
Reasoning in the Situation Calculus with Limited Belief

Christoph Schwering
School of Computer Science and Engineering

The University of New South Wales
Sydney NSW 2052, Australia

c.schwering@unsw.edu.au

Abstract

First-order action formalisms like the situation cal-
culus are powerful tools for modelling dynamic envi-
ronments, but they are also notorious for having little
practical relevance due to their computational com-
plexity. This paper aims to develop an expressive yet
practically useful situation calculus variant. To this
end, we amalgamate the situation calculus with a
first-order logic of limited belief which controls the
complexity of reasoning by stratifying beliefs into
levels. We show that reasoning in this formalism
is decidable, prove soundness with respect to the
original epistemic situation calculus, and introduce
an implementation of the reasoning system.

1 Introduction
Since the early days of the field of Artificial Intelligence, rea-
soning about knowledge in the presence of actions and change
has been regarded as a crucial component of autonomous
machines [McCarthy, 1959]. Knowledge Representation re-
search has produced a number of logical formalisms to ad-
dress this need, like the situation calculus [McCarthy, 1963;
Reiter, 2001], the event calculus [Kowalski and Sergot, 1989],
the fluent calculus [Thielscher, 1998], or the propositional A
language [Gelfond and Lifschitz, 1993]. Numerous additional
concepts have been integrated into these frameworks, such as
knowledge and belief and introspection, sensing, belief revi-
sion, multiple agents, uncertainty, and time and concurrency,
to name but a few.

However, the practical impact of these logical action for-
malisms has been very limited; in fact, they are notorious
for being computationally way too expensive for practical ap-
plications, which is why the Planning community resorts to
different languages [McDermott et al., 1998]. Nevertheless
the need for reasoning in highly expressive action languages
is real and still unmet in domains such as cognitive robotics
[Levesque and Reiter, 1998; Levesque and Lakemeyer, 2008].

This paper aims to unify the expressivity of an action for-
malism with better computational properties. We devise a
variant of the epistemic situation calculus [Lakemeyer and Le-
vesque, 2011] and give it a semantics based on limited belief
[Lakemeyer and Levesque, 2014; Schwering, 2017].

The situation calculus is a language for reasoning about
actions and change. The typical reasoning task we face in
the situation calculus is the projection problem: given a de-
scription of the initial state, a goal formula, and a sequence
of actions, we want to know whether the goal formula is true
after the sequence of actions. The projection problem is cast
as a question of logical entailment, and the situation calculus
being a first-order language, this is undecidable in general.

One way to avoid undecidability in first-order logic is
through limited belief. Unlike prefix-vocabulary classes
[Börger et al., 1997] and description logics [Baader, 2003],
logics of limited belief restrict the semantics instead of the
syntax of the language. More precisely, belief is stratified into
levels which become more and more complete but also more
difficult to compute.

This paper is not the first attempt to marry the situation
calculus to limited belief. An earlier approach by Claßen and
Lakemeyer [2009] builds on a variant of limited belief [Liu
et al., 2004] that has been surpassed both in expressivity and
theoretical properties by more recent developments. Also, this
approach does not give semantics to actions in the logic, and
the concept of sensing is not present at all. A second approach
is due to Lakemeyer and Levesque [2014]. Here actions are
built into the logic and sensing is accounted for, but lacking
function symbols, the language only supports unparameterised
actions. By contrast, our approach in the present paper goes
beyond that using a definition of action functions which is ex-
pressive enough to allow for parameters, but restrictive enough
to maintain the decidability of limited belief. Finally, an issue
that concerns both of the earlier approaches is that their con-
tributions remain at the theoretical level, whereas this paper
aims to go further by introducing an implementation of the
limited epistemic situation calculus.

The rest of the paper is structured as follows. The next
section introduces a variant of the epistemic situation calculus.
This fully fledged first-order epistemic logic will serve as a
role model for the later development of a limited counterpart.
Section 2 also introduces basic action theories and regression,
the standard approach to projection in the situation calculus.
Then Section 3 proceeds to develop an alternative, limited
semantics of the language from Section 2, gives soundness
and decidability results, and introduces an implementation of a
reasoning system for the logic. Then we conclude and discuss
future work.

2 The Epistemic Situation Calculus
The situation calculus is a framework for reasoning about
knowledge in the presence of actions. The key idea is that the
state of the world is determined by the sequence of actions
that have been executed since the initial state. Such a sequence
of actions is called situation, and the value of functions and
predicates may vary from situation to situation.

In this paper we build on the modal variant of the situation
calculus due to Lakemeyer and Levesque [2011]. Compared
to the axiomatic approach [Reiter, 2001; Scherl and Levesque,
2003] this logic exhibits often much simpler proofs, especially
when it comes to epistemic reasoning.

This section introduces the syntax and semantics of Lake-
meyer and Levesque’s epistemic situation calculus, the concept
of basic action theories, and regression as a means to solve the
projection problem. The presentation largely follows [Lake-
meyer and Levesque, 2011]. A notable difference however lies
in the definition of terms in our language, which shall become
essential when we develop an alternative, limited semantics of
this language in Section 3.

2.1 The Language
The language is a first-order logic with functions, equality, and
modal operators for knowledge and actions.

The terms of the language come in two disjoint sorts, action
and object. Both sorts have an infinite supply of variables and
function symbols of every arity; the object sort additionally
comes with infinitely many standard names.
• An action term is a variable or an expression A(t1, . . . , tj),

where A is a j-ary function symbol and every ti is an object
variable or standard name.

• An object term is a variable, a standard name, or an expres-
sion f(t1, . . . , tj), where f is a j-ary function and every ti
is an object variable or standard name or an action term.

As usual, a term is ground when it contains no variable.
The purpose of standard names is to uniquely designate

different individuals. In other words, standard names satisfy
the unique-names assumption and an infinitary domain closure.
The object standard names come as special symbols that are
distinct from the normal function symbols. The action sort
does feature such special symbols. Instead, we define every
ground action term to be an action standard name.

Notice that the above definition of action and object terms
imposes restrictions on the possible nesting of terms. In partic-
ular, an object function cannot occur nested in another action
or object function, and an action function cannot occur nested
in another action function.

For example, we use an object standard name Sally to rep-
resent one specific person. When it is unclear who Sally’s
father is, this individual can be referred by an object term
fatherOf(Sally), which is then subject to interpretation; for in-
stance, fatherOf(Sally) might be Frank or Fred. When Mia
gives birth to her daughter Sally, this event can be mod-
elled with an action term birth(Mia,Sally). Another action
could test the paternity for Fred of Sally, represented by
test(Fred,Sally). Mia, Sally, and Fred being standard names,
they refer to distinct individuals, and so do the action standard
names birth(Mia,Sally) and test(Fred,Sally).

To model that an action like the paternity test may produce
new knowledge, the epistemic situation calculus employs a dis-
tinguished function sf(n), whose value indicates the sensing
result of action n.

The set of formulas is the least set that contains all expres-
sions t1 = t2, ¬α, (α ∨ β), ∃xα, [t]α, �α, Kφ, Oφ, where
t1 is an arbitrary term, t2 is a term that mentions no object
function, α and β are arbitrary formulas, x is a variable, t is
an action term, and φ is a formula that mentions neither K
nor O. A sentence is a formula without free variables, and αx

t
denotes the result of substituting t for all free occurrences of
the variable x in α.

[t]α and �α are the action operators and mean that “α is
true after executing action t” and “α is true now and in every
future situation,” respectively. Kφ and Oφ are the knowledge
operators; they are read as “φ is known” and “φ is all that is
known,” respectively. The latter operator is also known as only-
knowing operator [Levesque, 1984]. It is particularly useful
to capture the idea of a knowledge base, which typically is
assumed to exhaustively describe what the agent knows.

We use the usual abbreviations 6=, ∧, ∀, ⊃, ≡. Sometimes
we allow ourselves to omit brackets when the operator prece-
dence is clear from context.

As an example of the language’s expressivity consider
the formula [birth(Mia,Sally)]K∀x(spouseOf(Mia) = x ⊃
fatherOf(Sally) =x), which is to say that after Mia gives birth
to Sally, it is known that Mia’s spouse is the father of Sally.

2.2 The Semantics
Models in this logic have three components: a set of possible
worlds e, an actual world w, and a situation z. A situation z
is a sequence of action standard names, or action sequence
for short, that represent the history of executed actions; we
write 〈〉 for the empty sequence and use · as concatenation
operator. A world w is a function that maps every ground
object term f(n1, . . . , nj) and situation z to an object standard
name w(f(n1, . . . , nj), z).

Truth of a sentence α in a model e, w, z is written e, w, z |=
α. We begin with the semantics of the non-modal fragment:

1. e, w, z |= t= n iff
t and n are identical standard names, or
w(t, z) and n are identical standard names;

2. e, w, z |= (α ∨ β) iff e, w, z |= α or e, w, z |= β;

3. e, w, z |= ¬α iff e, w, z 6|= α;

4. e, w, z |= ∃xα iff
e, w, z |= αx

n for some standard name n of the sort of x.

Note how Rule 4 handles quantification by substituting stan-
dard names. Standard names thus effectively serve as a fixed,
countably infinite universe of discourse. We refer to [Leves-
que, 1984] for a discussion why this is no effective limitation
for our purposes.

We proceed with the semantics of the action operators,
which simply append new actions to the current situation z:

5. e, w, z |= [n]α iff e, w, z · n |= α;

6. e, w, z |= �α iff e, w, z · ẑ |= α for all action sequences ẑ.

We now give the rules for the knowledge operators, which
complete the semantics. Recall that sf(n) is a distinguished
function symbol that models the sensing result of action n.
The idea is that upon performing action n, the agent learns the
real-world value of sf(n). For an action sequence z, we write
w 'z ŵ to say that w(sf(n), ẑ) = ŵ(sf(n), ẑ) for all prefixes
ẑ · n of z; that is, w and ŵ agree on the sensing outcomes
throughout z. Then knowledge is defined as follows:

7. e, w, z |= Kφ iff e, ŵ, z |= φ for all ŵ ∈ e with w 'z ŵ;

8. e, w, z |= Oφ iff
e, w, z |= Kφ and ê, w, z 6|= Kφ for all ê) e.

Observe that Oφ implies Kφ, but additionally maximises the
set of possible worlds e. The intuitive effect is that the agent
considers possible every scenario that is compatible with φ.

We say a sentence α is valid, written |= α, iff for all e, w,
e, w, 〈〉 |= α.

2.3 Basic Action Theories

One particular way of modelling a dynamic domain in this
language is called basic action theory [Reiter, 2001]. A basic
action theory over a finite set of function symbols F comes
with two types of axioms: the dynamic axioms govern how
the functions in F evolve over the course of action, and the
initial axioms describe the initial situation.

For every f ∈ F there shall be one dynamic axiom, which
is of either of the following forms:

1. �∀x1 . . . ∀xj∀y∀a
(
[a]f(x1, . . . , xj) = y ≡ γ

)
;

2. �∀x1 . . . ∀xj∀y
(
f(x1, . . . , xj) = y ≡ π

)
;

where γ and π shall not mention any action or knowledge
operators and satisfy the functional consistency property that
y is uniquely determined by the other free variables. The
first axiom is called a successor-state axiom, as it relates the
value of f(~x) = y after action a to the value of γ before a.
The second axiom is a definitional axiom, since it relates the
value of f(~x) = y to the value of π in the same situation. A
basic action theory shall contain a definitional axiom for the
sf(a) function. To ensure there are no cyclic dependencies, we
require that π mentions no defined functions.

The other component of a basic action theory describes what
is true in the initial situation. Typically there is one sentence δ0
that refers to what is true initially in the real world, and another
sentence δ1 that describes what the agent knows initially. Both
δ0 and δ1 shall mention no action or knowledge operator and
only functions from F with a successor-state axioms.

Given a basic action theory with dynamic axioms ∆ and de-
scriptions of the initial situation δ0, δ1, the projection problem
boils down to deciding logical entailments of

∆ ∧ δ0 ∧O(∆ ∧ δ1).

For instance, to show that φ is known after actions t1, . . . , tj ,
we need to prove |= ∆ ∧ δ0 ∧O(∆ ∧ δ1) ⊃ [t1] . . . [tj]Kφ.
In this paper, we are only concerned with queries that do not
involve the � operator.

Example
As an example, let us model a family scenario where Sally
reasons about her genealogy with a basic action theory. First,
Mia gives birth to Sally, so according to the Latin law mater
semper certa est, Mia must be Sally’s mother. The father,
however, remains uncertain to Sally; all she knows about the
matter is that Mia is in a relationship with either Frank or Fred,
so one of them must be the father (we implicitly assume Mia
is faithful to her spouse). To reach clarification, Sally requests
a paternity test for Fred, and since the test result is negative,
Sally rightly concludes that Frank is her father.

We model the scenario using functions motherOf, fatherOf,
and spouseOf. We have two actions: birth(x, y) and test(x, y)
to say that x gives birth to y and to test whether x is the
father of y. The paternity test is modelled with the sf function:
sf(test(x, y)) shall return Yes if x is the father of y, and No
otherwise, where Yes and No are two distinguished standard
names. The scenario can now be modelled as follows:

• �∀x∀y∀a
(
[a]motherOf(x) = y ≡

a= birth(y, x) ∨
a 6= birth(y, x) ∧motherOf(x) = y

)
;

• �∀x∀y∀a
(
[a]fatherOf(x) = y ≡
∃ŷ(a= birth(ŷ, x) ∧ spouseOf(ŷ) = y) ∨
∀ŷ(a 6= birth(ŷ, x) ∧ fatherOf(x) = y)

)
;

• �∀x∀y∀a
(
[a]spouseOf(x) = y ≡ spouseOf(x) = y

)
;

• �∀y∀a
(
sf(a) = y ≡

∃x∃ŷ(a= test(ŷ, x) ∧ fatherOf(x) = ŷ) ∧ y = Yes ∨
∀x∀ŷ(a 6= test(ŷ, x) ∨ fatherOf(x) 6= ŷ) ∧ y = No

)
.

As for the initial situation, we have that Frank is Mia’s spouse,
but Sally only knows it is Frank or Fred:

• δ0
def
= spouseOf(Mia) = Frank;

• δ1
def
= (spouseOf(Mia) = Frank ∨ spouseOf(Mia) = Fred).

To conclude this example, let us consider a few projection
tasks: after Sally is born, Mia is known to be the mother, but
it is not known whether Frank or Fred is the father, and only
after the paternity test for Fred, Frank’s fatherhood becomes
certain. These statements can be translated to the following
projection tasks, where Λ denotes the basic action theory ∆ ∧
δ0 ∧O(∆ ∧ δ1):

1. |= Λ ⊃ [birth(Mia,Sally)]KmotherOf(Sally) = Mia;

2. |= Λ ⊃ [birth(Mia,Sally)]¬K fatherOf(Sally) = Frank;

3. |= Λ ⊃ [birth(Mia,Sally)]K(fatherOf(Sally) = Frank ∨
fatherOf(Sally) = Fred);

4. |= Λ ⊃ [birth(Mia,Sally)][test(Fred,Sally)]
K(fatherOf(Sally) = Frank).

We prove the second statement. Suppose e, w, 〈〉 |= Λ. Let
n = birth(Mia,Sally). We show e, ŵ, n |= fatherOf(Sally) 6=
Frank for some ŵ ∈ e with w 'n ŵ. Consider ŵ ∈ e
with ŵ(spouseOf(Sally), 〈〉) = Fred. Then w 'n ŵ, since
w(sf(n), 〈〉) = ŵ(sf(n), 〈〉), and ŵ(fatherOf(Sally), n) =
ŵ(spouseOf(Sally), 〈〉) 6= Frank, which completes the proof.
As for the fourth entailment, note that the outcome of the pa-
ternity test, sf(test(Fred,Sally)), will be No, which rules out

the worlds ŵ with ŵ(fatherOf(Sally), n) = Fred, so Frank
remains the only possible father.

2.4 Regression
The structure of successor-state axioms gives rise to a sim-
ple procedure to reduce statements about future situations
to statements about the initial situation: we can replace the
functions in the query formula with the right-hand side of the
corresponding dynamic axiom, and repeat this until no action
operators are left.

For instance, [birth(Mia,Sally)]motherOf(Sally) = Mia re-
duces to the formula birth(Mia,Sally) = birth(Mia,Sally) ∨
(birth(Mia,Sally) 6=birth(Mia,Sally)∧motherOf(Sally)=y).

This procedure is called regression [Reiter, 2001]. We say
a formula is regressable with respect to a basic action theory
overF when it mentions no � or O operators and all functions
are from F . We now define the regression operatorR[α] with
respect a basic action theory for regressable formulas α. To
ease the technical treatment we assume that no variable in α
is bound twice. Then R[α] shall stand for R[〈〉, α], which is
defined as follows:
1. if f has a successor-state axiom with right-hand side γ:

R[z · t, f(t1, . . . , tj) = tj+1]
def
= R[z, γ

x1...xjy a
t1... tj tj+1 t];

if f has a definitional axiom with right-hand side π:
R[z, f(t1, . . . , tj) = tj+1]

def
= R[z, π

x1...xjy
t1... tj tj+1

];
otherwise:
R[z, t1 = t2]

def
= t1 = t2;

2. R[z, (α ∨ β)]
def
= (R[z, α] ∨R[z, β]);

3. R[z,¬α]
def
= ¬R[z, α];

4. R[z,∃xα]
def
= ∃xR[z, α];

5. R[z, [t]α]
def
= R[z · t, α];

6. R[z · t,Kφ]
def
= R[z,

(
sf(t) = x ⊃ K(sf(t) = x ⊃ [t]φ)

)
];

R[〈〉,Kφ]
def
= KR[〈〉, φ].

Rule 1 implements the idea of replacing functions with the
right-hand side of its corresponding axiom. Rule 6 uses a
similar idea to regress knowledge, except that in place of
an axiom from the basic action theory we use the following
theorem that relates what is known after an action to what is
known before that action, conditioned on the sensing result:
Theorem 1
|= �∀a

(
[a]Kφ ≡ ∀x

(
sf(a) = x ⊃ K(sf(a) = x ⊃ [a]φ)

))
.

Proof. Let n̂ = w(sf(n), z). Then e, w, z |= [n]Kφ iff
e, ŵ, z ·n |= φ for all ŵ ∈ ewithw 'z ŵ and n̂ = ŵ(sf(n), z)
iff e, ŵ, z |= (sf(n)=n̂ ⊃ [n]φ) for all ŵ ∈ ewithw 'z ŵ iff
e, w, z |= K(sf(n)= n̂ ⊃ [n]φ) iff e, w, z |= ∀x(sf(n)=x ⊃
K(sf(a) = x ⊃ [n]φ)).

For example, [test(Fred,Sally)]K(fatherOf(Sally)=Frank)
is regressed to ∀x(φ ⊃ (Kφ ⊃ fatherOf(Sally) = Frank),
where φ is the regression of sf(test(Fred,Sally)) = x, which
after some simplifications reduces to (fatherOf(Sally)=Fred∧
x= Yes ∨ fatherOf(Sally) 6= Fred ∧ x= No)

Regression is a very elegant way to handle projection, and
we shall use it in this paper to reduce reasoning about actions
to a static reasoning case. The next theorem says that this is
correct [Reiter, 2001; Schwering et al., 2017]:

Theorem 2 Let α be regressable with respect to a basic action
theory with dynamic axioms ∆ and descriptions of the initial
situation δ0, δ1.
Then |= ∆ ∧ δ0 ∧O(∆ ∧ δ1) ⊃ α iff |= δ0 ∧Oδ1 ⊃ R[α].

3 The Limited Epistemic Situation Calculus
In this section we devise a variant of the epistemic situation
calculus from Section 2 based on limited belief. The idea
behind limited belief is to stratify belief into levels: level 0
comprises only the explicit beliefs; every following level draws
additional inferences by doing another case split. The rationale
behind this technique of limiting belief by case splits is the
hypothesis that in many practical situations few case splits
– perhaps one or two – suffice to obtain meaningful results
[Schwering, 2017].

3.1 The Language
The syntax follows the same rules as in Section 2.1 with the
addition of formulas Kkφ for natural numbers k ≥ 0. We read
Kkφ as “φ is known at level k.”

3.2 The Semantics
We extend the semantics from Section 2.2 to incorporate ex-
pressions of the form Kkφ. This semantics fundamentally
builds on three concepts: clause subsumption, unit propagation,
and case splits. First we need some additional terminology.

A literal is an expression of the form [z]t = n or [z]t 6= n
where z is a sequence of action standard names, t is a ground
term or a standard name, and n is a standard name. We abuse
notation and identify a literal [〈〉]` with `, and [z · n]` with
[z][n]`. A literal is valid when it is of the form [z]n = n, or
[z]n 6= n̂ for distinct standard names n, n̂, or [z]t 6=n for t, n of
distinct sorts. A literal `1 subsumes a literal `2 when `1, `2 are
identical or `1, `2 are of the form [z]t= n1 and [z]t 6= n2 for
distinct n1, n2. Two literals `1, `2 are complementary when
`1, `2 are of the form [z]t = n and [z]t 6= n (or vice versa),
or `1, `2 are of the form [z]t = n1 and [z]t = n2 for distinct
n1, n2.

A clause is a finite set of literals. A clause with a single
literal is a unit clause. Again we abuse notation and identify
non-empty clauses {`1, . . . , `j} with formulas (`1 ∨ . . . ∨ `j),
and we write [z]{`1, . . . , `j} to denote {[z]`1, . . . , [z]`j}. The
above terminology for literals carries over to clauses as follows.
A clause is valid when it contains a valid literal, or a literal
t= n and its negation t 6= n, or two literals t 6= n1 and t 6= n2
for distinct names n1, n2. A clause c1 subsumes a clause c2
when every literal `1 ∈ c1 subsumes a literal `2 ∈ c2. The
unit propagation c \ {ˆ̀ | `, ˆ̀are complementary} of a clause
c with a literal ` is the clause obtained by removing from c all
literals that are complementary to `.

A setup s is a set of clauses that includes all valid clauses
and is closed under unit propagation and subsumption: if c is
valid or subsumed by some ĉ ∈ s, then c ∈ s, and if c, ` ∈ s,
then c \ {ˆ̀ | `, ˆ̀are complementary} ∈ s. We write s ∪ ŝ for
the setup obtained by combining the setups s and ŝ.

We first define a semantics for formulas that mention no
knowledge operator. We write s, z, k |≈ φ to say that the setup
s satisfies φ in situation z at belief level k, defined as follows:

1. if c is a clause:
s, z, 0 |≈ c iff [z]c ∈ s;

2. if (φ ∨ ψ) is not a clause:
s, z, 0 |≈ (φ ∨ ψ) iff s, z, 0 |≈ φ or s, z, 0 |≈ ψ;

3. s, z, 0 |≈ ¬(φ ∨ ψ) iff s, z, 0 |≈ ¬φ and s, z, 0 |≈ ¬ψ;

4. s, z, 0 |≈ ¬¬φ iff s, z, 0 |≈ φ;

5. s, z, 0 |≈ ∃xφ iff
s, z, 0 |≈ φxn for some standard name n of the sort of x;

6. s, z, 0 |≈ ¬∃xφ iff
s, z, 0 |≈ ¬φxn for all standard names n of the sort of x;

7. s, z, 0 |≈ [n]φ iff s, z · n, 0 |≈ φ;

8. s, z, 0 |≈ �φ iff s, z · ẑ, 0 |≈ φ for all action sequences ẑ;

9. s, z, k + 1 |≈ φ iff
for some ground term t,
for all standard names n of the sort of t,
s ∪ {t= n}, z, k |≈ φ.

Intuitively, s, z, k |≈ φ starts off by doing k case splits in
Rule 9, and then proceeds to decompose the formula up to
clause level and tests membership in s.

Let us illustrate this semantics with an example. Let s
contain spouseOf(Mia) = Frank ∨ spouseOf(Mia) = Fred
as well as for every n the clause spouseOf(Mia) 6= n ∨
[birth(Mia,Sally)]fatherOf(Sally) = n. This setup requires
belief level 1 to obtain that Frank or Fred is Sally’s father
after Mia gave birth to Sally: At belief level 0, we simply
check for subsumption of [birth(Mia,Sally)]fatherOf(Sally)=
Frank∨ [birth(Mia,Sally)]fatherOf(Sally)=Fred, which fails.
At belief level 1, however, we can split spouseOf(Mia):
when we add spouseOf(Mia) = Frank to s, then we ob-
tain [birth(Mia,Sally)]fatherOf(Sally) = Frank by unit prop-
agation; analogously for Fred; and every other value of
spouseOf(Mia) produces the empty clause by unit propa-
gation; so in every case [birth(Mia,Sally)]fatherOf(Sally) =
Frank∨[birth(Mia,Sally)]fatherOf(Sally)=Fred is subsumed
and the query hence satisfied at level 1.

We can now use the |≈ truth relation to incorporate lim-
ited belief into the epistemic situation calculus. To account
for the sensing history in the setup, we define the sensing
outcome literals SF(w, z) inductively as SF(w, 〈〉) = {} and
SF(w, z · n) = SF(w, z) ∪ {[z]sf(n) = n̂ | n̂ = w(sf(n), z)}.
With the understanding that Rules 1–8 from Section 2.2 are
retrofitted with an additional parameter s for the setup, we add
the following rule for limited belief:

9. s, e, w, z |= Kkφ iff s ∪ SF(w, z), z, k |≈ φ.

Adding the sensing outcome literals to s corresponds to the
effect of filtering all worlds ŵ ∈ e that violate w 'z ŵ in
Rule 7.

Furthermore we replace Rule 8 with a new rule that takes
the setup parameter into account:

8’. s, e, w, z |= Oφ iff
s, e, w, z |= Kφ and s, ê, w, z 6|= Kφ for all ê) e and
s, e, w, z |= K0φ and ŝ, e, w, z 6|= K0φ for all ŝ (s.

This rule minimises the setup s to obtain the analogous effect
as maximising e does.

Continuing our above example setup, we easily obtain
s, e, w, 〈〉 |= K1 [birth(Mia,Sally)](fatherOf(Sally)=Frank∨
fatherOf(Sally) = Fred) for every e and w.

Reasoning is sound in the limited epistemic situation calcu-
lus with respect to its unlimited counterpart:
Theorem 3
If |= Oφ ⊃ [t1] . . . [tj]Kkψ, then |= Oφ ⊃ [t1] . . . [tj]Kψ.
Proof. Suppose the antecedent holds and let s, e, w, 〈〉 |= Oφ.
We need to show s, e, w, z |= Kψ, where z = t1 · . . . · tj . By
assumption, ŵ ∈ e iff s, e, ŵ, 〈〉 |= φ. Let ŵ ∈ e with w 'z ŵ
be arbitrary. It suffices to show that s, e, ŵ, z |= ψ. Let ŝ =
{[ẑ]f(~n) = n̂ | n̂= ŵ(f(~n), ẑ)}. By induction on |φ| we can
show ŝ, 〈〉, 0 |≈ φ. Thus there is some minimal s̃ ⊆ ŝ such
that s̃, z, 0 |≈ φ. Then by assumption, s̃ ∪ SF(w, z), z, k |≈ ψ.
Since by construction s̃ ∪ SF(w, z) ⊆ ŝ, also ŝ, z, k |≈ ψ. By
another induction on |ψ|, s, e, ŵ, z |= ψ.

In the propositional case, limited belief becomes complete
at high enough belief levels:
Theorem 4 Let φ, ψ be quantifier- and �-free.
If |= Oφ ⊃ [t1] . . . [tj]Kψ, then |= Oφ ⊃ [t1] . . . [tj]Kkψ
for large enough k.
Proof sketch. Let ‖φ‖ and ‖ψ‖ be the number of object func-
tions that occur in φ and ψ. Choosing k = ‖φ‖ + ‖ψ‖ + j
then allows to split on all relevant functions in φ and ψ.

3.3 Proper+ Basic Action Theories
An important class of knowledge bases in the context of lim-
ited belief are proper+ knowledge bases introduced by Lake-
meyer and Levesque [2002]. A knowledge base φ is proper+

when it is a conjunction where each conjunct is of the form
∀x1 . . . ∀xj c or �∀x1 . . . ∀xj c where c is a disjunction of
expressions [t1] . . . [tj]tj+1 = tj+2 or [t1] . . . [tj]tj+1 6= tj+2.
A basic action theory can be brought into proper+ form by
bringing it into prenex-CNF and Skolemization; we call such
a transformed theory a proper+ basic action theory.

Moreover, reasoning in such proper+ knowledge bases is
decidable:
Theorem 5 Let ∆, δ1 be a proper+ basic action theory and φ
be �-free. Then |= O(∆∧δ1) ⊃ [t1] . . . [tj]Kkφ is decidable.
Proof sketch. Since φ does not mention �, the length of the
relevant situations is bounded, and we can instantiate the �
operators in ∆ for these lengths. It moreover suffices to instan-
tiate every variable with all standard names occurring in the
reasoning task, plus those standard names that can be formed
from action function symbols, and a finite amount of addi-
tional standard names that represent the infinitely many ones
that are not mentioned in the formulas. Finally, it suffices to
consider a finite set of terms for splitting.

Decidability requires our strict definition of action
standard names that precludes nested functions such as
birth(birth(Mia,Sally),Sally). If such nested standard names
were allowed, it would be possible to represent Robinson arith-
metic [1950] with unit propagation obtaining the theory of
the natural numbers, which is undecidable. This justifies our
somewhat intricate definition of the action sort in Section 2.1.

In the propositional case and for fixed belief level and a fixed
number of actions outside of K , deciding such implications
becomes even tractable:
Theorem 6 Let ∆, δ1 be a proper+ basic action theory and φ
be quantifier- and �-free. Let l = |∆|+ |δ1|+ |φ|+ j.
Then |= O(∆ ∧ δ1) ⊃ [t1] . . . [tj]Kkφ is decidable in time
O(2k+j lk+3).

Bringing the dynamic axioms into proper+ form and then
reason about them in the logic of limited is one way of de-
cidable reasoning in the situation calculus. Alternatively, we
can regress the query first with respect to dynamic axioms and
reason about the regressed query with limited belief. Below,
we denote by (α)k the formula obtained by replacing in α
every K with Kk . Directly from Theorems 2 and 3 we obtain
the following soundness result:
Corollary 7 Let ∆, δ0, δ1 be a basic action theory, and let α
be regressable with respect to ∆.
If |= δ0 ∧Oδ1 ⊃ (R[α])k, then |= ∆∧ δ0 ∧O(∆∧ δ1) ⊃ α.

Such regressed queries are decidable as well (provided they
mention no function symbols outside of K) by Theorem 5:
Corollary 8 Let ∆, δ1 be a basic action theory, δ1 be proper+,
and α be regressable with respect to ∆ and without functions
outside of K . Then |= Oδ1 ⊃ (R[α])k is decidable.

3.4 A Reasoning System
As part of the limited-belief reasoning system LIMBO [Schwe-
ring, 2017], we have implemented procedures for deciding
projection problems using the limited epistemic calculus.

The previous subsection has outlined two basic approaches
to projection:

1. Translate the basic action theory into proper+ form and let
the reasoner do its work on the resulting knowledge base,
which includes knowledge about actions and their effects.

2. Regress the query to eliminate the actions and then test for
entailment by the description of the initial situation.

At the current stage, LIMBO only provides the second method;
an implementation of the first one is underway.

An earlier prototype of LIMBO implemented both methods.
Somewhat surprisingly, the second method turned out to be
significantly faster than the first one in (albeit small-scale)
experiments. Most likely, the cause for this was the large
number of terms that need to be split during reasoning, thus
leading to a high branching factor during search. Even when a
preprocessing step was added to filter irrelevant splitting terms,
regression remained faster, because said filtering needed to
trace back fluents in a way very similar to regression.

LIMBO uses a very light-weight representation of literals
(¬)t1 = t2, where a single 64-bit integer uniquely identifies
the literal and also includes all relevant information for test-
ing subsumption, complementarity, and validity. While such
compact representation is important for runtime performance
reasons on the one hand, it is incompatible with an explicit
representation of the situation z in a literal [z](¬)t1 = t2
on the other hand. The syntactic restrictions of literals in
LIMBO however offer us a simple way out: in a literal
[t1] . . . [ti](¬)f(ti+1, . . . , tj) = tj+1 for an object function

1Rigid Sort Action
2Sort Human, Result
3Fun birth/2, test/2 -> Action
4Fun spouseOf/1, motherOf/1, fatherOf/1 -> Human
5Sensor Fun sf/Action -> Result
6Name Sally, Mia, Frank, Fred -> Human
7Name Yes, No -> Result
8Var a -> Action
9Var x, y, z -> Human
10Var r -> Result

11Real: spouseOf(Mia) = Frank

12KB: spouseOf(Mia) = Frank v
spouseOf(Mia) = Fred

13KB: [] [a] motherOf(x) = y <->
a = birth(y,x) v
a /= birth(y,x) ˆ motherOf(x) = y

14KB: [] [a] fatherOf(x) = y <->
ex z (a = birth(z,x) ˆ spouseOf(z) = y) v
fa z (a /= birth(z,x) ˆ fatherOf(x) = y)

15KB: [] sf(a) = r <->
ex x ex y (a = test(x,y) ˆ

fatherOf(x) = y) ˆ r = Yes v
fa x fa y (a /= test(x,y) v

fatherOf(x) /= y) ˆ r = No

16REG [birth(Mia,Sally)]
K<0> (motherOf(Sally) = Mia)

17REG [birth(Mia,Sally)]
M<1> (fatherOf(Sally) /= Frank)

18REG [birth(Mia,Sally)]
K<1> (fatherOf(Sally) = Frank v

fatherOf(Sally) = Fred)
19REG [birth(Mia,Sally)] [test(Sally,Fred)]

K<1> fatherOf(Sally) = Frank

Listing 1: An encoding of the example from Section 2.3 in LIMBO’s
TUI. REG indicates regression; K<k> and M<k> are Kk and Mk .

f , the terms ti do not involve any object functions and hence
are situation-independent. Therefore we can represent the lit-
eral by (¬)fi(t1, . . . , ti, ti+1, . . . , tj) = tj+1, where fi is a
new function symbol.

The LIMBO reasoning system provides some additional fea-
tures and expressivity which we skipped in this paper to ease
the presentation: formulas Mkφ for sound but incomplete rea-
soning about what is considered possible (note that ¬Kk¬φ
is unsound, as Kk¬φ is sound but incomplete knowledge), a
conditional belief operator Bk,lφ ⇒ ψ to say that if φ then
usually also ψ [Schwering and Lakemeyer, 2016], introspec-
tion for all belief operators, and multiple sorts.

LIMBO is implemented as a C++ library and is freely avail-
able.1 As an illustration, an encoding of the projection tasks
from Section 2.3 in LIMBO’s textual problem description lan-
guage is given in Listing 1 (where line 18 uses the sound
Mk¬φ instead of the potentially unsound ¬Kkφ).

1Code: www.github.com/schwering/limbo
Running example: www.cse.unsw.edu.au/~cschwering/limbo/tui#birth

4 Conclusion
We have introduced a logic for decidable reasoning about in-
complete knowledge in the context of actions and sensing. The
approach is based on the situation calculus and a theory of
limited belief which controls the cost of reasoning by strati-
fying beliefs into levels. Compared to earlier approaches, our
logic features additional expressivity due to functions and, in
particular, parameterised actions. We moreover introduced a
software system for reasoning about actions and belief, which
implements this logic. Unlike other implementations of the sit-
uation calculus, our system avoids a closed-world assumption
and includes expressivity of first-order logic.

This work is part of a bigger project that aims at bringing
to life KR concepts. Next steps are to add knowledge base
progression as an alternative approach to projection, and to
evaluate the system in dynamic domains. Other interesting
additions to the reasoning system are multi-agent belief as well
as belief revision. We also plan to combine the system with
the programming language GOLOG [Levesque et al., 1997]
and hope to employ the system in cognitive robotics. Practical
applications will however require better runtime performance;
we hope to transfer SAT technology such as clause learning to
our theory and implementation of limited belief.

References
[Baader, 2003] Franz Baader. The Description Logic Hand-

book: Theory, Implementation, and Applications. 2003.

[Börger et al., 1997] Egon Börger, Erich Grädel, and Yuri
Gurevich. The Classical Decision Problem. Springer, 1997.

[Claßen and Lakemeyer, 2009] Jens Claßen and Gerhard La-
kemeyer. Tractable first-order Golog with disjunctive
knowledge bases. In Proceedings of the Ninth International
Symposium on Logical Formalizations of Commonsense
Reasoning, 2009.

[Gelfond and Lifschitz, 1993] Michael Gelfond and Vladimir
Lifschitz. Representing action and change by logic pro-
grams. The Journal of Logic Programming, 17(2), 1993.

[Kowalski and Sergot, 1989] Robert Kowalski and Marek
Sergot. A logic-based calculus of events. In Foundations
of knowledge base management. 1989.

[Lakemeyer and Levesque, 2002] Gerhard Lakemeyer and
Hector J. Levesque. Evaluation-based reasoning with dis-
junctive information in first-order knowledge bases. In
Proceedings of the Eighth Conference on Principles of
Knowledge Representation and Reasoning, 2002.

[Lakemeyer and Levesque, 2011] Gerhard Lakemeyer and
Hector J. Levesque. A semantic characterization of a useful
fragment of the situation calculus with knowledge. Artifi-
cial Intelligence, 175(1), 2011.

[Lakemeyer and Levesque, 2014] Gerhard Lakemeyer and
Hector J. Levesque. Decidable reasoning in a fragment of
the epistemic situation calculus. In Proceedings of the Four-
teenth International Conference on Principles of Knowl-
edge Representation and Reasoning, 2014.

[Levesque and Lakemeyer, 2008] Hector J. Levesque and
Gerhard Lakemeyer. Cognitive robotics. In Handbook
of Knowledge Representation. Elsevier, 2008.

[Levesque and Reiter, 1998] Hector J. Levesque and Ray Re-
iter. High-level robotic control: Beyond planning. In AAAI
Spring Symposium on Integrating Robotics Research, vol-
ume 37, 1998.

[Levesque et al., 1997] Hector J. Levesque, Ray Reiter, Yves
Lespérance, Fangzhen Lin, and Richard Scherl. GOLOG: A
logic programming language for dynamic domains. Journal
of Logic Programming, 1997.

[Levesque, 1984] Hector J. Levesque. Foundations of a func-
tional approach to knowledge representation. Artificial
Intelligence, 23(2), 1984.

[Liu et al., 2004] Yongmei Liu, Gerhard Lakemeyer, and Hec-
tor J. Levesque. A logic of limited belief for reasoning
with disjunctive information. In Proceedings of the Ninth
International Conference on Principles of Knowledge Rep-
resentation and Reasoning, 2004.

[McCarthy, 1959] John McCarthy. Programs with common
sense. In Proceedings of the Symposium on Mechanization
of Thought Processes. Her Majesty’s Stationary Office,
1959.

[McCarthy, 1963] John McCarthy. Situations, actions, and
causal laws. Technical report, Stanford University, 1963.

[McDermott et al., 1998] Drew McDermott, Malik Ghallab,
Adele Howe, Craig Knoblock, Ashwin Ram, Manuela
Veloso, Daniel Weld, and David Wilkins. PDDL—the
planning domain definition language. Technical report,
1998.

[Reiter, 2001] Ray Reiter. Knowledge in Action: Logical
Foundations for Specifying and Implementing Dynamical
Systems. The MIT Press, 2001.

[Robinson, 1950] Raphael M. Robinson. An essentially unde-
cidable axiom system. In Proceedings of the international
Congress of Mathematics, volume 1, 1950.

[Scherl and Levesque, 2003] Richard Scherl and Hector J.
Levesque. Knowledge, action, and the frame problem. Ar-
tificial Intelligence, 144(1–2), 2003.

[Schwering and Lakemeyer, 2016] Christoph Schwering and
Gerhard Lakemeyer. Decidable reasoning in a first-order
logic of limited conditional belief. In Proceedings of the
Twenty-Second European Conference on Artificial Intelli-
gence, 2016.

[Schwering et al., 2017] Christoph Schwering, Gerhard La-
kemeyer, and Maurice Pagnucco. Belief revision and pro-
jection in the epistemic situation calculus. Artificial Intelli-
gence, 251, 2017.

[Schwering, 2017] Christoph Schwering. A reasoning system
for a first-order logic of limited belief. In Proceedings of the
Twenty-Sixth International Joint Conference on Artificial
Intelligence, 2017.

[Thielscher, 1998] Michael Thielscher. Introduction to the
fluent calculus. Linköping Electronic Articles in Computer
and Information Science, 3(14), 1998.

