− 1) ·K2 + (h− 2) ·K3 + . . .+Kh + 0

=
h∑
i=1

(h− i+ 1) ·Ki

≤ h ·Kh+1.

Therefore, t2(h) = O(h ·Kh+1) and t1(h) = O(K + (h− 1) ·Kh+1) = O(h ·Kh). This
means that the computational cost of optimization in a single transition step increases
by O(h ·Kh) with the horizon h.

6.4 Multi-Agent Plan Recognition

In many scenarios such as automotive highway traffic, multiple drivers act at once.

Observations can easily refer to multiple different drivers since they simply are situation-
and time-suppressed logical formulas.

To extend the plan recognition framework with support for multi-agent scenarios,
one can exploit the concurrency operator. If there are programs σ1(v), . . . , σn(v) for
each agent v, the plan recognizing Golog interpreter can be called for the program
σ1(v) | . . . |σn(v). The interpreter branches to that σi that explains the observations
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at best. If there are now multiple agents v1, . . . , vm active at once, all agents’ programs
simply need to be executed concurrently:(

σ1(v1) | . . . |σn(v1)
)
‖ . . . ‖

(
σ1(vm) | . . . |σn(vm)

)
.

This also captures interdependencies of the different agents’ actions.

6.5 Data Robustness

The probabilistic extension of the Golog interpreter described in Section 5.4.3 is mo-
tivated by the need of robustness towards data errors. This section exemplarily shows
how a certain permissiveness towards the agent’s actions can be modeled using the
probabilistic semantics. Additionally, it is shown how sensor error profiles can be mod-
eled. Note that the following subsections are not mutually exclusive but complement
each other.

6.5.1 Tolerance towards Agent’s Fuzziness

While it appears to be intuitive to describe a passing maneuver as simple and definitive
as in Figure 4.1 on page 23, a real driver cannot be expected to drive exactly this way.
Even in simpler scenarios, reality differs from an idealized description: When a car
drives straight ahead, the corresponding program might be as simple as setY aw(0◦),
which means that the vehicle’s yaw is exactly 0◦. This is exactly the driver’s actual
goal. In reality, however, the yaw differs at least slightly from 0◦. Besides human
inaccuracy, real world influences such as wind and bumps can be responsible for these
deviations. The driver controls his car so that the yaw averages 0◦. In a nutshell, the
real world (the driver) is less perfect than the model (the program).

In a sense, the reverse sentence unfortunately holds, too: The model is less perfect
than reality. In theory, it is easy to develop a physical vehicle model for an idealized
world without wind and other external influences. In reality, however, this quickly in-
volves nonlinear (in)equations. For example, given a uniform acceleration, the distance
depends on the time squared. Sticking with linear programs appears to be worthwhile
because they can be solved efficiently (Zimmermann, 2005).

Trying to bring model and real world in line and basing plan recognition alone on
the question whether or not this is possible appears to be insufficient. The degree by
which the model and the real world comply should be measured.

The probabilities of Section 5.4.3 allow to do this. Using plan recognition by program
execution as described in Section 6.3, the degree by which a given program explains the
observations should be simply the probability by which the program can be executed.
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The general idea is to introduce randomly distributed tolerances. The ovserve ac-
tion’s precondition needs to be altered to consider the tolerances: observe(τ, φ, τ ′) is
executable if φ′ holds for φ′ being the variant of φ that incorporates the tolerances.
Usually, high tolerances are intended to be less likely than small tolerances. If an ob-
servation holds for a small tolerance, it also holds for a high tolerance. Consequently, if
the observations match exactly the model, the probability returned by the interpreter
is 100 %.

One way to integrate tolerances is using intervals instead of atomic numbers. The
fluent function y(s) then would be split into a lower bound y−(s) and an upper bound
y+(s). The successor state axioms then use interval arithmetic instead of normal
arithmetic. For example, a formula y(s) = Y is translated to y−(s) ≤ Y ≤ y+(s).
The tolerances come into the fluent values by stochastic actions. The aforementioned
setY aw(γ) action then becomes a stochastic action whose outcomes are setY aw(γ −
t, γ + t) where t is the tolerance. A sample probability distribution for t is depicted
in Figure 6.2. The term γ − t denotes the lower bound of the vehicle’s yaw, γ + t
is the upper bound. Considering the above example of the straightforward driving
vehicle, these intervals model the driver’s deviations from 0◦. However, they do not
capture that the driver controls his car to average to 0◦. Instead, interval arithmetic
multiplicates the tolerance. A very simple example illustrates this problem: if the
current situation s with y−(s) = y+(s) = 0 m and the outcome action of setY aw(0◦)
is setY aw(−1◦, 1◦), then after 100 m, the bounds have already diverged by about 3.5 m
which is pretty much with respect to a typical lane’s width.

An alternative approach is to stick with the model’s trajectory of the car and add a
tolerance area around the vehicle. For simplicity, this area is assumed to be a rectangle
specified by the tolerance in X- and Y-direction. Actions have effects on the size of this
area. For example, during a lane change the rectangle should grow along the Y-axis.
This behavior is depicted in Figure 6.3. The increase of the Y-coordinate is needed,
because the real vehicle smoothly starts and ends each lane change, while the model
vehicle changes its direction instantaneously.

This notion of tolerance area can be integrated into the basic action theory described
in Section 4.1 by adding a two fluents, pos− and pos+ which return the bottom left
and top right points of the tolerance rectangle, respectively. For the sake of brevity,
the symbol ± stands either for + or for − in the following successor state axiom:

(xt,±1 , yt,±1 ) = pos±(do(a, s)) ≡ ∃τ0, x
t
0, y

t
0, x0, y0, v, γ, t .(

a = setV eloc∗(v, t, τ0) ∧ γ = yaw(s) ∨
a = setY aw∗(γ, t, τ0) ∧ v = veloc(s)

)
∧

(xt0, y
t
0) = pos(s) ∧

x0 = val(xt0, τ0) ∧
y0 = val(yt0, τ0) ∧
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(a) Probability density function of log-normal distribution logN (µ, σ2)
for µ = 0 and σ = 2 (solid), σ = 1.5 (densely dashed) and σ = 0.75. On
a logarithmic scale, the log-normal distribution looks like as a bell curve.
On a linear scale, µ is the location parameter, σ specifies the scale. The
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(b) Exponential probability distribution Exp(λ) for λ = 0.5 (solid),
λ = 1 (densely dashed) and λ = 1.5. The mean is 1

λ
and the variance is

1
λ2 .

Figure 6.2: Probability density functions of the log-normal and exponential distribu-
tions.
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Y
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(a) Smooth passing maneuver.

Y

X

(b) Passing maneuver with steep lane changes.

Figure 6.3: Two ways of a real world car (thick dashed lines) to pass another object
which is not displayed. The solid line represents the trajectory according to the model.
Notice the instantaneous changes of yaw. The lateral tolerance (thin dotted lines)
increases during the lane changes, which is needed by the dotted car.
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xt1 = linear(x0 ± t, cos(γ) · v, τ0) ∧
yt1 = linear(y0 ± t, sin(γ) · v, τ0) ∨

(xt,±1 , yt,±1 ) = pos(s) ∧
(∀v, t, τ)a 6= setV eloc∗(v, t, τ) ∧
(∀γ, t, τ)a 6= setY aw∗(γ, t, τ).

The binary primitive actions setV eloc∗ and setY aw∗ are outcome actions of stochastic
actions. They replace the old unary primitive actions setV eloc and setY aw, respec-
tively, and their additional parameter is ignored in all fluents except for pos±. The
second parameter, t in the above successor state axiom, denotes the size of the tol-
erance area. The accompanying stochastic actions are named setV eloc and setY aw.
The resulting definition of Choice is

Choice(setV eloc(v, λ), α)
def
= ∃t . t ≥ 0 ∧ α = setV eloc∗(v, t)

Choice(setY aw(γ, λ), α)
def
= ∃t . t ≥ 0 ∧ α = setY aw∗(γ, t).

Recall that it is the axiomatizer’s job to ensure that the number of outcome actions is
at most countably infinite. Therefore, a new sort for tolerance t must be introduced by
the axiomatizer, for example the rational numbers. The second parameter of setV eloc
and setY aw, which is named λ here, is intended to be a parameter for probability
distribution of the outcome tolerance t. Thus, the parameter λ of the stochastic
action ultimately influences the parameter t of the outcome actions. prob0 could then
be

prob0(setV eloc(v, λ), α, s) = p
def
= ∃t . t ≥ 0 ∧ α = setV eloc∗(v, t) ∧ p = P (λ, t)

prob0(setY aw(γ, λ), α, s) = p
def
= ∃t . t ≥ 0 ∧ α = setY aw∗(γ, t) ∧ p = P (λ, t)

where P returns a real in the interval [0, 1]. For example, P (λ, t) might be defined in
terms of a random variable X and return Pr(X = t). The λ can be used to parame-
terize X’s distribution, for example, X ∼ Exp(λ) (cf. Figure 6.2b) or, if λ = (µ, σ2),
X ∼ logN (µ, σ2) (cf. Figure 6.2a). Note that in a program, λ can be instantiated with
any value just the same way velocity v and yaw γ are set to some value. In partic-
ular, it may increase mean and variance of the probability distribution and therefore
effectively enlarge the tolerance area during lane changes.

6.5.2 Sensor Noise with Stochastic Actions

Stochastic actions not only help handling robustness in form of deviations between
the program and the actual behavior, they can also be used to model sensors’ error
profiles.

To achieve this, only the primitive observe action needs to be made a stochastic action.
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(1, 0)
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Figure 6.4: Visualization of a very simple continuous world. The agent starts at the
circled point and wants to get to the double circled point. It may move either along
the straight or the dashed line.

The outcomes of observe(τ, φ) then can be primitive actions observe∗(τ, φ∗), where φ∗

is kind of an “outcome formula” of φ.

For example, the observation could state that, say, the measured yaw is normally
distributed around 10◦ with standard deviation 2◦, that is, φ = (yaw ∼ N (10, 22).
Potential outcome formulas then would be φ∗ = (yaw = 10◦), φ∗ = (yaw = 10.5◦)
or φ∗ = (yaw = −3◦) with decreasing likelihood. The probability of each φ∗ is the
probability of the respective outcome action observe∗(τ, φ∗).

In fact, the Gaussian distribution needs to be discretized in order to comply to the
stochastic actions as defined in Section 5.4.3.

6.6 A Simple Example

This example is just a thought experiment intended to illustrate the plan recognition
procedure. The world is depicted in Figure 6.4. An agent starts at point at the top
left point and wants to get to the bottom right point. To achieve this goal, it can
move either right or down with velocity 1 unit/s. Hence, it can move either along the
solid line or along the dashed edges. Note that for the sake of simplicity, the agent
cannot stop once it has started moving. This particularly means that it is not the goal
to stop at point (1, 0) but merely to visit this point at some time.

To keep it simple, this example includes neither robustness, particularly no sensor
noise and no stochastic actions at all, nor multiple agents. The following is fairly
technical, because illustrates the procedure in detail.
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6.6.1 The Basic Action Theory

First, we need to develop a basic action theory to formalize the problem. Let there be
two actions, R to move right and D to move down. The agent can only move right
when it is at the left side of the square. Analogously, it can only move downwards
when it is on the top edge. The preconditions of R and D are therefore

Poss(R(τ), s) ≡ val(x(s), τ) = 0 ∧ (val(y(s), τ) = 0 ∨ val(y(s), τ) = 1)

Poss(D(τ), s) ≡ val(y(s), τ) = 1 ∧ (val(x(s), τ) = 0 ∨ val(x(s), τ) = 1).

Recall that τ is the time parameter added to the action at execution time by the
interpreter. The function val evaluates continuous fluent expressions (cf. Chapter 4).
For example, val(linear(a0, a1, τ0), τ) results in a0 + a1 · (τ − τ0).

The preconditions of R and D mentioned fluent functions x and y. In the initial
situation S0, the agent is located in (0, 1):

x(S0) = constant(0) y(S0) = constant(1).

The X- and Y-coordinates are changed by the actions R and D, respectively. Their
behavior is defined in terms of successor state axioms:

x(do(a, s)) = x1 ≡ ∃τ, x0 . a = R(τ) ∧ x0 = val(x(s), τ) ∧
x1 = linear(x0, 1 unit/s, τ) ∨
∃τ . a 6= D(τ) ∧ x1 = constant(val(x(s), τ))

y(do(a, s)) = y1 ≡ ∃τ, y0 . a = D(τ) ∧ y0 = val(y(s), τ) ∧
y1 = linear(y0,−1 unit/s, τ) ∨
∃τ . a 6= R(τ) ∧ y1 = constant(val(y(s), τ)).

Note that in the second part of each successor state axiom, the movement in the other
direction must be stopped. For example, if the agent moves to the right in s and
a = D(τ), then the agent just changed its direction from right to down and therefore
the X-coordinate becomes constant.

A situation term do([R(2), D(3)], S0) means that at after 2 seconds, the agent started
moving to the right which leads to do(R(2), S0). In this situation, the X-coordinate
function is x(do(R(2), S0)) = linear(0, 1, 2). To determine whether or not action D is
allowed at point in time 3, its precondition is tested:

Poss(D(3), do(R(2), S0)) ≡ val(y(do(R(2), S0)), 3) = 1 ∧
(val(x(do(R(2), S0)), 3) = 0 ∨
val(x(do(R(2), S0)), 3) = 1)
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≡ val(constant(1), 3) = 1 ∧
(val(linear(0, 1, 2), 3) = 0 ∨
val(linear(0, 1, 2), 3) = 1)

≡ 1 = 1 ∧ (0 + 1 · (3− 2) = 0 ∨ 0 + 1 · (3− 2) = 1)

≡ 1 = 1 ∧ (1 = 0 ∨ 1 = 1).

Therefore, the agent moves now down along the dashed edge towards (1, 0). Since the
agent moves with 1 unit/s, it must arrive at time 4 at the goal position (0, 1): As shown
above, the X-coordinate is 1 at time 3, and according to its successor state axiom, it
stays constant from then on. The Y-coordinate, however, is then determined by the
function y(do([D(3), R(2)], S0)) = linear(1,−1, 3). When point in time 4 is plugged
in, this evaluates to 1 + (−1) · (4− 3) = 0.

6.6.2 How the Interpreter Works

After having explained in detail how the agent moves and how the basic action theory
models this movement, the rest of this subsection shows how the interpreter behaves
when it faces some observations.

Assume that the agent has been seen at position (0, 1) at point in time 1, at (0.5, 1)
at time 2.5 and at (1, 0.5) at time 3.5. Obviously, this means that the agent moved
along the dashed line. This results in the observation program

θ = atomic(observe(1, x = 0 ∧ y = 1);waitFor(now > 1));

atomic(observe(2.5, x = 0.5 ∧ y = 1);waitFor(now > 2.5));

atomic(observe(3.5, x = 1 ∧ y = 0.5);waitFor(now > 3.5)).

Recall that the waitFor actions and the use of atomic prevent other actions from
happening directly after an observation. Assume the interpreter wants to test whether
or not the program

σ = R ‖ D

explains these observations. σ simply expresses that the agent moves either first right
and then down, or first down and then right.

Recall that the interpreter resolves nondeterminism by choosing the alternative whose
estimated reward is highest. Since there are no stochastic actions in σ ‖ θ, the reward
has not to be estimated in the present case. Instead, at a nondeterministic choice
point, that one situation’s branch is taken which has the highest reward.

Figure 6.5 depicts how plan recognition by program execution works. Reward func-
tion (6.5) counts the number of observe actions. Consider the top branch, S0 →
D(τ1) → R(τ2) → O1 → O2 where Oi stand for atomic(observe(. . .);waitFor(. . .)).
This branch involves two observations, but the second observation fails. Hence, the
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situation in this branch with the best reward is reached when O1 is executed. The
reward is obviously 1.

The following takes a close look at how the interpreter executes the program σ ‖ θ.

1. Starting in S0, the interpreter needs to decide whether to move down, right
or perform an observation. Moving down fails early, because the second ob-
servation sees the agent on the top edge at time 2.5. Moving right fails, too,
because in order to entail the first observation, the agent would have to start
moving at time 1, but then the second observation is violated. In both branches,
the maximum encountered reward is 1. Since the third branch contains situa-
tions with higher reward (as can be seen in Figure 6.5), the interpreter executes
atomic(observe(1, x = 0 ∧ y = 1);waitFor(now > 1)).

2. Again, the agent may move down, right or check for the next observation. Since
the second observation cannot be entailed without moving, it is quickly ruled out.
The interpreter may execute D immediately followed by R, thereby neutralizing
the effect of the D action. Then, however, it cannot move down anymore and the
third observation, which sees the agent on the right edge, fails. The maximum
achievable reward is therefore 2 for this branch. The only remaining choice is
the R action, which yields a superior reward of 3 as will be shown.

3. At this point, the interpreter has reached situation do([O1, R(τ1)], S0) where
O1 denotes the first observation as in Figure 6.5. The remaining program is
D ‖ (O2;O3). Moving down now leads to a dead end, because then this move
must happen before O2, that is, τ2 ≤ 2.5. This implies that the interpreter
moves down along the left edge and O2 cannot be executed. Consequently, O2

is a better choice. In order to succeed, it constrains the timestamp of R to be
τ1 = 2.

4. Finally, the agent needs to choose between D and O3. Since the agent is still
on the top edge and O3 requires it to be in the middle of the right edge, D is
executed first.

5. As last step, only O3 remains. When τ2 = 3 is chosen as timestamp for the
previous action D, the observation is entailed. The resulting situation’s reward
is 3 and better than any other situation’s. Since the remaining program is empty,
σ ‖ θ is executed completely.

The interpreter’s agent has moved right on the top edge at time 2 and then issued an
action to move downwards at time 3 along the right edge. This movement complies
with the observations of the real agent.
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Interpreter
For each candidate
program σ1 ‖ . . . ‖ σn,
execute σ1 ‖ . . . ‖ σn ‖ θ.

Plan Library

proc overtake(V,W )

behind(V,W )?;

leftLaneChange(V );

wait for behind(W,V );

rightLaneChange(V )

proc straight(V )

. . .

. . .

Observations

at time 0: pos(A) = (10,−2)

at time 1: pos(A) = (25,−2)

at time 2: pos(A) = (40, 0)

at time 3: pos(A) = (55, 2)

. . .

‖

Candidate programs of
the form

σ1 ‖ . . . ‖ σn
for n actors.

Observation Program θ

obs.(0, pos(A) = (10,−2)) ‖
obs.(1, pos(A) = (25,−2)) ‖
obs.(2, pos(A) = (40, 0)) ‖
obs.(3, pos(A) = (55, 2)) ‖
. . .

Set of candidate
plans + confidences
that plan explains
the observations.

Figure 6.6: Refined structure of our approach to plan recognition. The initial struc-
ture depicted in Figure 1.1 on page 4 has been largely retained. Candidate programs
are picked from the plan library and executed concurrently with the assembled obser-
vation program. Everything else happens inside the interpreter. Each candidate plan
is not just assigned a yes/no-answer, but a numeric confidence instead.

6.7 Summary

The plan recognition system presented in this chapter originally belongs to the family
of consistency-based approaches. A set of programs written in the language described
in Chapter 5 constitutes the plan library. A plan is recognized by picking the re-
spective program from the plan library and looking for an execution that matches all
observations.

By the use of to stochastic actions, the system returns a confidence that a given
program explains observations (cf. Section 6.5.1). Thus, the framework becomes a
hybrid between the consistency-based and probabilistic approaches.

Decision theory makes the approach practical in that it provides a reasonable way
to commit early to certain executions. While this heuristic destroys the algorithm’s
completeness, it keeps the otherwise evergrowing set of hypothesis at a constant size
(cf. Section 6.3.3).

The system inherently models interdependencies between different actors; multi-agent
plan recognition is easily done using concurrency (cf. Section 6.4).
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The introduced observe actions gave rise to plan recognition by program execution; the
whole plan recognition logic is expressed in Golog and therefore based on the situation
calculus (cf. Section 6.3). This integrated approach proves to be very expressive. For
one, it is the prerequisite for reasonable reward functions and thus also the basis for
decision-theoretic resolution of nondeterminism and the aforementioned heuristic. For
another, it allows to very naturally model sensor noise (cf. Section 6.5.2).

The general structure shown in Figure 1.1 on page 4 can be refined as done in Fig-
ure 6.6. The new figure resembles the introductory one very much: the most part of
the plan recognition logic is bundled in the interpreter. The rest of the system simply
needs to build the candidate programs and the observation program which are then
executed concurrently by the Golog interpreter. In contrast to the initial sketch, the
built system does not assign each candidate plan a yes/no-answer, but computes a
numeric confidence that the plan explains the observations instead.



Chapter 7

Evaluation

Chapters 5 and 6 developed a framework for plan recognition. The following chapter
documents the efforts to implement this system and to evaluate its performance.

The upcoming section returns to the modeling problem, this time having the defined
plan recognition language in mind and looking for an efficient implementation. The
subsequent section describes the interpreter, available software for constraint solving
and a driving simulation. Finally, the experimental results of this testing environment
are presented.

A comparison with other plan recognition systems is not part of this evaluation. For
one, this is because the related approaches described in Section 2.1 seem not to be
published as source code. For another, most alternative approaches have a different
focus – many are about action hierarchies – and they are not suited for plan recognition
in continuous domains.

7.1 Modeling Revisited

In reality, there is a close connection between the chosen class of constraints and
modeling. This is because one needs to make a compromise between expressiveness
and tractability of the constraint system. This aspect was ignored in Chapters 5 and 6
since the actual constraint solving is not a part of the theoretical system.

A related challenge is that the model should be abstract in order to allow for easy
program formulation. On the other side, the model should precisely reflect the real
physical behavior. Where the line between these demands should be drawn depends
on the area of application.

A detailed analysis of a physical yet tractable driving model is beyond the scope of
this thesis. One way to develop such a model would be to start off with a precise
four-wheel model of a car and reduce this model until it is tractable. However, from a
computational viewpoint it appears to be easier to start with a very simple model and
enrich it when needed and possible. One argument for this way is that most published
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work related to constraint solving in continuous domains is about linear optimization
problems (cf. Section 2.2). Hence, this proceeding is chosen in the following.

As in Chapter 4, a car is represented by a point in a two-dimensional Cartesian coor-
dinate system. The Y-coordinate represents the lateral position, the X-coordinate is
the longitudinal position.

In many scenarios, there is an infinite combination of action parameters and time-
stamps that could explain a single observation. For example, to achieve a speed of
exactly 100 km/h at time 10 s in a world where acceleration is uniform and instanta-
neous, i.e. an action setAccel(f, τ) immediately changes the acceleration to f at τ ,
there is an infinite combination of (f, τ) tuples: the greater the acceleration f , the
greater τ must be.

Values such as accelerations, yaws etc. are usually multiplied with time variables to
determine the current speed or driven distance, for example. If the domain of the
physical values such as acceleration is made finite and small, each constant value can
be tried once. This drastically simplifies the resulting optimization problems.

The mechanisms for robustness presented in Chapter 6.5.1 work well with these finite
domains, because they allow the reality to slightly differ from the chosen constant
value.

Since velocities and yaws are restricted to finite domains, the simple modeling ex-
ample from Section 4.1 only involves linear constraints. If instantaneous velocity
changes are replaced with instantaneous acceleration changes as done in Section 4.3,
the (in)equalities get quadratic.

7.2 Implementation

The proposed plan recognition system consists of a Golog interpreter with the seman-
tics defined in Chapter 5 and a third-party constraint solver. For testing purposes, a
racing game was used as a driving simulation.

7.2.1 Interpreter

The interpreter is written in ECLiPSe-CLP,1 a constraint logic programming system
which is largely compatible to Prolog.

A basic action theory can be defined in a module that exports the fluent predicates
and some other predicates such as primitive action/1 and stochastic action/1

to declare primitive and stochastic actions, respectively.

1ECLiPSe-CLP is available at http://www.eclipseclp.org/.

http://www.eclipseclp.org/
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The transPr function is implemented by means of sampling, because thus we only
have to consider a single outcome situation per transition instead of all, potentially
countably infinitely many new situations. The basic action theory needs to provide a
predicate random outcome/3 that, given a stochastic action and a situation, returns a
randomly chosen outcome action. The underlying probability distribution can be the
same as in prob0, but the probabilities are hidden from the caller.

The interpreter, which mainly consists of the predicates trans atom/4, the analogue
of transAtPr, and trans/7, the analogue of transPr, hence is ignorant towards prob-
abilities. Instead, it picks a random outcome action at each stochastic action it en-
counters.

To determine the probability that a program can be executed, the interpreter is
launched N times and the number of successful executions divided by N is then con-
sidered as the success probability. In particular, the probability that a program σ
explains some observations represented by the observation program θ (cf. Section 6.3)
is

number of successful executions of σ ‖ θ
number of attempted executions of σ ‖ θ

.

A side benefit of sampling is easy parallelization. Since ECLiPSe-CLP has no support
for multi-threading, this appears to be the only way to utilize the capacity of modern
CPUs.

The implementation of the trans/7 predicate is shown in Figure 7.1.

Intuitively, the execution probability should grow with increasing horizon. However,
this is not always the case. The reason is a paradox in the implementation that at
some point, the returned probability worsens with the horizon increase. The source
of this counter-intuitive is probably the random outcome/3 predicate. Depending on
the outcome action, executing a branch might fail during the lookahead. This may be
either intended or it may be just due to an unlucky outcome action. Whatever the
reason is, the branch is not be considered to resolve nondeterminism.

Consider the following basic action theory which illustrates the problem. Let there
be two stochastic actions S and T with outcome actions A, B and F . S results with
90 % in A and 10 % in F . T results with 90 % in B and 10 % in F . While A and
B are always possible, F ’s precondition always fails. Neither action has any effect.
Assume the reward function returns the number of actions which are distinct from their
predecessor if there is one. For example, the reward of do(A,S0) is 1, do([A,B], S0) is
2 and do([A,A], S0) is 1. For a program S ‖ T , the interpreter should behave the same
way whatever the horizon is: if the last action was A, pick T in the hope of outcome
B, otherwise pick S as next action hoping for A.

However, that is not the case, because the lookahead execution might fail. When
trans/7 is called with S ‖ T in do(A,S0), the reward-maximizing choice of the next
action is T . For horizon 1, the interpreter returns this choice in 90 % of all cases,
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trans(RewardF, H, E, S, H1, E1, S1) :-

next2(E, Ps),

( Ps = [] ->

fail

; Ps = [(C, E1)] ->

trans_atom(C, S, S1, C1),

H1 is new_horizon(H, C1)

;

( param(RewardF, H, S),

foreach((C, E), Ps),

fromto((0, noop, nil), (H0, C0, E0), (H1, C1, E1), (H1, C, E1)),

fromto((0, 0), (LR0, LM0), (LR1, LM1), _) do

( test(( trans_atom(C, S, LS1, C2),

H2 is new_horizon(H, C2),

trans_max_h(RewardF, H2, E, LS1, _, LS2, LM2),

LR2 is reward(RewardF, LS2),

( C0 == noop

; LR2 > LR0

; LR2 =:= LR0, LM2 > LM0)

), (H2, C2, LR2, LM2))

->

(H1, C1, E1) = (H2, C2, E),

(LR1, LM1) = (LR2, LM2)

;

(H1, C1, E1) = (H0, C0, E0),

(LR1, LM1) = (LR0, LM0)

)

),

C \== noop,

trans_atom(C, S, S1, _)

).

Figure 7.1: trans/7 predicate implements transPr (5.11).
RewardF needs to be a functional fluent that returns a situation’s reward. The looka-
head horizon H, program E and situation S denote the current configuration, and H1,
E1 and S1 are unified with the successor configuration.
next2/2 unifies its second argument with a list of decompositions (C, E1) where C is a
primitive, stochastic or test action and E1 is the remaining program; this corresponds
to Next′ (5.15). C is executed with trans atom/4 and trans max h/7 performs the
lookahead on E1. The reward-maximizing decomposition is chosen. The horizon is
decremented by new horizon/3.
test/2 calls a goal with suppressed unification and extracts some variables which
must have been bound to a ground term by the goal (here H2, C2, LR2, LM2). This
avoids that constraints of potentially withdrawn lookahead branches are kept in the
constraint pool.
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Horizon Probability Runtime

1 0 % 4 s

2 10 % 36 s

3 63 % 223 s

4 78 % 972 s

5 73 % 3676 s

Table 7.1: Influence of different optimization horizons on the execution probability
and on runtime of 100 independent interpreters. The test data are observations of a
15 s passing maneuver with 2 Hz.

because T leads to B with 90 %. If the horizon is 2, the chance that the interpreter
chooses the reward-maximizing decomposition B;A over A;B can be derived from the
following cases:

• if A fails during the lookahead of A;B, only B needs to succeed during the
lookahead of B;A; the probability of this happening is 10 % · 90 % = 9 %,

• if A succeeds and then B fails during the lookahead of A;B, only B needs to
succeed during the lookahead of B;A; the probability for this case is 90 % ·10 % ·
90 % = 8.1 %, and

• if both, A and B succeed during the lookahead of A;B, the whole branch B;A
needs to win over A;B; the probability for this event is 90 % ·90 % ·90 % ·90 % =
65.61 %.

The sum of these disjunct events and hence for trans/7 resulting in do([A,B], S0) is
82.71 %. Experiments precisely confirm these numbers.

In fact, the implementation depicted in Figure 7.1 lessens the impact of this paradox.
The reason is the more permitting behavior of trans max h/7. This predicate tries
to perform H2 many transitions, but it does not fail if the program fails before H2

transitions. Instead, it unifies LM2 with the number of transitions it performed. Then,
LR0, LR1, LR2 break the tie between branches with equal reward. However, this only
reduces the effect, it does not solve the actual problem.

Table 7.1 shows how both, probability and runtime increase with the horizon. This
roughly confirms the exponential development derived in Section 6.3.3.

Another trick in trans/7 as depicted in Figure 7.1 is new horizon/3. Intuitively, the
horizon should be decremented by 1 after each transition. new horizon/3, however,
allows for a action-specific deduction of the horizon. For example, one might not want
to decrease the horizon after observe, waitFor or test actions, since these have no
effect on the world (except for shifting time). This allows for a middle course between
two different global horizons.
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One final question how to implement sampling regarding stochastic actions remains.
During the lookahead, trans/7 as depicted in Figure 7.1 unifies C2 with the outcome
action that was randomly chosen. This outcome action is memorized and finally
executed. An alternative way would be to forget the outcome during the lookahead
and pick a new outcome action which then triggers the actual transition. Both ways
distort the probabilities.

For the first case, assume the program (S ‖ True?);B should be executed. S again
is a stochastic action with outcome A in 90 % and outcome F in 10 %, where A
always succeeds and F always fails. True? is a test action that always succeeds. The
primitive action B is always possible, too, and the reward of do(B, s) is 1 for any s and
0 otherwise. There are two competing execution orders: S;True?;B and True?;S;B.
Since both promise the same estimated reward 0.9, transPr picks any of them and
executes it. The implementation in Figure 7.1, however, would achieve a reward of 1
in 99 % of all cases. This is because the trans/7 predicate checks the execution order
S;True?;B first, which leads to A;True?;B in 90 %. If this is the case, it memorizes A
and thus gets to the rewarding situation. On the other hand, if S results in outcome F ,
the implementation chooses True? first and then tries to execute True?;S;B. Here,
S again leads to the succeeding outcome A with 90 %, which gives a total estimated
reward of 1 by 90 % + 10 % · 90 % = 99 %. Without memorization of the outcome
action, the interpreter would behave the correct way.

For the present domain, the following anomaly is perhaps more important. This
anomaly only occurs if the interpreter forgets the atomic action of the best branch and
chooses a new outcome action instead. Assume there is a program (S ‖ (B1;B2));B,
where S’s outcome actions are again A and F with 90 % and 10 %, respectively. While
B, B1 and B2 succeed always, A is only possible in situation do(B1, S0). Again,
do(B, s) has reward 1 for all s, in all other situations, the reward is 0. When the
interpreter reaches situation do(B1, S0), it considers executing S during the lookahead.
In 90 % of all cases, S leads to A and thus succeeds, otherwise the program execution
eventually fails. Obviously, executing S is the best choice at this point. Hence, the
interpreter decides to really execute S. However, since it needs to re-pick S’s outcome
action, the probability that S really leads to A in this transition is only 90 % · 90 % =
81 %.

The first anomaly mainly occurs when nondeterminism allows to execute different
stochastic actions or a single stochastic action in different situations. The latter prob-
lem seems to be of more relevance for use cases such as passing maneuvers. The actions
B1 and B2 can be identified with observation actions, and the stochastic action S may
change lanes. In such a scenario, the observations predetermine the situation at which
S should be executed.

Note that the source of these anomalies is the fact that random outcome/3 implements
a simulation. The formal definition does not suffer from these problems.
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Processes
COIN-OR CLP ILOG CPLEX

Probability Runtime Probability Runtime

1 72.6 % 2438 s 74.2 % 49 835 s

8 74.6 % 467 s 71.8 % 12 111 s

Table 7.2: Runtime of 1000 samples using different solvers on an Intel Core i7 CPU
with four physical cores at 3.2 GHz and hyperthreading. The observations stem from
a passing maneuver taking 15 s with two observations per second.

7.2.2 Constraint Solvers

ECLiPSe-CLP has two interfaces for constraint solving in continuous domains (Brisset
et al., 2011): IC and EPLEX.

The library IC, interval constraints, is an integrated “general interval propagation
solver” that supports integer and real variables and polynomial constraints (Brisset
et al., 2011).

IC uses interval arithmetic to handle floating point inaccuracy (Brisset et al., 2011).
Intervals are refined using a branch and prune algorithm described by Hentenryck et al.
(1997). This algorithm uses interval arithmetic and Taylor extensions to find solutions.
The algorithm is correct in that for each solution (v1, . . . , vn) of a polynomial system,
there is one among the returned tuples of intervals (I1, . . . , In) such that vi ∈ In
(Hentenryck et al., 1997).

EPLEX is a generic interface to external constraint solvers for linear and mixed integer
programs (Brisset et al., 2011). For this thesis, the commercial product IBM ILOG
CPLEX Optimizer2 and COIN-OR’s open source solver CLP3 were used.

The inherent intervals of IC proved to be a disadvantage. Similar to the initial interval-
based approach to robustness sketched in Section 6.5.1, intervals become too large to
make clear statements. The reason is simply that in interval arithmetic, the size
of intervals grows exponentially with the number of multiplications, and the time
variables are involved in many multiplications. Hence, the solution intervals need to
be very small to keep them small, which greatly increases the runtime. On the plus
side, IC is not limited to linear (in)equations.

While the external solvers interfaced via EPLEX are limited to linear constraints, they
provide exact solutions. Both, CLP and CPLEX are implementations of the Simplex
algorithm. Surprisingly, COIN-OR’s CLP outperformed ILOG CPLEX by far as (more
than factor 20) shown in Table 7.2. The reason for the difference is not clear. It may
be due to the fact that a preview version of CPLEX was used.

2IBM ILOG CPLEX Optimizer is available at http://www-01.ibm.com/software/integration/

optimization/cplex-optimizer/.
3COIN-OR CLP and other solvers are available at http://www.coin-or.org/.

http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
http://www.coin-or.org/
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(a) Before a passing maneuver. (b) After a passing maneuver.

Figure 7.2: Screenshots of TORCS with plan recognition output.

7.2.3 Driving Simulation

The computer racing game TORCS4 is used as a driving simulation. Although there
are no typical traffic elements such as intersections, racing tracks can be interpreted
as highways. Snapshots from the game during a passing maneuver are shown in Fig-
ure 7.2.

Since the source code of TORCS is freely available, it is possible to modify the game
and particularly implement custom AI drivers. For the specific case of a passing ma-
neuver, an automatic driver was written. This driver’s purpose is to be the overtaken
vehicle. As such, the car stays straight on the right lane and keeps a specified speed.

The human driver can be controlled either by keyboard or a gaming steering wheel, for
example. While the steering wheel gives a more realistic feeling and leads to smoother
maneuvers, unfortunately it is more difficult to keep a car straight in the lane than a
real car due to calibration problems.

The driving simulation generates observations in specific intervals. For the following
tests, a frequency of 2 Hz was chosen, that is, TORCS sends an observation to the
plan recognition system twice a second. Each observation consists of a pair of global
longitudinal and a lateral coordinates of each car.5 This is actually similar to GPS,
except that there is no inaccuracy in TORCS.

4TORCS is available at http://torcs.sourceforge.net/.
5The lateral coordinate is basically the distance from the central line of the road. The longitudinal

coordinate is measured from the finish line along the central line to the car’s current position.

http://torcs.sourceforge.net/


7.3 Experimental Results 89

The plan recognition system follows the plan recognition by program execution paradigm
from Section 6.3 by sampling. When the first observation occurs, the system spawns
a fixed number of independent interpreters, each of which is initialized with the can-
didate programs (cf. the structural overview in Figure 6.6). From now on, each inter-
preter is fed the incoming observations.

All interpreters behave according to the heuristic plan recognition proposed in Sec-
tion 6.3.3. This means that they always keep some observations buffered, because
these observations are needed by the interpreter to reasonably resolve nondeterminism
with a certain lookahead. Whenever enough observations are present, each interpreter
triggers a transition until the program is final.

When an interpreter finishes execution, this is reported back to TORCS and displayed
in the game. For example, the message “0/0 = 0.0 %” in Figure 7.2a means that up
to now, none of the spawned interpreters has finished (successfully or unsuccessfully).
In other words, all executions are consistent with the observations so far. The second
picture, Figure 7.2b, is taken after the passing maneuver is completed. The displayed
string “21/24 = 87.5 %” means that of 24 finished interpreters, 21 successfully executed
the program representing a passing maneuver together with the observations. The
resulting probability is 21

24 = 87.5 %.

Notice that the printed percentages stand for recognition of completed passing maneu-
vers. Online plan recognition is not enabled (even though one may draw conclusions
from the number of interpreters not yet failed). The reason is simply that the proba-
bilities of online plan recognition are not meaningful without the respective situation
terms, which mirror how much of the maneuver has actually been performed yet.

If multiple candidate programs are tested, as in the second example in Section 7.3.2,
the total number of interpreters is divided equally among the programs. For example,
if two candidate programs are to be executed and the total number of interpreters is
24, then twelve interpreters are tasked with the first and the other twelve interpreters
with the second program. This leads to two different probabilities, which are displayed
separately on the screen.

For performance reasons, the interpreters run on a remote computer and their number
is limited to 24 in the following examples. Surprisingly, this system allowed for real-
time performance. Of course, with growing complexity of the model, performance
quickly degrades, but on the other hand, the system can be easily scaled as long as a
single interpreter can run on a single processor in real time.

7.3 Experimental Results

This section presents the experimental results of the prototypical implementation de-
scribed in the previous section.
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7.3.1 Passing Maneuver

In the following experiment, a car with (almost) constant speed of about 75 km/h
overtakes another car driving (almost) constantly at 60 km/h on a two-lane road.

Test Setup

On one computer, the driving simulation TORCS (cf. Section 7.2.3) is installed. The
slower car is controlled by TORCS to stay in the middle of the right lane at a constant
speed of 60 km/h. A human being drives the overtaking car via keyboard or a steering
wheel. The speed is limited by TORCS to 75 km/h to ensure that both cars move
with almost constant speed.

This test case represents the example used throughout this thesis. The passing ma-
neuver illustrates the requirements for the plan recognition system: It is inherently
continuous and it requires a precise relationship between different vehicles, that is, it
is not sufficient to consider just one actor. Furthermore, the points in time at which
the overtaking car swings out and goes back into the lane are highly variable, which
requires robustness towards time, and since the trajectory is not unique either, data
robustness is crucial, too. Finally, many dangerous situations on freeways involve cars
passing each other. Hence, the test case matches the requirements listed in Section 1.2
very well.

The candidate program is

overtake(V,W ) ‖ cruise(W )

where overtake and cruise are defined in Figure 7.3. Note that in overtake(V,W ),
only V acts actively, W just occurs in tests and thus remains passive. Even though the
program cruise(W ) is utterly simple, this is multi-agent plan recognition as described
in Section 6.4. As before, the presentation of the programs uses syntactic sugar such
as atomic for the atomic(σ) construct and pick for the operator πv . σ.

Recall that the third parameter of setY aw and setV eloc is used to parameterize
the stochastic action’s probability distribution. Here, log-normal probability dis-
tributions as depicted in Figure 6.2a are used. The third parameter specifies the
random variable’s standard deviation. Its unit is meters, because it eventually re-
sults in a tolerance area around the car. Hence, the underlying random variables are
X1 ∼ logN (−0.2, 0.72) while driving straight ahead and X2 ∼ logN (−0.2, 1.02) dur-
ing lane changes. This means that the lateral tolerance is about 1.0 m on average with
a standard deviation of 0.8 m while driving straight. During the lane changes, the
average is 1.3 m and the standard deviation 1.8 m. setV eloc’s probability distribution
is logN (1.0, 0.52).
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proc straightLeft(V )

atomic

setY aw(V, 0◦, (−0.2 m, 0.7 m));

onLeftLane(V ) ?

endatomic

endproc

proc leftLaneChange(V )

atomic

pick γ ∈ {4◦, 6◦, . . . , 12◦} do

setY aw(V, γ, (−0.2 m, 1 m))

endpick;

onRightLane(V ) ?

endatomic;

straightLeft(V )

endproc

proc straightRight(V )

atomic

setY aw(V, 0◦, (−0.2 m, 0.7 m));

onRightLane(V ) ?

endatomic

endproc

proc rightLaneChange(V )

atomic

pick γ ∈ {4◦, 6◦, . . . , 12◦} do

setY aw(V,−γ, (−0.2 m, 1 m))

endpick;

onLeftLane(V ) ?

endatomic;

straightRight(V )

endproc

(a) Helper programs that keep the vehicle straight on a lane and change the lane, respectively. The
atomic ensures that the primitive action and the test action are executed at once.

proc overtake(V,W )

behind(V,W ) ?;

onRightLane(V ) ?;

onRightLane(W ) ?;

straightRight(V );

begin

leftLaneChange(V );

wait for behind(W,V );

rightLaneChange(V )

concurrently with

setV eloc(V, 75 km/h, (1 m, 0.5 m))

end;

onRightLane(W ) ?;

behind(W,V ) ?

endproc

proc cruise(V )

straightRight(V );

setV eloc(V, 55 km/h, (1 m, 0.5 m))

endproc

(b) Top-level programs for a passing maneuver and the slower vehicle. The velocities are hard-coded
in both programs.

Figure 7.3: Programs used in the passing maneuver example. All tuples are param-
eters for probability distributions underlying the stochastic actions.
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The fact that both cars drive at nearly constant speed degrades the role of velocity in
the whole system. Thus, all constraints are kept linear and therefore, a linear solver
suffices. For this experiment, COIN-OR CLP is used.

In the implementation, the setY aw action is slightly extended to merge the subse-
quent onLeftLane(v) or onRightLane(v) check, respectively. Hence, the programs
straightLeft and straightRight boil down to a single primitive action. This is simply
to improve performance and results because it increases the effective horizon without
any additional cost.

Figure 7.4 visualizes some results of the plan recognition system applied to a com-
pleted passing maneuver. Each diagram corresponds to a successful execution of the
aforementioned program by the interpreter. The figures only show the lateral position
and tolerance, not the longitudinal position or tolerance of the car. This is sufficient
for the present example as both vehicles’ velocity is more or less constant.

Note that in Figure 7.4d, the lateral tolerance is that big that it allows the model
to drive basically anywhere. Even though such high tolerances are rare due to the
probability distribution, one may want to avoid them. In fact, they can be easily
ruled out by restricting X1, the random variable for lateral tolerances, not to be
greater than 2.5 m, a half lane width. This is done in the implementation.

As said in Section 7.2.1, the program is executed multiple times. Each execution
randomly picks one sample of each probability distribution involved in the program.
For this reason, the tolerances differ between the different executions. Each result of
the plan recognition consists of

• the probability that the program can be executed, that is, the quotient of suc-
cessful and attempted executions, and

• the resulting situation term for each execution.

The probability may be interpreted as confidence that the chosen programs are ex-
ecuted by the different actors. However, this only half the deal; one still needs to
consider the situation term. In Figure 7.5, (a)-(c) represent incomplete passing ma-
neuvers. Yet, the interpreter successfully executes the program. Only (d) depicts a
finished passing maneuver. By which degree the passing maneuver is executed, can be
easily read off the situation term. For example, if the last action’s timestamp is the
same as the last observe action’s timestamp, then the situation term corresponds to
a complete passing maneuver.

The aforementioned probability distribution and its parameters are crucial to a good
tradeoff between precision and recall. The log-normal distribution performed best in
tests. The exponential distribution shown in Figure 6.2b proved to be difficult to
parametrize in order to get reasonable results. The half-normal distribution, a special
case of the folded normal distribution with µ = 0, which in turn consists only of one
half of the bell curve, leads to similarly well results but more false positives.
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Figure 7.4: Visualization of the trajectory of an overtaking car and some samples of
the Monte-Carlo simulation of different passing maneuvers. The X-axis represents the
time, the Y-axis the lateral position. −5 to 0 is the right lane, 0 to 5 is the left lane.
Points mark the observed lateral positions at the given time. The solid line follows the
vehicle’s trajectory in the model. Vertical lines represent the lateral tolerance which
grow during lane changes.
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Figure 7.5: Visualization of the trajectory of an overtaking car during a single passing
maneuver. Each subfigure represents the state of plan recognition at different points
in time.
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The log-normal distribution is an intuitive choice for the present problem for a number
of reasons. For one, negative tolerances are ruled out. For another, a tolerance of 0
means that the driver exactly follows the model, which is physically impossible since
instantaneous change of yaw etc. is a simplification of the real world in the model.
The deviations from the model’s idealized trajectory are therefore expected to be a
skew bell curve distribution whose left side is much steeper than the right side. This
is exactly the log-normal density function (cf. Figure 6.2a).

Note that the interpreter does not look for a execution that explains the observations
best. This can be seen in Figure 7.5d: while the observations indicate that the vehicle
has driven in the middle of the left lane, the model’s trace is nearer to the center
line of the road. The reason is that the interpreter randomly picks tolerances, and
then only tries to find a way to drive so that all observations lie in the tolerance
range. Fitting the model’s trace better to the observations could be done with the
least squares method, which in turn requires quadratic programming.6

Results

In an experiment, six human beings were asked to drive 20 maneuvers, 16 typical and
legal passing maneuvers and four illegal7 passing maneuvers on the right. The results
are given in detail in Table 7.3. These numbers only refer to completely recognized
passing maneuvers. If online plan recognition was enabled, the probabilities were
meaningful only in connection with the respective situation term, which cannot be
presented in a compact way.

This test’s goal is not to achieve 100 % for each passing maneuver. The returned
probability stands and falls with the parametrization of the probability distribution.
Instead, the objective is to show that the plan recognition system is able to draw a
line between passing maneuvers and non-passing maneuvers.

The first four test drivers used a steering wheel to control the virtual car. According
to all of them, keeping the car straight in the lane is way more difficult than with a
real car. This is mostly due to calibration issues of the steering wheel.

The fifth and sixth test driver used the keyboard. The keyboard control is choppier
than the continuous control of the steering wheel. This matches the instantaneous
movements of the model better, which is reflected in higher probabilities in Table 7.3.

The test succeeded insofar as the system clearly differentiated between legal and ille-
gal passing maneuvers: each of the 96 legal passing maneuver resulted in a positive
confidence, each of the 24 illegal ones yielded 0 %. With two exceptions, the returned
probability for legal maneuvers was greater than 20 %. The fact that both exceptional

6COIN-OR CLP supports quadratic programming in general, but to build the objective function
incrementally, a trick must be applied, which very badly affects the performance.

7Passing another vehicle on the right is not allowed in Germany.
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3
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X

Figure 7.6: Alternative maneuvers to pass a car in the presence of a third car. While
car 2 is attempting to overtake car 1, car 3 has two alternatives. To avoid a crash, it
may either decelerate, get behind car 2 and slowly pass car 1 (dotted trace). Or it may
continue to accelerate, pass car 2 (illegally) on the right side, change lanes between
car 1 and 2 and thereby pass car 1 (dashed trace).

maneuvers were performed by the two most inexperienced drivers in the experiment
suggests the conclusion that they are the result of unintended oscillating due to the
calibration issues.

This test and other experiments showed that oscillating has the most significant impact
on the returned probability. This is both reasonable and intended, because the more
the driver oscillates in a lane, the higher lateral tolerances are needed.

By almost fixing both vehicles’ speed, this experiment avoids a real world problem:
nonlinear constraints. Due to the constant speed, only small longitudinal tolerances
are needed. If more significant changes of velocity are expected, they also need to be
modeled. An action to change the acceleration instantaneously appears to be more
appealing than the instantaneous change of speed with setV eloc (cf. Section 4.1 and
Section 4.3).

7.3.2 Cautious versus Aggressive Passing

The second test case is about two alternative maneuvers. Consider a scenario of three
cars driving in a two-lane road as depicted in Figure 7.6.

One car drives at 45 km/h in the right lane, the second car goes at 55 km/h in the fast
lane. The third car rushes from behind in the right lane. It may either jam on the
brakes, wait until the second car has passed the first one and then pass the first car on
his part. Alternatively, the third car may try to aggressively weave its way between
the first and second car without decelerating (which implies that it passes the second
car illegally on the right).

This test’s goal is to recognize which maneuver the third car performs.
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Person 1 Person 2 Person 3 Person 4 Person 5 Person 6
29.2 % 20.8 % 8.3 % 16.7 % 45.8 % 54.2 %
29.2 % 20.8 % 21.7 % 20.8 % 58.3 % 54.2 %
29.2 % 29.2 % 29.2 % 25.0 % 58.3 % 54.2 %
33.3 % 41.7 % 33.3 % 25.0 % 58.3 % 62.5 %
33.3 % 45.8 % 33.3 % 29.2 % 66.7 % 66.7 %
37.5 % 50.0 % 33.3 % 33.3 % 66.7 % 66.7 %
41.7 % 50.0 % 37.3 % 33.3 % 70.8 % 70.8 %
45.8 % 54.2 % 37.5 % 33.3 % 70.8 % 70.8 %
45.8 % 54.2 % 37.5 % 37.5 % 75.0 % 75.0 %
50.0 % 58.3 % 41.7 % 37.5 % 75.0 % 75.0 %
62.5 % 62.5 % 45.8 % 41.7 % 75.0 % 75.0 %
66.7 % 70.8 % 50.0 % 50.0 % 75.0 % 79.2 %
66.7 % 75.0 % 54.2 % 50.0 % 79.2 % 79.2 %
66.7 % 75.0 % 54.2 % 58.3 % 79.2 % 83.3 %
70.8 % 83.3 % 54.2 % 70.8 % 83.3 % 91.7 %
75.0 % 95.8 % 54.2 % 83.3 % 87.5 % 95.8 %

Avg. 49.0 % 55.5 % 38.9 % 40.4 % 70.3 % 72.1 %

St. Dev. 16.1 % 20.8 % 12.3 % 17.7 % 10.5 % 12.0 %

Avg. 54.4 %

St. Dev. 20.2 %

(a) Legal passing on the left.

Person 1 Person 2 Person 3 Person 4 Person 5 Person 6
0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %
0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %
0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %
0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %

Avg. 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %

St. Dev. 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %

(b) Illegal passing on the right.

Table 7.3: Experiment of letting six different persons perform (a) legal and (b) illegal
passing maneuvers.
The percentages are the probabilities returned by the plan recognition that the obser-
vations are be explained by a passing maneuver. They are given in ascending order per
driver for readability. “Avg.” and “St. Dev.” stand for average and standard deviation,
respectively.
The first four drivers used a steering wheel, while the fifth and sixth drivers used a
keyboard.
The recurring values are due to the fact that each probability is a fraction with de-
nominator 24 (cf. Section 7.2.3).
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Figure 7.7: Linear approximation of the distance after driving 3 s with uniform ac-
celeration of 3 m/s2.
The crosses and the nonlinear solid line represent the actual acceleration; the linear
solid line is the approximation for the interval from 4.5 s to 7.5 s.
The dotted lines are taken as upper and lower bounds. The upper bound is parallel
to the approximation, whereas each lower bound is parallel to a tangent (dashed) of
the actual acceleration function.

Linear Approximation of Uniform Acceleration

Since this example relies on velocity changes, a more sophisticated modeling is needed.
The following introduces a way to represent acceleration with linear constraints, which
is used for the present test case.

In Figure 7.7, the crosses stand for the measurements, which are matched very well
by the solid nonlinear line that represents a uniform acceleration of 3 m/s2. If this
acceleration starts at 4.5 s and ends at 7.5 s, this can be approximated by the solid
linear line.

Of course, the linear approximation does not match the observations as well as the non-
linear function. Hence, we need to state lower and upper bounds for the discrepancy
between the model’s and the measured acceleration. As with instantaneous actions,
a tolerance constant is picked at random. An appropriate upper bound is hence the
linear approximation shifted upwards by this constant.

The best lower bound would be the nonlinear function that describes the uniform
acceleration (shifted downwards by the tolerance constant), which is obviously not
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possible in a linear system. However, the shape of this lower bound can be approxi-
mated by a sequence of linear tangents. Such a tangents are visualized by the dashed
lines in Figure 7.7. Shifted by the negative of the tolerance constant, this yields one
of the lower bounds (the bottom dotted line). Note that the space delimited by the
upper bound and the lower bounds is a convex subspace and thus is suitable for a
linear constraint solver.

This approximation scheme can be implemented with two actions, startAccel and
endAccel. The former indicates that the vehicle begins to pick up a specified speed
with a specified uniform acceleration, the latter marks the end of the acceleration
process. Since the initial velocity is known, too, all physical values except for time
are ground, which makes all involved functions linear and thus suitable for the linear
constraint solver.

The simplified new preconditions are

Poss(startAccel(v, f, τ), s) ≡ ¬(∃v′, τ ′)accelerating(v′, τ ′, s)

Poss(endAccel(τ), s) ≡ ∃v′, τ ′ . accelerating(v′, τ ′, s) ∧ τ ≤ τ ′

where accelerating is a fluent that only holds during an acceleration process. Its first
argument is the goal velocity, the second argument is the time at which the acceleration
process would reach this velocity:

accelerating(v1, τ1, do(a, s)) ≡ ∃v0, f, τ0 .

a = startAccel(v1, f, τ0) ∧ v0 = val(veloc(s), τ0) ∧
τ1 = τ0 + (v1 − v0)/f ∨

accelerating(v1, τ1, s) ∧ (∀τ)a 6= endAccel(τ).

In reality, an additional parameter for the actor is added, and startAccel and endAccel
are made stochastic actions to introduce a longitudinal tolerance.

For the sake of brevity, the new successor state axiom of pos and veloc are omitted.
They are largely analogous to the original definition from Section 4.1. It should be
noted, though, that veloc still behaves the same way as before except during accel-
eration processes, during which it returns linear(v0, f, τ0) such as the veloc fluent
(cf. Section 4.3). Together with the precondition of endAccel, this allows to abort a
running acceleration process and then still have a reasonable velocity in the model.

Test Setup

The technical test setup is very similar to the passing maneuver example. Again, the
driving simulation TORCS (cf. Section 7.2.3) is used. Two computer-driven cars are
ordered to drive at 45 km/h in the right lane and at 55 km/h in the fast lane. The
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second car starts about 5 s after the first one, so that a gap of initially 65 m between
both cars continuously shrinks. It takes about 24 s for the gap to be closed.

With some delay, the human-controlled third car accelerates. In a first phase, the
acceleration is about 3 m/s2. This phase takes about 4 s and expedites the car to
about 54 km/h. The second phase again takes 4 s of 2 m/s2 acceleration to 83 km/h.
Finally, the vehicle accelerates with 1 m/s2 for another 8 s to get to 115 km/h, which
is then maintained.

The human driver may cancel this acceleration at any time to avoid a potential crash.
In this case, the car is decelerated with about −14 m/s2 to a speed of 52 km/h.

Note that all these physical values are only approximations. For example, the accel-
erations usually alternate by about ±0.1 m/s2.

The acceleration phases are represented by a pair of startAccel and endAccel which
are bundled in the helper program accel depicted in Figure 7.8a. The longitudinal
tolerance is log-normally distributed logN (1.0, 0.52) as in the previous example.

The lower and upper bounds are the linear approximations derived above. In our
experiment, four tangents served as lower bounds.

The candidate programs for the two described maneuvers are given in Figure 7.8
for the third car. Note that the precondition of endAccel allows the user to cancel
an acceleration process before it achieves its goal velocity. This is important in the
overtakeCautiously program.

Hence, the alternative candidate programs are

overtakeAggressively(V1, V2, V3) ‖ cruise1(V1) ‖ cruise2(V2)

and
overtakeCautiously(V1, V2, V3) ‖ cruise1(V1) ‖ cruise2(V2)

where cruise1,2 denote the variants of the cruise programs from Figure 7.3b with
velocities 45 km/h and 55 km/h, respectively.

Half of the spawned interpreters are tasked with sampling the first candidate program,
the other half deal with the second candidate program. As before, 24 interpreters are
spawned in total, and observations are generated with 2 Hz.

As an example, Figure 7.9 shows the trace of a cautious maneuver. Vertical and
horizontal bars represent the lateral and longitudinal tolerances, respectively. The
growing distances between these bars reflect the fact that with growing velocity, the
vehicle travels a greater distance between two observations. After about 325 m, the
driver decelerates, which leads to lower velocity and thus smaller travelled distances.
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proc accel(V )

startAccel(V, v, f, (1 m, 0.5 m));

endAccel(V, v, f)

endproc

(a) Helper program that performs an acceleration process. Also consider the helper programs from
Figure 7.3a.

proc overtakeAggressively(V1, V2, V3)

straightRight(V3);

accel(V3, 54 km/h, 3 m/s2);

accel(V3, 83 km/h, 2 m/s2);

accel(V3, 115 km/h, 1 m/s2)

concurrently with

waitFor(behind(V3, V1) ∧
behind(V2, V3));

leftLaneChange(V3);

waitFor(behind(V1, V3) ∧
behind(V2, V3))

endproc

proc overtakeCautiously(V1, V2, V3)

straightRight(V3);

accel(V3, 54 km/h, 3 m/s2);

accel(V3, 83 km/h, 2 m/s2);

accel(V3, 115 km/h, 1 m/s2);

accel(V3, 52 km/h,−14 m/s2);

leftLaneChange(V3);

waitFor(behind(V1, V3) ∧
behind(V3, V2))

endproc

(b) Top-level programs for a passing maneuver and the slower vehicle. The velocities are hard-coded
in both programs.

Figure 7.8: Programs for lead-footed and cautious passing maneuvers, respectively.
V1 denotes the car in the right lane, V2 the vehicle in the fast lane and V3 represents
the rushing car (cf. Figure 7.6).
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Figure 7.9: Visualization of acceleration and deceleration. The X- and Y-axis denote
the longitudinal and lateral position, respectively. Points mark observed positions.
Vertical bars represent lateral tolerances.

Person 1 Person 2
Cautious Aggressive Cautious Aggressive

Caut. Aggr. Caut. Aggr. Caut. Aggr. Caut. Aggr.
16.7 % 0.0 % 0.0 % 41.7 % 16.7 % 0.0 % 0.0 % 33.3 %
16.7 % 0.0 % 0.0 % 50.0 % 25.0 % 0.0 % 0.0 % 50.0 %
33.3 % 0.0 % 0.0 % 66.7 % 33.3 % 0.0 % 0.0 % 58.3 %
33.3 % 0.0 % 0.0 % 66.7 % 33.3 % 0.0 % 0.0 % 58.3 %
50.0 % 0.0 % 0.0 % 75.0 % 41.7 % 0.0 % 0.0 % 66.7 %

Avg. 30.0 % 0.0 % 0.0 % 60.0 % 30.0 % 0.0 % 0.0 % 53.3 %

St. Dev. 12.5 % 0.0 % 0.0 % 12.2 % 8.5 % 0.0 % 0.0 % 11.3 %

Table 7.4: Experiment of letting two persons perform five cautious and five aggressive
maneuvers each.
The columns entitled “Caut.” contain the probabilities for the cautious candidate
program, while “Aggr.” contains the results for the lead-footed program.
The recurring values are due to the fact that each probability is a fraction with de-
nominator 12 (cf. Section 7.2.3).
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Results

In an experiment, two test persons performed five cautious and five aggressive maneu-
vers. Both persons used the keyboard to control the virtual car. The plan recognition
system is intended to recognize whether or not the driver behaved cautiously or ag-
gressively.

Hence, when the test person brakes and slowly passes the objective car, the returned
probabilities for the overtakeCautiously program should be greater than zero and
those for overtakeAggressively should be zero. If, on the other hand, the driver
aggressively passes the car at full throttle like the dashed line in Figure 7.6, the results
should be the other way around.

The test results given in Table 7.4 confirmed this intended behavior in practice. Each
maneuver was classified correctly in the sense that the correct maneuver was assigned
a positive confidence while the incorrect one led to 0 %.

However, it is noticeable that the confidence in cautious maneuvers is about 30 %
for both drivers, while the confidences in aggressive passing maneuvers are 20 % to
30 % higher. The reason is probably that the deceleration of −14 m/s2 in the cautious
program does not match the real deceleration as well as the accelerations do. An
alternative or additional cause may be that a cautious passing maneuver takes longer
than an aggressive one and the system therefore needs to explain more observations.

7.4 Summary

The proposed plan recognition system proved to be generally practical in the experi-
ments. In both experiments, all maneuvers were classified as intended. Furthermore,
the system surprised with real-time performance.

In the first example, the passing maneuvers with constant velocities, the lateral toler-
ances worked flawlessly. All maneuvers were recognized correctly in the sense that a
program is considered as recognized iff the returned probability is positive. Longitu-
dinal tolerances were almost needless due to the constant velocity.

The second example also required effective longitudinal tolerances, too. Though in-
creasing the longitudinal tolerance solves this problem in a sense, this cuts down the
significance of the system, because the longitudinal position is crucial to determine
whether or not two cars crashed, for example. We tackled that problem with the
startAccel and endAccel actions. However, this still requires that velocities and ac-
celerations are hard-coded in the programs.

For practical reasons (e.g., availability and ECLiPSe-CLP interface), we decided upon
a linear solver for our prototype. A more powerful constraint solver would eliminate the
need for approximations in the model. For example, uniform acceleration could then be
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modeled accurately and without the limitation that the goal velocity must be known.
In general, there is a tradeoff between the expressiveness of the constraint solver and
the effort the axiomatizer has to put into simplifications and approximations. As it
turned out, for the world of automotive traffic at least quadratic constraints would be
very desirable.

However, considering the named limitations, our approach performed very satisfactory
in all experiments.



Chapter 8

Conclusion and Future Work

This chapter concludes the thesis. It summarizes the findings and compares them
to the requirements mentioned in Section 1.2. The second part identifies remaining
problems to solve and possible future extensions.

8.1 Conclusion

This thesis proposes a new way for plan recognition in continuous domains such as
automotive traffic. Given a candidate program from the predefined plan library, the
system searches for an execution of this program which entails all observations. In
contrast to many other plan recognition approaches which expect primitive actions
to be observed directly, the proposed system supports arbitrary situation- and time-
suppressed first-order formulas as observations.

A charming property of the system is that plan recognition boils down to program
execution, because observations can be easily translated into a program that is ex-
ecuted concurrently with the candidate program. Thus, the semantics of the plan
recognition procedure is entirely defined by the operational semantics of the program
interpreter.

The system has its roots in the family of consistency-based approaches. This is the case
in the literal sense as the logical conjunction of the program execution and the observa-
tions is required to be consistent. The efforts to introduce robustness using stochastic
actions shift the focus towards the probabilistic direction. Thus, the proposed frame-
work may be considered a hybrid between consistency-based and probabilistic plan
recognition approaches.

At this point, the introductory demands should be compared to what the system
delivers. In Section 1.2, continuous time, concurrency and robustness are listed as
requirements. The following paragraphs show that the proposed plan recognition
framework meets these requirements and provides some additional capabilities.

Continuous time is an inherent part of the semantics. The interpreter turns the qual-
itative descriptions of time in the programs into quantitative values at runtime. This
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bridges the opposing generality of programs and the concreteness of observations. It
also introduces a kind of robustness, because programs do not specify timestamps
uniquely. Instead, they constrain the choices of timestamps and the interpreter may
choose according to these constraints and the observations.

Robustness is modeled by stochastic actions. Robustness is needed because things are
less than perfect in the real world. In fact, there are three sources of uncertainty,
namely

• the actors are not as perfect as the model, for example, when a car drives straight
ahead, any human driver will in fact oscillate a bit and steadily control the car
in order to keep the same direction,

• the model is not as perfect as the world, that is, not all physical influences cannot
be represented in the model, and

• sensors are not definite but have measurement errors.

The first two kinds of robustness are represented in the programs from the plan library.
In the passing maneuver program (cf. Figure 7.3), this was done with a tolerance area
around the car. Sensor noise is modeled using stochastic actions, too: following the
plan recognition by program execution approach, observations are actions themselves,
which can be made stochastic and have outcome actions depending on the sensors’
error models. Due to stochastic actions, the interpreter not just says whether or not
the candidate program is consistent with the observations, but returns a probability
that the program explains the observations. This probability can be considered the
confidence that the certain program is executed.

One of the main contributions of this thesis is the integration of decision-theoretic
Golog with concurrency, which led to the new semantics shown in Section 5.4.3. Con-
currency is a key component of the plan recognition system at multiple points:

• programs may consist of concurrent subprograms themselves,

• multi-agent plan recognition is naturally done using concurrency, and

• concurrency is the prerequisite for the plan recognition by program execution
paradigm.

Concurrency is thus the foundation of a number of features and should be worth the
trouble of the new semantics.

Online plan recognition can be done in a natural fashion. Given a number of obser-
vations that only cover, say, half of the program, the interpreter executes this half in
accordance with the observations. It returns the reached situation, which represents
the executed half of the program, and the remaining half as remaining program. By
this procedure, plans can be recognized at their beginning.

DTGolog-style decision theory is responsible for resolving nondeterminism in programs
(which particularly includes concurrency). In combination with a lookahead horizon,
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this drastically improves the system’s performance of program execution. This espe-
cially holds for online plan recognition, because the reward function can guide the
interpreter a reasonable way through the program, even though the maneuver may
not yet have been observed completely.

To sum up, Golog as modeling language and interpreter has been proven very powerful
and surprisingly efficient. It supports a powerful notion of time, multi-agent and online
plan recognition, and is robust towards data deviations and sensor noise. Despite
this expressiveness, the prototype has performed very well, even in real time in some
cases.

8.2 Future Work

The results of our experiments make this approach promising for future work.

As it turns out, the major limiting factor is the physical model. The more detailed
the model, all the higher is the resulting mathematical constraints’ complexity. While
linear programs can be solved efficiently, they are probably overly simplistic, as they
are not even capable of representing a uniform acceleration of a vehicle. A remaining
challenge is therefore to find a more precise, yet tractable subclass of nonlinear pro-
grams. Section 2.2.2 mentioned some areas that are surely worth looking into. In the
case of automotive traffic, changing from the global perspective to a vehicle-centered
one might be help handling longitudinal tolerances.

Obviously, the required – and wanted! – degree of detail in the model depends on
the area of application. In high level scenarios, the qualitative temporal and spatial
representations from Section 2.2.1 might be an alternative to quantitative systems.

Valuing the probabilities returned by the plan recognition system is not easy. Though
the general interpretation as confidence is clear, each probability strongly depends on
the number of stochastic actions involved in the plan. Hence, some kind of normaliza-
tion might be beneficial.

A remaining problem for real world plan recognition is when to start the interpreter.
In the test scenarios, interpreters were spawned in the beginning. In reality, however,
it is not known when a certain maneuver begins. The naive approach – continuously
spawning interpreters – probably does not scale well.

Returning to the big picture outlined in the thesis’ motivation, the ultimate goal is to
predict critical situations. How plan recognition’s result – a situation term, a remaining
program and a confidence – can be extrapolated, still needs to be investigated.

Finally, plan recognition may be helpful in many other continuous areas such as do-
mestic robotics and soccer robotics to early identify a human’s intentions and the
opponents’ tactics, for example. It would be an interesting challenge to apply the
presented method in these fields.
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