
Situation Calculus-based
Online Plan Recognition in

Continuous Domains

Christoph Schwering

RWTH Aachen University

December 20, 2011

Introduction Semantics Plan Recognition by Program Execution Evaluation Discussion

Motivation

!
Car approaching

2 / 26

Introduction Semantics Plan Recognition by Program Execution Evaluation Discussion

Approach

Interpreter

Model

proc overtake(V,W)

behind(V,W)?;

leftLaneChange(V);

wait for behind(W,V);

rightLaneChange(V)

. . .

Observations

at time 0: pos(A) = (10,−2)
at time 1: pos(A) = (25,−2)
at time 2: pos(A) = (40, 0)

. . .

Set of programs that
explain the observations.

3 / 26

Introduction Semantics Plan Recognition by Program Execution Evaluation Discussion

Outline

Introduction
Related Work
Modeling

Semantics
Time and Continuous Change
Multiple Agents
Robustness

Plan Recognition by Program Execution
observe Actions
Online Heuristic

Evaluation

Discussion

4 / 26

Introduction Semantics Plan Recognition by Program Execution Evaluation Discussion

Related Work

Kautz and Allen [1986] Charniak and Goldman [1991] Goultiaeva and Lespérance [2006]

Plans consistent likely consistent

Tools circumscription Bayesian network situation calculus

Modeling first-order logic ConGolog

Focus abstraction abstraction, online

Observations primitive action occurrences

Bui et al. [2002] Geib and Goldman [2009] Ramirez and Geffner [2009]

likely likely consistent/likely

HMM HMM planner

hierarchical MDPs plan tree grammars STRIPS, goal library

abstraction, uncertainty abstraction, partial ordering –

primitive action occurrences

5 / 26

Introduction Semantics Plan Recognition by Program Execution Evaluation Discussion

Modeling

Y

X

1

2

3

I Global cartesian view

I Vehicle = rectangle

I Instantaneous actions setY aw, setV eloc

6 / 26

Introduction Semantics Plan Recognition by Program Execution Evaluation Discussion

Modeling

Y

X

1

2

3

I Global cartesian view

I Vehicle = rectangle

I Instantaneous actions setY aw, setV eloc

6 / 26

Introduction Semantics Plan Recognition by Program Execution Evaluation Discussion

Modeling

Y

X

1

2

3

I Global cartesian view

I Vehicle = rectangle

I Instantaneous actions setY aw, setV eloc

6 / 26

Introduction Semantics Plan Recognition by Program Execution Evaluation Discussion

Modeling

Y

X

1

2

3

I Global cartesian view

I Vehicle = rectangle

I Instantaneous actions setY aw, setV eloc

6 / 26

Introduction Semantics Plan Recognition by Program Execution Evaluation Discussion

Modeling

Y

X

1

2

3

I Global cartesian view

I Vehicle = rectangle

I Instantaneous actions setY aw, setV eloc

6 / 26

Introduction Semantics Plan Recognition by Program Execution Evaluation Discussion

Modeling

Y

X

1

2

3

I Global cartesian view

I Vehicle = rectangle

I Instantaneous actions setY aw, setV eloc

6 / 26

Introduction Semantics Plan Recognition by Program Execution Evaluation Discussion

Programs

proc leftLaneChange(V)

pick γ ∈ {4◦, 6◦, . . . , 12◦} do
setY aw(V, γ)

endpick;

onRightLane(V) ?;

% time passes indefinitely

setY aw(V, 0◦);

onLeftLane(V) ?

endproc

7 / 26

Introduction Semantics Plan Recognition by Program Execution Evaluation Discussion

Programs

proc leftLaneChange(V)

pick γ ∈ {4◦, 6◦, . . . , 12◦} do
setY aw(V, γ)

endpick;

onRightLane(V) ?;

% time passes indefinitely

setY aw(V, 0◦);

onLeftLane(V) ?

endproc

7 / 26

Introduction Semantics Plan Recognition by Program Execution Evaluation Discussion

Programs

proc leftLaneChange(V)

pick γ ∈ {4◦, 6◦, . . . , 12◦} do
setY aw(V, γ)

endpick;

onRightLane(V) ?;

% time passes indefinitely

setY aw(V, 0◦);

onLeftLane(V) ?

endproc

7 / 26

Introduction Semantics Plan Recognition by Program Execution Evaluation Discussion

Programs

proc leftLaneChange(V)

pick γ ∈ {4◦, 6◦, . . . , 12◦} do
setY aw(V, γ)

endpick;

onRightLane(V) ?;

% time passes indefinitely

setY aw(V, 0◦);

onLeftLane(V) ?

endproc

7 / 26

Introduction Semantics Plan Recognition by Program Execution Evaluation Discussion

Semantics

What is needed to make it work?

Golog Trans +

I Flexible timing

I Continuous change

I Multi-agent

I Robustness

8 / 26

Introduction Semantics Plan Recognition by Program Execution Evaluation Discussion

Time and Continuous Change

2

1

different points in time

9 / 26

Introduction Semantics Plan Recognition by Program Execution Evaluation Discussion

Time and Continuous Change

From temporal sequential Golog:

time(A(~x, τ)) = τ

start(do(a, s)) = time(a)

From cc-Golog:

φ[s, τ] evaluate φ in s at time τ

α[s, τ] append new time parameter

e.g. jump[s, τ] = jump(τ)

10 / 26

Introduction Semantics Plan Recognition by Program Execution Evaluation Discussion

Time and Continuous Change

Trans(α, s, δ, s′) ≡ δ = Nil ∧
∃τ . τ ≥ start(s) ∧
Poss(α[s, τ], s) ∧
s′ = do(α[s, τ], s)

primitive action

monotonicity

constrains τ further

advance to time τ

Poss(waitFor(φ, τ), s) ≡ φ[s, τ]

11 / 26

Introduction Semantics Plan Recognition by Program Execution Evaluation Discussion

Time and Continuous Change

Trans(α, s, δ, s′) ≡ δ = Nil ∧
∃τ . τ ≥ start(s) ∧
Poss(α[s, τ], s) ∧
s′ = do(α[s, τ], s)

primitive action monotonicity

constrains τ further

advance to time τ

Poss(waitFor(φ, τ), s) ≡ φ[s, τ]

11 / 26

Introduction Semantics Plan Recognition by Program Execution Evaluation Discussion

Time and Continuous Change

Trans(α, s, δ, s′) ≡ δ = Nil ∧
∃τ . τ ≥ start(s) ∧
Poss(α[s, τ], s) ∧
s′ = do(α[s, τ], s)

primitive action monotonicity

constrains τ further

advance to time τ

Poss(waitFor(φ, τ), s) ≡ φ[s, τ]

11 / 26

Introduction Semantics Plan Recognition by Program Execution Evaluation Discussion

Time and Continuous Change

Trans(α, s, δ, s′) ≡ δ = Nil ∧
∃τ . τ ≥ start(s) ∧
Poss(α[s, τ], s) ∧
s′ = do(α[s, τ], s)

primitive action monotonicity

constrains τ further

advance to time τ

Poss(waitFor(φ, τ), s) ≡ φ[s, τ]

11 / 26

Introduction Semantics Plan Recognition by Program Execution Evaluation Discussion

Time and Continuous Change

Trans(α, s, δ, s′) ≡ δ = Nil ∧
∃τ . τ ≥ start(s) ∧
Poss(α[s, τ], s) ∧
s′ = do(α[s, τ], s)

primitive action monotonicity

constrains τ further

advance to time τ

Poss(waitFor(φ, τ), s) ≡ φ[s, τ]

11 / 26

Introduction Semantics Plan Recognition by Program Execution Evaluation Discussion

Multiple Agents

Multi-agent: σ1 ‖ . . . ‖ σn explains observations?

actor 1 actor n

Concurrency as in ConGolog:

Trans(σ1 ‖ σ2, s, δ, s
′) ≡ ∃δ′ . T rans(σ1, s, δ

′, s′) ∧ δ = δ′ ‖ σ2 ∨
∃δ′ . T rans(σ2, s, δ

′, s′) ∧ δ = σ1 ‖ δ′

12 / 26

Introduction Semantics Plan Recognition by Program Execution Evaluation Discussion

Multiple Agents

Multi-agent: σ1 ‖ . . . ‖ σn explains observations?

actor 1 actor n

Concurrency as in ConGolog:

Trans(σ1 ‖ σ2, s, δ, s
′) ≡ ∃δ′ . T rans(σ1, s, δ

′, s′) ∧ δ = δ′ ‖ σ2 ∨
∃δ′ . T rans(σ2, s, δ

′, s′) ∧ δ = σ1 ‖ δ′

12 / 26

Introduction Semantics Plan Recognition by Program Execution Evaluation Discussion

Robustness

Observed trace

+ model trace +

weighted

lateral tolerance

s

13 / 26

Introduction Semantics Plan Recognition by Program Execution Evaluation Discussion

Robustness

Observed trace + model trace

+

weighted

lateral tolerance

s

Hypothesis: driving straight?

13 / 26

Introduction Semantics Plan Recognition by Program Execution Evaluation Discussion

Robustness

Observed trace + model trace +

weighted

lateral tolerance

s

Hypothesis: driving straight?

13 / 26

Introduction Semantics Plan Recognition by Program Execution Evaluation Discussion

Robustness

Observed trace + model trace +

weighted

lateral tolerances

Hypothesis: driving straight?

13 / 26

Introduction Semantics Plan Recognition by Program Execution Evaluation Discussion

Robustness

Observed trace + model trace + weighted lateral tolerances

Hypothesis: driving straight? Likely

13 / 26

Introduction Semantics Plan Recognition by Program Execution Evaluation Discussion

Robustness

Observed trace + model trace + weighted lateral tolerances

Hypothesis: driving straight? Less likely

13 / 26

Introduction Semantics Plan Recognition by Program Execution Evaluation Discussion

Robustness

Observed trace + model trace + weighted lateral tolerances

Hypothesis: driving straight? Unlikely

13 / 26

Introduction Semantics Plan Recognition by Program Execution Evaluation Discussion

Robustness

I Tolerances by stochastic actions
Choice(β, α) and prob0(β, α, s) 7→ [0, 1]

I Rate situation by reward

r (s) 7→ R

I Rate program by estimated reward

value(r , σ, s) 7→ R

I Nondeterminism → choose best alternative

:

1. Decompose σ into (γ; δ)
2. Find best (γ; δ) amongst all decompositions
3. Execute γ

user-supplied

atomic action

14 / 26

Introduction Semantics Plan Recognition by Program Execution Evaluation Discussion

Robustness

I Tolerances by stochastic actions
Choice(β, α) and prob0(β, α, s) 7→ [0, 1]

I Rate situation by reward

r (s) 7→ R

I Rate program by estimated reward

value(r , σ, s) 7→ R

I Nondeterminism → choose best alternative

:

1. Decompose σ into (γ; δ)
2. Find best (γ; δ) amongst all decompositions
3. Execute γ

user-supplied

atomic action

14 / 26

Introduction Semantics Plan Recognition by Program Execution Evaluation Discussion

Robustness

I Tolerances by stochastic actions
Choice(β, α) and prob0(β, α, s) 7→ [0, 1]

I Rate situation by reward

r (s) 7→ R

I Rate program by estimated reward

value(r , σ, s) 7→ R

I Nondeterminism → choose best alternative

:

1. Decompose σ into (γ; δ)
2. Find best (γ; δ) amongst all decompositions
3. Execute γ

user-supplied

atomic action

14 / 26

Introduction Semantics Plan Recognition by Program Execution Evaluation Discussion

Robustness

I Tolerances by stochastic actions
Choice(β, α) and prob0(β, α, s) 7→ [0, 1]

I Rate situation by reward

r (s) 7→ R

I Rate program by estimated reward

value(r , σ, s) 7→ R

I Nondeterminism → choose best alternative:

1. Decompose σ into (γ; δ)
2. Find best (γ; δ) amongst all decompositions
3. Execute γ

user-supplied

atomic action

14 / 26

Introduction Semantics Plan Recognition by Program Execution Evaluation Discussion

Robustness

I Tolerances by stochastic actions
Choice(β, α) and prob0(β, α, s) 7→ [0, 1]

I Rate situation by reward

r (s) 7→ R

I Rate program by estimated reward

value(r , σ, s) 7→ R

I Nondeterminism → choose best alternative:

1. Decompose σ into (γ; δ)
2. Find best (γ; δ) amongst all decompositions
3. Execute γ

user-supplied

atomic action

14 / 26

Introduction Semantics Plan Recognition by Program Execution Evaluation Discussion

Robustness: Decomposition

Next(σ, γ, δ)

input
next atomic

remainder

Like Trans without execution, e.g.:

Next(α, γ, δ) ≡ γ = α ∧ δ = Nil

Next(σ1 |σ2, γ, δ) ≡ Next(σ1, γ, δ) ∨Next(σ2, γ, δ)

15 / 26

Introduction Semantics Plan Recognition by Program Execution Evaluation Discussion

Robustness: Decomposition

Next(σ, γ, δ)

input
next atomic

remainder

Like Trans without execution, e.g.:

Next(α, γ, δ) ≡ γ = α ∧ δ = Nil

Next(σ1 |σ2, γ, δ) ≡ Next(σ1, γ, δ) ∨Next(σ2, γ, δ)

15 / 26

Introduction Semantics Plan Recognition by Program Execution Evaluation Discussion

Robustness: Transition

transPr(r , σ, s, δ, s′) = p ≡
if ∃1γ1, δ1 . Next(σ, γ1, δ1) ∧(
∀γ2, δ2 . Next(σ, γ2, δ2) ⊃
value(r , (γ1; δ1), s) ≥ value(r , (γ2; δ2), s)

)
then

(
if δ = δ1 then p = transAtPr(r , γ1, δ1, s, s

′) else p = 0
)

else p = 0

decomposition γ1; δ1 is optimal

execute γ1

16 / 26

Introduction Semantics Plan Recognition by Program Execution Evaluation Discussion

Robustness

Why decomposition? Decision theory + concurrency

Trans recursively follows syntax tree
; does not know “what comes after”

Program decomposition
; full remaining program is always known
; can resolve nondeterminism with remainder in mind

17 / 26

Introduction Semantics Plan Recognition by Program Execution Evaluation Discussion

Robustness

Why decomposition? Decision theory + concurrency

Trans recursively follows syntax tree
; does not know “what comes after”

Program decomposition
; full remaining program is always known
; can resolve nondeterminism with remainder in mind

17 / 26

Introduction Semantics Plan Recognition by Program Execution Evaluation Discussion

Robustness: Atomic Complex Actions

atomic(a; b) ‖ c 6; do([a, c, b], S0)

; do([a, b, c], S0)

; do([c, a, b], S0)

18 / 26

Introduction Semantics Plan Recognition by Program Execution Evaluation Discussion

Plan Recognition by Program Execution

Plan recognition. . .

I as satisfiability

I by iterative filtering of allConsistP lans

I by program execution

19 / 26

Introduction Semantics Plan Recognition by Program Execution Evaluation Discussion

Plan Recognition by Program Execution

Plan recognition. . .

I as satisfiability

I by iterative filtering of allConsistP lans

I by program execution

equivalent

19 / 26

Introduction Semantics Plan Recognition by Program Execution Evaluation Discussion

observe Actions

Poss(observe(τ, φ, τ ′), s) ≡ τ = τ ′ ∧ φ[s, τ]

Execution of observe(τ, φ) means φ was observed at time τ

σ ‖

(observe(τ1, φ1); . . . ; observe(τn, φn))

20 / 26

Introduction Semantics Plan Recognition by Program Execution Evaluation Discussion

observe Actions

Poss(observe(τ, φ, τ ′), s) ≡ τ = τ ′ ∧ φ[s, τ]

Execution of observe(τ, φ) means φ was observed at time τ

σ ‖

(observe(τ1, φ1); . . . ; observe(τn, φn))

20 / 26

Introduction Semantics Plan Recognition by Program Execution Evaluation Discussion

observe Actions

Poss(observe(τ, φ, τ ′), s) ≡ τ = τ ′ ∧ φ[s, τ]

Execution of observe(τ, φ) means φ was observed at time τ

σ

‖

(observe(τ1, φ1); . . . ; observe(τn, φn))

20 / 26

Introduction Semantics Plan Recognition by Program Execution Evaluation Discussion

observe Actions

Poss(observe(τ, φ, τ ′), s) ≡ τ = τ ′ ∧ φ[s, τ]

Execution of observe(τ, φ) means φ was observed at time τ

σ ‖ (observe(τ1, φ1); . . . ; observe(τn, φn))

20 / 26

Introduction Semantics Plan Recognition by Program Execution Evaluation Discussion

Online Heuristic

1. New observation (τ, φ) present:

δ′ = δ ‖ observe(τ, φ)

2. Enough observe actions buffered:

p′ = p · transPr(r , δ, s, δ′, s′)

3. Reiterate.

merge observation

resolves nondeterminism

21 / 26

Introduction Semantics Plan Recognition by Program Execution Evaluation Discussion

Online Heuristic

1. New observation (τ, φ) present:

δ′ = δ ‖ observe(τ, φ)

2. Enough observe actions buffered:

p′ = p · transPr(r , δ, s, δ′, s′)

3. Reiterate.

merge observation

resolves nondeterminism

21 / 26

Introduction Semantics Plan Recognition by Program Execution Evaluation Discussion

Online Heuristic

1. New observation (τ, φ) present:

δ′ = δ ‖ observe(τ, φ)

2. Enough observe actions buffered:

p′ = p · transPr(r , δ, s, δ′, s′)

3. Reiterate.

merge observation

resolves nondeterminism

21 / 26

Introduction Semantics Plan Recognition by Program Execution Evaluation Discussion

Approach Summary

Interpreter

Model

proc overtake(V,W)

behind(V,W)?;

leftLaneChange(V);

wait for behind(W,V);

rightLaneChange(V)

. . .

Observations

at time 0: pos(A) = (10,−2)
at time 1: pos(A) = (25,−2)
at time 2: pos(A) = (40, 0)

. . .

‖

Candidate programs of
the form

σ1 ‖ . . . ‖ σn
for n actors.

Observation Program θ

obs.(0, pos(A) = (10,−2)) ‖
obs.(1, pos(A) = (25,−2)) ‖
obs.(2, pos(A) = (40, 0)) ‖
. . .

Set of programs that
explain the observations.

22 / 26

Introduction Semantics Plan Recognition by Program Execution Evaluation Discussion

Approach Summary

Interpreter

Model

proc overtake(V,W)

behind(V,W)?;

leftLaneChange(V);

wait for behind(W,V);

rightLaneChange(V)

. . .

Observations

at time 0: pos(A) = (10,−2)
at time 1: pos(A) = (25,−2)
at time 2: pos(A) = (40, 0)

. . .

‖

Candidate programs of
the form

σ1 ‖ . . . ‖ σn
for n actors.

Observation Program θ

obs.(0, pos(A) = (10,−2)) ‖
obs.(1, pos(A) = (25,−2)) ‖
obs.(2, pos(A) = (40, 0)) ‖
. . .

Set of programs that
explain the observations.

22 / 26

Introduction Semantics Plan Recognition by Program Execution Evaluation Discussion

Approach Summary

σ1 ‖ . . . ‖ σn ‖ θ

Model

proc overtake(V,W)

behind(V,W)?;

leftLaneChange(V);

wait for behind(W,V);

rightLaneChange(V)

. . .

Observations

at time 0: pos(A) = (10,−2)
at time 1: pos(A) = (25,−2)
at time 2: pos(A) = (40, 0)

. . .

‖

Candidate programs of
the form

σ1 ‖ . . . ‖ σn
for n actors.

Observation Program θ

obs.(0, pos(A) = (10,−2)) ‖
obs.(1, pos(A) = (25,−2)) ‖
obs.(2, pos(A) = (40, 0)) ‖
. . .

Set of programs
with confidences

22 / 26

Introduction Semantics Plan Recognition by Program Execution Evaluation Discussion

Evaluation

I Prototype in ECLiPSe-CLP

I Sampling

I Linear constraint solver
for equations from waitFor, observe

23 / 26

Introduction Semantics Plan Recognition by Program Execution Evaluation Discussion

Demo

3

2

1

cautious aggressive

Video #1 Video #2

24 / 26

./p1.sh
./p2.sh

Introduction Semantics Plan Recognition by Program Execution Evaluation Discussion

Conclusion

Plan Recognition by Program Execution

Accomplishments

� Flexible timing

� Continuous change

� Multi-agent

� Robustness
Model simplifies world

Sensor noise

Features

I Keeps it simple

I Sensor noise

I Efficient

25 / 26

Introduction Semantics Plan Recognition by Program Execution Evaluation Discussion

Conclusion

Plan Recognition by Program Execution

Accomplishments

� Flexible timing

� Continuous change

� Multi-agent

� Robustness
Model simplifies world

Sensor noise

Features

I Keeps it simple

I Sensor noise

I Efficient

25 / 26

Introduction Semantics Plan Recognition by Program Execution Evaluation Discussion

Future Work

I Nonlinear constraints

I Extrapolate situation + remaining program

26 / 26

Appendix

Bibliography References Formulas

Bibliography

Hung H. Bui, Svetha Venkatesh, and Geoff West. Policy recognition in the
abstract hidden markov model. Journal of Artificial Intelligence Research,
17:2002, 2002.

Eugene Charniak and Robert Goldman. A probabilistic model of plan
recognition. In Proceedings of the ninth National conference on Artificial
Intelligence, volume 1 of AAAI’91, pages 160–165. AAAI Press, 1991.

Christopher Geib and Robert Goldman. A probabilistic plan recognition
algorithm based on plan tree grammars. Artificial Intelligence, 173:
1101–1132, 2009.

Alexandra Goultiaeva and Yves Lespérance. Incremental plan recognition in an
agent programming framework. In Cognitive Robotics Workshop, pages
83–90, 2006.

Henry A. Kautz and James F. Allen. Generalized plan recognition. In
Proceedings of the Fifth National Conference on Artificial Intelligence, pages
32–37, 1986.

Miquel Ramirez and Hector Geffner. Plan recognition as planning. In
Proceedings of the Twenty-First International Joint Conference on Artificial
Intelligence, 2009.

2 / 16

Bibliography References Formulas

User Guarantees

The axiomizer must guarantee:

D |= Choice(β, α) ∧ (∃τ . τ ≥ start(s) ∧ Poss(α[s, τ], s)) ⊃
prob0(β, α, s) > 0

D |= (∃α .Choice(β, α) ∧ ∃τ . τ ≥ start(s) ∧ Poss(α[s, τ], s)) ⊃∑
{α |Choice(β,α)∧
∃τ . τ≥start(s)∧
Poss(α[s,τ],s)}

prob0(β, α, s) = 1

D |= ∀β . ∃f . ∀α .Choice(β, α) ⊃ (∃i)f(i) = α

3 / 16

Bibliography References Formulas

Robustness: value

value(r , σ, S0) ≥ 31
3

S0, r = 31
3

do(a13, S0), r = 4

do([a13, a22], S0), r = 2p = 1
2

do([a13, a21], S0), r = 2p =
1
2

p = 1
3

do(a12, S0), r = 4

do([a12, a22], S0), r = 0p = 1
2

do([a12, a21], S0), r = 10p =
1
2

p = 1
3

do(a11, S0), r = 1

do([a11, a22], S0), r = 2p = 1
2

do([a11, a21], S0), r = 3p =
1
2

p =
1
3

4 / 16

Bibliography References Formulas

Robustness: value

value(r , σ, S0) ≥ 3

S0, r = 31
3

do(a13, S0), r = 4

do([a13, a22], S0), r = 2p = 1
2

do([a13, a21], S0), r = 2p =
1
2

p = 1
3

do(a12, S0), r = 4

do([a12, a22], S0), r = 0p = 1
2

do([a12, a21], S0), r = 10p =
1
2

p = 1
3

do(a11, S0), r = 1

do([a11, a22], S0), r = 2p = 1
2

do([a11, a21], S0), r = 3p =
1
2

p =
1
3

4 / 16

Bibliography References Formulas

Robustness: value

value(r , σ, S0) ≥ 31
6

S0, r = 31
3

do(a13, S0), r = 4

do([a13, a22], S0), r = 2p = 1
2

do([a13, a21], S0), r = 2p =
1
2

p = 1
3

do(a12, S0), r = 4

do([a12, a22], S0), r = 0p = 1
2

do([a12, a21], S0), r = 10p =
1
2

p = 1
3

do(a11, S0), r = 1

do([a11, a22], S0), r = 2p = 1
2

do([a11, a21], S0), r = 3p =
1
2

p =
1
3

4 / 16

Bibliography References Formulas

Robustness: value

value(r , σ, S0) = 35
6

S0, r = 31
3

do(a13, S0), r = 4

do([a13, a22], S0), r = 2p = 1
2

do([a13, a21], S0), r = 2p =
1
2

p = 1
3

do(a12, S0), r = 4

do([a12, a22], S0), r = 0p = 1
2

do([a12, a21], S0), r = 10p =
1
2

p = 1
3

do(a11, S0), r = 1

do([a11, a22], S0), r = 2p = 1
2

do([a11, a21], S0), r = 3p =
1
2

p =
1
3

4 / 16

Bibliography References Formulas

Robustness: value

Best(r , σ, s) def
= ∀P .

(
∀s′, s′′ . P (s′) ∧ P (s′′) ⊃ s′ 6< s′′

)
⊃∑

{(p,s′) | ∃δ . transPr∗(r ,σ,s,δ,s′)=p∧
p>0∧P (s′)}

p · r (s′) ≤ r (s)

value(r , σ, s) def
=

∑
{(p,s′) | ∃δ . transPr∗(r ,σ,s,δ,s′)=p∧

p>0∧Best(r ,δ,s′)∧
¬∃s′′,δ . transPr∗(r ,σ,s,δ,s′′)>0∧
Best(r ,δ,s′′)∧ s′′<s′}

p · r (s′)

5 / 16

Bibliography References Formulas

Robustness: Sum Axiomatization

∑
{~x |Φ[~X/~x]}

ν(~x)

sumν(Φ(~X)) = v
def
= ∃f, g .

(∀~x)
(
Φ[~X/~x] ⊃ (∃i)~x = g(i)

)
∧

(∀i, j)
(
Φ[~X/g(i)] ∧ Φ[~X/g(j)] ∧ i 6= j ⊃ g(i) 6= g(j)

)
∧

f(0) = 0 ∧
(∀i)

(
(Φ[~X/g(i)] ⊃ f(i+ 1) = f(i) + ν(g(i))) ∧

(¬Φ[~X/g(i)] ⊃ f(i+ 1) = f(i))
)
∧

(∀i)
(
f(i) ≤ v ∧

(∀v′)(f(i) ≤ v′ ⊃ v ≤ v′)
)

6 / 16

Bibliography References Formulas

Robustness: Next

Next(Nil, γ, δ) ≡ False
Next(α, γ, δ) ≡ γ = α ∧ δ = Nil

Next(β, γ, δ) ≡ γ = β ∧ δ = Nil

Next(φ?, γ, δ) ≡ γ = φ? ∧ δ = Nil

Next(πv . σ, γ, δ) ≡ ∃x .Next(σvx, γ, δ)
Next(σ1 |σ2, γ, δ) ≡ Next(σ1, γ, δ) ∨Next(σ2, γ, δ)

Next(σ1;σ2, γ, δ) ≡ ∃σ′1 . Next(σ1, γ, σ
′
1) ∧ δ = σ′1;σ2 ∨

MaybeF inal(σ1) ∧Next(σ2, γ, δ)

Next(σ1 ‖ σ2, γ, δ) ≡ ∃σ′1 . Next(σ1, γ, σ
′
1) ∧ δ = σ′1 ‖ σ2 ∨

∃σ′2 . Next(σ2, γ, σ
′
2) ∧ δ = σ1 ‖ σ′2

Next(σ∗, γ, δ) ≡ ∃σ′ . Next(σ, γ, σ′) ∧ δ = σ′;σ∗

7 / 16

Bibliography References Formulas

Robustness: MaybeF inal

MaybeF inal(Nil) ≡ True
MaybeF inal(α) ≡ False
MaybeF inal(β) ≡ False
MaybeF inal(φ?) ≡ False

MaybeF inal(πv . σ) ≡ ∃x .MaybeF inal(σvx)

MaybeF inal(σ1 |σ2) ≡MaybeF inal(σ1) ∨MaybeF inal(σ2)

MaybeF inal(σ1;σ2) ≡MaybeF inal(σ1) ∧MaybeF inal(σ2)

MaybeF inal(σ1 ‖ σ2) ≡MaybeF inal(σ1) ∧MaybeF inal(σ2)

MaybeF inal(σ∗) ≡ True

8 / 16

Bibliography References Formulas

Robustness: transAtPr

transAtPr(r , α, δ, s, s′) = p ≡
if ∃1τ . τ ≥ start(s) ∧ Poss(α[s, τ], s) ∧ s′ = do(α[s, τ], s)

∧(
∀τ ′, s′′ . τ ′ ≥ start(s) ∧ Poss(α[s, τ ′], s) ∧ s′′ = do(α[s, τ ′], s) ⊃
value(r , δ, s′) ≥ value(r , δ, s′′)

)

then p = 1 else p = 0

transAtPr(r , β, δ, s, s′) = p ≡
if ∃α, p′ . Choice(β, α) ∧
transAtPr(r , α, δ, s, s′) · prob0(β, α, s) = p′ ∧ p′ > 0

then p = p′ else p = 0

transAtPr(r , φ?, δ, s, s′) = p ≡
if φ[s] ∧ s′ = s then p = 1 else p = 0.

rest program

choose r -maximizing τ

α outcome of β

prob. of outcome α

9 / 16

Bibliography References Formulas

Robustness: transAtPr

transAtPr(r , α, δ, s, s′) = p ≡
if ∃1τ . τ ≥ start(s) ∧ Poss(α[s, τ], s) ∧ s′ = do(α[s, τ], s) ∧(
∀τ ′, s′′ . τ ′ ≥ start(s) ∧ Poss(α[s, τ ′], s) ∧ s′′ = do(α[s, τ ′], s) ⊃
value(r , δ, s′) ≥ value(r , δ, s′′)

)
then p = 1 else p = 0

transAtPr(r , β, δ, s, s′) = p ≡
if ∃α, p′ . Choice(β, α) ∧
transAtPr(r , α, δ, s, s′) · prob0(β, α, s) = p′ ∧ p′ > 0

then p = p′ else p = 0

transAtPr(r , φ?, δ, s, s′) = p ≡
if φ[s] ∧ s′ = s then p = 1 else p = 0.

rest program

choose r -maximizing τ

α outcome of β

prob. of outcome α

9 / 16

Bibliography References Formulas

Robustness: transAtPr

transAtPr(r , α, δ, s, s′) = p ≡
if ∃1τ . τ ≥ start(s) ∧ Poss(α[s, τ], s) ∧ s′ = do(α[s, τ], s) ∧(
∀τ ′, s′′ . τ ′ ≥ start(s) ∧ Poss(α[s, τ ′], s) ∧ s′′ = do(α[s, τ ′], s) ⊃
value(r , δ, s′) ≥ value(r , δ, s′′)

)
then p = 1 else p = 0

transAtPr(r , β, δ, s, s′) = p ≡
if ∃α, p′ . Choice(β, α) ∧
transAtPr(r , α, δ, s, s′) · prob0(β, α, s) = p′ ∧ p′ > 0

then p = p′ else p = 0

transAtPr(r , φ?, δ, s, s′) = p ≡
if φ[s] ∧ s′ = s then p = 1 else p = 0.

rest program

choose r -maximizing τ

α outcome of β

prob. of outcome α

9 / 16

Bibliography References Formulas

Robustness: transAtPr

transAtPr(r , α, δ, s, s′) = p ≡
if ∃1τ . τ ≥ start(s) ∧ Poss(α[s, τ], s) ∧ s′ = do(α[s, τ], s) ∧(
∀τ ′, s′′ . τ ′ ≥ start(s) ∧ Poss(α[s, τ ′], s) ∧ s′′ = do(α[s, τ ′], s) ⊃
value(r , δ, s′) ≥ value(r , δ, s′′)

)
then p = 1 else p = 0

transAtPr(r , β, δ, s, s′) = p ≡
if ∃α, p′ . Choice(β, α) ∧
transAtPr(r , α, δ, s, s′) · prob0(β, α, s) = p′ ∧ p′ > 0

then p = p′ else p = 0

transAtPr(r , φ?, δ, s, s′) = p ≡
if φ[s] ∧ s′ = s then p = 1 else p = 0.

rest program

choose r -maximizing τ

α outcome of β

prob. of outcome α

9 / 16

Bibliography References Formulas

Robustness: transPr

transPr(r , σ, s, δ, s′) = p ≡
if ∃1γ1, δ1 . Next(σ, γ1, δ1) ∧(
∀γ2, δ2 . Next(σ, γ2, δ2) ⊃
value(r , (γ1; δ1), s) ≥ value(r , (γ2; δ2), s)

)
then

(
if δ = δ1 then p = transAtPr(r , γ1, δ1, s, s

′) else p = 0
)

else p = 0

decomposition γ1; δ1 is optimal

execute γ1

10 / 16

Bibliography References Formulas

Robustness: transPr and Trans

D ∪ C ∪ C′ |= (∃δ, s′)Trans(σ, s, δ, s′) ⊃
(∃δ, s′, p)(transPr(r , σ, s, δ, s′) = p ∧

(p > 0 ∨ r (s′) = 0))

D ∪ C ∪ C′ |= transPr(r , σ, s, δ, s′) > 0 ⊃ Trans(σ, s, δ, s′)

new semantics old semantics
different configurations

same configurations

11 / 16

Bibliography References Formulas

Robustness: transPr∗

transPr∗(r , σ, s, δ, s′) = p
def
=

if ∃p′ . ∀f .
(
∀r ′, σ1, s0 . f(r ′, σ1, s0, σ1, s0) = 1

)
∧(

∀r ′, σ1, δ1, δ2, s0, s1, s2, p1, p2 .

p1 > 0 ∧ f(r ′, σ1, s0, δ1, s1) = p1 ∧
p2 > 0 ∧ transPr(r ′, δ1, s1, δ2, s2) = p2 ⊃
f(r ′, σ1, s0, δ2, s2) = p1 · p2

)
⊃

f(r , σ, s, δ, s′) = p′

then p = p′ else p = 0

12 / 16

Bibliography References Formulas

Robustness: Final

Final(r , σ, s) ≡MaybeF inal(σ) ∧
value(r , Nil, s) ≥ value(r , σ, s)

13 / 16

Bibliography References Formulas

Robustness: doPr∗

doPr(r , σ, s, s′) = p
def
=

if ∃p′ . transPr∗(r , σ, s, s′) = p′ ∧ Final(r , σ, s′) ∧
(∀s′′)

(
s v s′′ ∧ s′′ < s′ ⊃ ¬Final(r , σ, s′′)

)
then p = p′ else p = 0

14 / 16

Bibliography References Formulas

Atomic Complex Actions: Semantics

Next(atomic(σ), γ, δ) ≡ γ = atomic(σ) ∧ δ = Nil.

Next′(σ, γ, δ)
def
= ∀P .

(
∀σ′, γ′, δ′ . Next(σ′, γ′, δ′) ⊃ P (σ′, γ′, δ′)

)
∧(

∀σ′, σ′′, γ′, γ′′, δ′, δ′′ .
P (σ′, γ′, δ′) ∧ γ′ = atomic(σ′′) ∧
Next(σ′′; δ′, γ′′, δ′′) ⊃
P (σ′, γ′′, δ′′)

)
⊃

P (σ, γ, δ) ∧ (∀σ′)γ 6= atomic(σ′)

15 / 16

Bibliography References Formulas

Atomic Complex Actions: Plan Recognition

Candidate program:

I Make db inconsistent at τ2 = 2

I Regain consistency at τ3 = 2

Observations:

I τ1 = 1: φ1 = “db cons.”

I τ2 = 2: φ2 = “db incons.”

I τ3 = 2: φ3 = “db cons.”

Is (τ2, φ2) observable? No!

Inconsistent situation has timespan zero

16 / 16

Bibliography References Formulas

Atomic Complex Actions: Plan Recognition

Candidate program:

I Make db inconsistent at τ2 = 2

I Regain consistency at τ3 = 2

Observations:

I τ1 = 1: φ1 = “db cons.”

I τ2 = 2: φ2 = “db incons.”

I τ3 = 2: φ3 = “db cons.”

Should observe(τ2, φ2) be executable? No! But it is!

σ ‖ (. . . ;

atomic(observe(τ2, φ2);waitFor(now > τ2));

. . .)

16 / 16

	Introduction
	Semantics
	Plan Recognition by Program Execution
	Evaluation
	Discussion
	Formulas

