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Approach

Interpreter

Model

proc overtake(V,W )

behind(V,W )?;

leftLaneChange(V );

wait for behind(W,V );

rightLaneChange(V )

. . .

Observations

at time 0: pos(A) = (10,−2)
at time 1: pos(A) = (25,−2)
at time 2: pos(A) = (40, 0)

. . .

Set of programs that
explain the observations.
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Related Work

Kautz and Allen [1986] Charniak and Goldman [1991] Goultiaeva and Lespérance [2006]

Plans consistent likely consistent

Tools circumscription Bayesian network situation calculus

Modeling first-order logic ConGolog

Focus abstraction abstraction, online

Observations primitive action occurrences

Bui et al. [2002] Geib and Goldman [2009] Ramirez and Geffner [2009]

likely likely consistent/likely

HMM HMM planner

hierarchical MDPs plan tree grammars STRIPS, goal library

abstraction, uncertainty abstraction, partial ordering –

primitive action occurrences
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Modeling

Y
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I Global cartesian view

I Vehicle = rectangle

I Instantaneous actions setY aw, setV eloc
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Programs

proc leftLaneChange(V )

pick γ ∈ {4◦, 6◦, . . . , 12◦} do
setY aw(V, γ)

endpick;

onRightLane(V ) ?;

% time passes indefinitely

setY aw(V, 0◦);

onLeftLane(V ) ?

endproc
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Semantics

What is needed to make it work?

Golog Trans +

I Flexible timing

I Continuous change

I Multi-agent

I Robustness
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Time and Continuous Change

2

1

different points in time
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Time and Continuous Change

From temporal sequential Golog:

time(A(~x, τ)) = τ

start(do(a, s)) = time(a)

From cc-Golog:

φ[s, τ ] evaluate φ in s at time τ

α[s, τ ] append new time parameter

e.g. jump[s, τ ] = jump(τ)
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Time and Continuous Change

Trans(α, s, δ, s′) ≡ δ = Nil ∧
∃τ . τ ≥ start(s) ∧
Poss(α[s, τ ], s) ∧
s′ = do(α[s, τ ], s)

primitive action

monotonicity

constrains τ further

advance to time τ

Poss(waitFor(φ, τ), s) ≡ φ[s, τ ]
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Multiple Agents

Multi-agent: σ1 ‖ . . . ‖ σn explains observations?

actor 1 actor n

Concurrency as in ConGolog:

Trans(σ1 ‖ σ2, s, δ, s
′) ≡ ∃δ′ . T rans(σ1, s, δ

′, s′) ∧ δ = δ′ ‖ σ2 ∨
∃δ′ . T rans(σ2, s, δ

′, s′) ∧ δ = σ1 ‖ δ′
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Robustness

Observed trace

+ model trace +

weighted

lateral tolerance

s
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Robustness

Observed trace + model trace + weighted lateral tolerances

Hypothesis: driving straight? Likely
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Robustness

Observed trace + model trace + weighted lateral tolerances

Hypothesis: driving straight? Less likely
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Robustness

Observed trace + model trace + weighted lateral tolerances

Hypothesis: driving straight? Unlikely
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Robustness

I Tolerances by stochastic actions
Choice(β, α) and prob0(β, α, s) 7→ [0, 1]

I Rate situation by reward

r (s) 7→ R

I Rate program by estimated reward

value(r , σ, s) 7→ R

I Nondeterminism → choose best alternative

:

1. Decompose σ into (γ; δ)
2. Find best (γ; δ) amongst all decompositions
3. Execute γ

user-supplied

atomic action
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Robustness: Decomposition

Next(σ, γ, δ)

input
next atomic

remainder

Like Trans without execution, e.g.:

Next(α, γ, δ) ≡ γ = α ∧ δ = Nil

Next(σ1 |σ2, γ, δ) ≡ Next(σ1, γ, δ) ∨Next(σ2, γ, δ)
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Robustness: Transition

transPr(r , σ, s, δ, s′) = p ≡
if ∃1γ1, δ1 . Next(σ, γ1, δ1) ∧(
∀γ2, δ2 . Next(σ, γ2, δ2) ⊃
value(r , (γ1; δ1), s) ≥ value(r , (γ2; δ2), s)

)
then

(
if δ = δ1 then p = transAtPr(r , γ1, δ1, s, s

′) else p = 0
)

else p = 0

decomposition γ1; δ1 is optimal

execute γ1
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Robustness

Why decomposition? Decision theory + concurrency

Trans recursively follows syntax tree
; does not know “what comes after”

Program decomposition
; full remaining program is always known
; can resolve nondeterminism with remainder in mind
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Robustness: Atomic Complex Actions

atomic(a; b) ‖ c 6; do([a, c, b], S0)

; do([a, b, c], S0)

; do([c, a, b], S0)
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Plan Recognition by Program Execution

Plan recognition. . .

I as satisfiability

I by iterative filtering of allConsistP lans

I by program execution
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Plan Recognition by Program Execution

Plan recognition. . .

I as satisfiability

I by iterative filtering of allConsistP lans

I by program execution

equivalent
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observe Actions

Poss(observe(τ, φ, τ ′), s) ≡ τ = τ ′ ∧ φ[s, τ ]

Execution of observe(τ, φ) means φ was observed at time τ

σ ‖

(observe(τ1, φ1); . . . ; observe(τn, φn))
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Online Heuristic

1. New observation (τ, φ) present:

δ′ = δ ‖ observe(τ, φ)

2. Enough observe actions buffered:

p′ = p · transPr(r , δ, s, δ′, s′)

3. Reiterate.

merge observation

resolves nondeterminism
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Approach Summary

Interpreter

Model

proc overtake(V,W )

behind(V,W )?;

leftLaneChange(V );

wait for behind(W,V );

rightLaneChange(V )

. . .

Observations

at time 0: pos(A) = (10,−2)
at time 1: pos(A) = (25,−2)
at time 2: pos(A) = (40, 0)

. . .

‖

Candidate programs of
the form

σ1 ‖ . . . ‖ σn
for n actors.

Observation Program θ

obs.(0, pos(A) = (10,−2)) ‖
obs.(1, pos(A) = (25,−2)) ‖
obs.(2, pos(A) = (40, 0)) ‖
. . .

Set of programs that
explain the observations.
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Approach Summary

σ1 ‖ . . . ‖ σn ‖ θ

Model

proc overtake(V,W )

behind(V,W )?;

leftLaneChange(V );

wait for behind(W,V );

rightLaneChange(V )

. . .

Observations

at time 0: pos(A) = (10,−2)
at time 1: pos(A) = (25,−2)
at time 2: pos(A) = (40, 0)

. . .

‖

Candidate programs of
the form

σ1 ‖ . . . ‖ σn
for n actors.

Observation Program θ

obs.(0, pos(A) = (10,−2)) ‖
obs.(1, pos(A) = (25,−2)) ‖
obs.(2, pos(A) = (40, 0)) ‖
. . .

Set of programs
with confidences
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Evaluation

I Prototype in ECLiPSe-CLP

I Sampling

I Linear constraint solver
for equations from waitFor, observe
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Demo

3

2

1

cautious aggressive

Video #1 Video #2
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Conclusion

Plan Recognition by Program Execution

Accomplishments

� Flexible timing

� Continuous change

� Multi-agent

� Robustness
Model simplifies world

Sensor noise

Features

I Keeps it simple

I Sensor noise

I Efficient
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Future Work

I Nonlinear constraints

I Extrapolate situation + remaining program
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Bibliography References Formulas

User Guarantees

The axiomizer must guarantee:

D |= Choice(β, α) ∧ (∃τ . τ ≥ start(s) ∧ Poss(α[s, τ ], s)) ⊃
prob0(β, α, s) > 0

D |= (∃α .Choice(β, α) ∧ ∃τ . τ ≥ start(s) ∧ Poss(α[s, τ ], s)) ⊃∑
{α |Choice(β,α)∧
∃τ . τ≥start(s)∧
Poss(α[s,τ ],s)}

prob0(β, α, s) = 1

D |= ∀β . ∃f . ∀α .Choice(β, α) ⊃ (∃i)f(i) = α

3 / 16



Bibliography References Formulas

Robustness: value

value(r , σ, S0) ≥ 31
3

S0, r = 31
3

do(a13, S0), r = 4

do([a13, a22], S0), r = 2p = 1
2

do([a13, a21], S0), r = 2p =
1
2

p = 1
3

do(a12, S0), r = 4

do([a12, a22], S0), r = 0p = 1
2

do([a12, a21], S0), r = 10p =
1
2

p = 1
3

do(a11, S0), r = 1

do([a11, a22], S0), r = 2p = 1
2

do([a11, a21], S0), r = 3p =
1
2

p =
1
3
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Bibliography References Formulas

Robustness: value

Best(r , σ, s) def
= ∀P .

(
∀s′, s′′ . P (s′) ∧ P (s′′) ⊃ s′ 6< s′′

)
⊃∑

{(p,s′) | ∃δ . transPr∗(r ,σ,s,δ,s′)=p∧
p>0∧P (s′)}

p · r (s′) ≤ r (s)

value(r , σ, s) def
=

∑
{(p,s′) | ∃δ . transPr∗(r ,σ,s,δ,s′)=p∧

p>0∧Best(r ,δ,s′)∧
¬∃s′′,δ . transPr∗(r ,σ,s,δ,s′′)>0∧
Best(r ,δ,s′′)∧ s′′<s′}

p · r (s′)
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Bibliography References Formulas

Robustness: Sum Axiomatization

∑
{~x |Φ[ ~X/~x]}

ν(~x)

sumν(Φ( ~X)) = v
def
= ∃f, g .

(∀~x)
(
Φ[ ~X/~x] ⊃ (∃i)~x = g(i)

)
∧

(∀i, j)
(
Φ[ ~X/g(i)] ∧ Φ[ ~X/g(j)] ∧ i 6= j ⊃ g(i) 6= g(j)

)
∧

f(0) = 0 ∧
(∀i)

(
(Φ[ ~X/g(i)] ⊃ f(i+ 1) = f(i) + ν(g(i))) ∧

(¬Φ[ ~X/g(i)] ⊃ f(i+ 1) = f(i))
)
∧

(∀i)
(
f(i) ≤ v ∧

(∀v′)(f(i) ≤ v′ ⊃ v ≤ v′)
)

6 / 16



Bibliography References Formulas

Robustness: Next

Next(Nil, γ, δ) ≡ False
Next(α, γ, δ) ≡ γ = α ∧ δ = Nil

Next(β, γ, δ) ≡ γ = β ∧ δ = Nil

Next(φ?, γ, δ) ≡ γ = φ? ∧ δ = Nil

Next(πv . σ, γ, δ) ≡ ∃x .Next(σvx, γ, δ)
Next(σ1 |σ2, γ, δ) ≡ Next(σ1, γ, δ) ∨Next(σ2, γ, δ)

Next(σ1;σ2, γ, δ) ≡ ∃σ′1 . Next(σ1, γ, σ
′
1) ∧ δ = σ′1;σ2 ∨

MaybeF inal(σ1) ∧Next(σ2, γ, δ)

Next(σ1 ‖ σ2, γ, δ) ≡ ∃σ′1 . Next(σ1, γ, σ
′
1) ∧ δ = σ′1 ‖ σ2 ∨

∃σ′2 . Next(σ2, γ, σ
′
2) ∧ δ = σ1 ‖ σ′2

Next(σ∗, γ, δ) ≡ ∃σ′ . Next(σ, γ, σ′) ∧ δ = σ′;σ∗
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Bibliography References Formulas

Robustness: MaybeF inal

MaybeF inal(Nil) ≡ True
MaybeF inal(α) ≡ False
MaybeF inal(β) ≡ False
MaybeF inal(φ?) ≡ False

MaybeF inal(πv . σ) ≡ ∃x .MaybeF inal(σvx)

MaybeF inal(σ1 |σ2) ≡MaybeF inal(σ1) ∨MaybeF inal(σ2)

MaybeF inal(σ1;σ2) ≡MaybeF inal(σ1) ∧MaybeF inal(σ2)

MaybeF inal(σ1 ‖ σ2) ≡MaybeF inal(σ1) ∧MaybeF inal(σ2)

MaybeF inal(σ∗) ≡ True
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Bibliography References Formulas

Robustness: transAtPr

transAtPr(r , α, δ, s, s′) = p ≡
if ∃1τ . τ ≥ start(s) ∧ Poss(α[s, τ ], s) ∧ s′ = do(α[s, τ ], s)

∧(
∀τ ′, s′′ . τ ′ ≥ start(s) ∧ Poss(α[s, τ ′], s) ∧ s′′ = do(α[s, τ ′], s) ⊃
value(r , δ, s′) ≥ value(r , δ, s′′)

)

then p = 1 else p = 0

transAtPr(r , β, δ, s, s′) = p ≡
if ∃α, p′ . Choice(β, α) ∧
transAtPr(r , α, δ, s, s′) · prob0(β, α, s) = p′ ∧ p′ > 0

then p = p′ else p = 0

transAtPr(r , φ?, δ, s, s′) = p ≡
if φ[s] ∧ s′ = s then p = 1 else p = 0.

rest program

choose r -maximizing τ

α outcome of β

prob. of outcome α
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Bibliography References Formulas

Robustness: transPr

transPr(r , σ, s, δ, s′) = p ≡
if ∃1γ1, δ1 . Next(σ, γ1, δ1) ∧(
∀γ2, δ2 . Next(σ, γ2, δ2) ⊃
value(r , (γ1; δ1), s) ≥ value(r , (γ2; δ2), s)

)
then

(
if δ = δ1 then p = transAtPr(r , γ1, δ1, s, s

′) else p = 0
)

else p = 0

decomposition γ1; δ1 is optimal

execute γ1
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Robustness: transPr and Trans

D ∪ C ∪ C′ |= (∃δ, s′)Trans(σ, s, δ, s′) ⊃
(∃δ, s′, p)(transPr(r , σ, s, δ, s′) = p ∧

(p > 0 ∨ r (s′) = 0))

D ∪ C ∪ C′ |= transPr(r , σ, s, δ, s′) > 0 ⊃ Trans(σ, s, δ, s′)

new semantics old semantics
different configurations

same configurations
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Robustness: transPr∗

transPr∗(r , σ, s, δ, s′) = p
def
=

if ∃p′ . ∀f .
(
∀r ′, σ1, s0 . f(r ′, σ1, s0, σ1, s0) = 1

)
∧(

∀r ′, σ1, δ1, δ2, s0, s1, s2, p1, p2 .

p1 > 0 ∧ f(r ′, σ1, s0, δ1, s1) = p1 ∧
p2 > 0 ∧ transPr(r ′, δ1, s1, δ2, s2) = p2 ⊃
f(r ′, σ1, s0, δ2, s2) = p1 · p2

)
⊃

f(r , σ, s, δ, s′) = p′

then p = p′ else p = 0
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Robustness: Final

Final(r , σ, s) ≡MaybeF inal(σ) ∧
value(r , Nil, s) ≥ value(r , σ, s)
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Robustness: doPr∗

doPr(r , σ, s, s′) = p
def
=

if ∃p′ . transPr∗(r , σ, s, s′) = p′ ∧ Final(r , σ, s′) ∧
(∀s′′)

(
s v s′′ ∧ s′′ < s′ ⊃ ¬Final(r , σ, s′′)

)
then p = p′ else p = 0
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Atomic Complex Actions: Semantics

Next(atomic(σ), γ, δ) ≡ γ = atomic(σ) ∧ δ = Nil.

Next′(σ, γ, δ)
def
= ∀P .

(
∀σ′, γ′, δ′ . Next(σ′, γ′, δ′) ⊃ P (σ′, γ′, δ′)

)
∧(

∀σ′, σ′′, γ′, γ′′, δ′, δ′′ .
P (σ′, γ′, δ′) ∧ γ′ = atomic(σ′′) ∧
Next(σ′′; δ′, γ′′, δ′′) ⊃
P (σ′, γ′′, δ′′)

)
⊃

P (σ, γ, δ) ∧ (∀σ′)γ 6= atomic(σ′)
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Atomic Complex Actions: Plan Recognition

Candidate program:

I Make db inconsistent at τ2 = 2

I Regain consistency at τ3 = 2

Observations:

I τ1 = 1: φ1 = “db cons.”

I τ2 = 2: φ2 = “db incons.”

I τ3 = 2: φ3 = “db cons.”

Is (τ2, φ2) observable? No!

Inconsistent situation has timespan zero
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Atomic Complex Actions: Plan Recognition

Candidate program:

I Make db inconsistent at τ2 = 2

I Regain consistency at τ3 = 2

Observations:

I τ1 = 1: φ1 = “db cons.”

I τ2 = 2: φ2 = “db incons.”

I τ3 = 2: φ3 = “db cons.”

Should observe(τ2, φ2) be executable? No! But it is!

σ ‖ ( . . . ;

atomic(observe(τ2, φ2);waitFor(now > τ2));

. . .)
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