Limbo

Reasoning in the Situation Calculus with Limited Belief

Christoph Schwering

UNSW Sydney

Why Limited Belief?

Task: Robot has a KB and a query:
Does the KB logically entail the query?

Why Limited Belief?

Task: Robot has a KB and a query:
Does the KB logically entail the query?
Which logic?

Why Limited Belief?

Task: Robot has a KB and a query:
Does the KB $\underbrace{\text { logically entail }}_{\text {Which logic? }}$ the query?

Classical logic:
■ Unrealistic: omniscient agent
■ Undecidable (first-order) / intractable (propositional)

Why Limited Belief?

Task: Robot has a KB and a query:
Does the KB $\underbrace{\text { logically entail }}_{\text {Which logic? }}$ the query?

Limited belief: [Lakemeyer \& Levesque, KR-2016]
■ Belief level 0: explicit beliefs KB + unit propagation + subsumption
■ Belief level $k+1$: implicit beliefs belief level $k+$ one case split
Hypothesis: good results at small belief level

Limbo: A Reasoning System [Schwering, JCAL:2017]

■ Goals

- Logical reasoning in a very expressive language
- Achieve decent performance
- Real-world applications e.g., robot control

Limbo: A Reasoning System [Schwering, vcal:2017]

■ Goals

- Logical reasoning in a very expressive language
- Achieve decent performance
- Real-world applications e.g., robot control
- Features
- Decidable (first-order) / tractable (propositional)
- First-order quantification
- Introspective belief
- Conditional belief
- Actions \longleftarrow this paper

Limbo: A Reasoning System [Schwering, |cCA:2017]

■ Goals

- Logical reasoning in a very expressive language
- Achieve decent performance
- Real-world applications e.g., robot control
- Features
- Decidable (first-order) / tractable (propositional)
- First-order quantification
- Introspective belief
- Conditional belief
- Actions \longleftarrow this paper

■ Experiments support belief level hypothesis

- Sudoku: level $0 \approx$ easy; $1 \approx$ medium; $2 \approx$ hard; $4 \approx$ extreme

Limbo: A Reasoning System [Schwering, |cCA:2017]

- Goals
- Logical reasoning in a very expressive language
- Achieve decent performance
- Real-world applications e.g., robot control
- Features
- Decidable (first-order) / tractable (propositional)
- First-order quantification
- Introspective belief
- Conditional belief
- Actions \longleftarrow this paper

■ Experiments support belief level hypothesis

- Sudoku: level $0 \approx$ easy; $1 \approx$ medium; $2 \approx$ hard; $4 \approx$ extreme
- Minesweeper: level 0 is bad; 1 is good; 2 slightly better; 3 same

Situation Calculus [Reiter 2001; Lakemeyer \& Levesque, AlJ-2011]

- Logical language for actions, sensing, knowledge

■ Values of functions / predicates change in situations

- Situation is a sequence of actions
- Basic action theory:
- successor-state axioms capture effects of actions
- sensing axiom captures how knowledge is produced
- initial theory describes the initial state

■ Projection: does a BAT entail a query after certain actions?

The Language

FOL with equality + functions + sorts +
■ Knowledge: $\quad \mathbf{K}_{0} \propto \mathbf{K}_{1} \propto \quad \mathbf{K}_{2} \alpha \quad \ldots$
\square Possibility: $\quad \begin{array}{llll}\mathbf{M}_{0} \alpha & \mathbf{M}_{1} \alpha & \mathbf{M}_{2} \alpha & \ldots\end{array}$
\square Actions: $\quad[A(\vec{t})] \alpha \quad[B(\vec{t})] \alpha \quad \ldots \quad \square \alpha$

The Language

FOL with equality + functions + sorts +
■ Knowledge: $\quad \mathbf{K}_{0} \alpha \quad \mathbf{K}_{1} \propto \quad \mathbf{K}_{2} \alpha \quad \ldots$
\square Possibility: $\quad \mathbf{M}_{0} \alpha \quad \mathbf{M}_{1} \alpha \quad \mathbf{M}_{2} \alpha \quad \ldots$
■ Actions: $\quad[A(\vec{t})] \alpha \quad[B(\vec{t})] \alpha \quad \ldots \quad \square \alpha$

Examples:

- $[$ birth $($ Mia, Sally $)]($ motherOf $($ Sally $)=$ Mia \wedge fatherOf $($ Sally $)=$ Frank $)$

The Language

FOL with equality + functions + sorts +
■ Knowledge: $\quad \mathbf{K}_{0} \alpha \quad \mathbf{K}_{1} \propto \quad \mathbf{K}_{2} \propto \ldots$
\square Possibility: $\quad \begin{array}{llll}\mathbf{M}_{0} \alpha & \mathbf{M}_{1} \alpha & \mathbf{M}_{2} \alpha & \ldots\end{array}$
■ Actions: $\quad[A(\vec{t})] \alpha \quad[B(\vec{t})] \alpha \quad \ldots \quad \square \alpha$

Examples:

- $[$ birth $($ Mia, Sally $)]($ motherOf(Sally $)=$ Mia \wedge fatherOf(Sally $)=$ Frank $)$
- $[$ birth(Mia, Sally $)] \forall x \mathbf{M}_{1}$ fatherOf(Sally) $\neq x$

The Language

FOL with equality + functions + sorts +
■ Knowledge: $\quad \mathbf{K}_{0} \alpha \quad \mathbf{K}_{1} \alpha \quad \mathbf{K}_{2} \alpha \quad \ldots$
\square Possibility: $\quad \begin{array}{llll}\mathbf{M}_{0} \alpha & \mathbf{M}_{1} \alpha & \mathbf{M}_{2} \alpha & \ldots\end{array}$
■ Actions: $\quad[A(\vec{t})] \alpha \quad[B(\vec{t})] \alpha \quad \ldots \quad \square \alpha$

Examples:

- $[$ birth $($ Mia, Sally $)]($ motherOf $($ Sally $)=$ Mia \wedge fatherOf $($ Sally $)=$ Frank $)$
- [birth(Mia, Sally) $] \forall x \mathbf{M}_{1}$ fatherOf(Sally) $\neq x$
- $[$ birth $($ Mia, Sally $)] \mathbf{K}_{1}$ fatherOf(Sally $)=\operatorname{spouseOf}(\operatorname{motherOf}($ Sally $))$

The Language

FOL with equality + functions + sorts +
■ Knowledge: $\quad \mathbf{K}_{0} \alpha \quad \mathbf{K}_{1} \alpha \quad \mathbf{K}_{2} \alpha \quad \ldots$
\square Possibility: $\quad \begin{array}{llll}\mathbf{M}_{0} \alpha & \mathbf{M}_{1} \alpha & \mathbf{M}_{2} \alpha & \ldots\end{array}$
■ Actions: $\quad[A(\vec{t})] \alpha \quad[B(\vec{t})] \alpha \quad \ldots \quad \square \alpha$

Examples:

- $[$ birth $($ Mia, Sally $)]($ motherOf $($ Sally $)=$ Mia \wedge fatherOf $($ Sally $)=$ Frank $)$
- [birth(Mia, Sally) $] \forall x \mathbf{M}_{1}$ fatherOf(Sally) $\neq x$
- [birth(Mia, Sally) $] \mathbf{K}_{1} \forall x \forall y$ (motherOf(Sally) $\neq x \vee$ spouseOf $(x) \neq y \vee$ fatherOf(Sally) $=y$)

The Language

FOL with equality + functions + sorts +
■ Knowledge: $\quad \mathbf{K}_{0} \alpha \quad \mathbf{K}_{1} \alpha \quad \mathbf{K}_{2} \alpha \quad \ldots$
\square Possibility: $\quad \begin{array}{llll}\mathbf{M}_{0} \alpha & \mathbf{M}_{1} \alpha & \mathbf{M}_{2} \alpha & \ldots\end{array}$
■ Actions: $\quad[A(\vec{t})] \alpha \quad[B(\vec{t})] \alpha \quad \ldots \quad \square \alpha$

Examples:

- $[$ birth $($ Mia, Sally $)]($ motherOf $($ Sally $)=$ Mia \wedge fatherOf $($ Sally $)=$ Frank $)$
- [birth(Mia, Sally) $] \forall x \mathbf{M}_{1}$ fatherOf(Sally) $\neq x$
- [birth(Mia, Sally) $] \mathbf{K}_{1} \forall x \forall y$ (motherOf(Sally) $\neq x \vee$ spouseOf $(x) \neq y \vee$ fatherOf(Sally) $=y$)
- [birth(Mia, Sally)][test(Mia, Fred) $] \mathbf{K}_{1}$ fatherOf(Sally) $=$ Frank

The Language

FOL with equality + functions + sorts +
■ Knowledge: $\quad \mathbf{K}_{0} \alpha \quad \mathbf{K}_{1} \propto \quad \mathbf{K}_{2} \alpha \quad \ldots$
\square Possibility: $\quad \begin{array}{llll}\mathbf{M}_{0} \alpha & \mathbf{M}_{1} \alpha & \mathbf{M}_{2} \alpha & \ldots\end{array}$
■ Actions: $\quad[A(\vec{t})] \alpha \quad[B(\vec{t})] \alpha \quad \ldots \quad \square \alpha$

Examples:

- [birth(Mia, Sally) $]($ motherOf $($ Sally $)=$ Mia \wedge fatherOf $($ Sally $)=$ Frank $)$
- [birth(Mia, Sally) $] \forall x \mathbf{M}_{1}$ fatherOf(Sally) $\neq x$
- [birth(Mia, Sally) $] \mathbf{K}_{1} \forall x \forall y$ (motherOf(Sally) $\neq x \vee$ spouseOf $(x) \neq y \vee$ fatherOf(Sally) $=y$)
- [birth(Mia, Sally)][test(Mia, Fred) $] \mathbf{K}_{1}$ fatherOf(Sally) $=$ Frank
standard names represent distinct individuals

The Semantics

Model: set of possible worlds
Belief: true in all possible worlds

The Semantics

$$
\text { disjunction of literals }\left[A_{1}\right] \ldots\left[A_{j}\right](\neg) t_{1}=t_{2}
$$

Model: set of clauses closed under unit propagation
■ Belief level 0: subsumption
■ Belief level $k+1$: case split + level k

The Semantics

$$
\text { disjunction of literals }\left[A_{1}\right] \ldots\left[A_{j}\right](\neg) t_{1}=t_{2}
$$

Model: set of clauses closed under unit propagation
■ Belief level 0: subsumption
■ Belief level $k+1$: case split + level k

Example:
If we know that (a) spouseOf(Mia) $=$ Frank \vee spouseOf $(M i a)=$ Fred
and (b) motherOf(Sally) $=$ Mia
and (c) motherOf $(y) \neq z \vee \operatorname{spouseOf}(z) \neq x \vee$ fatherOf $(y)=x$
then $\mathbf{K}_{0}($ fatherOf $($ Sally $)=$ Frank \vee fatherOf $($ Sally $)=$ Fred $)$?

The Semantics

$$
\text { disjunction of literals }\left[A_{1}\right] \ldots\left[A_{j}\right](\neg) t_{1}=t_{2}
$$

Model: set of clauses closed under unit propagation
■ Belief level 0: subsumption
■ Belief level $k+1$: case split + level k

Example:
If we know that (a) spouseOf(Mia) $=$ Frank \vee spouseOf $(M i a)=$ Fred
and (b) motherOf(Sally) $=$ Mia
and (c) motherOf $(y) \neq z \vee \operatorname{spouseOf}(z) \neq x \vee$ fatherOf $(y)=x$
then $\mathbf{K}_{0}($ fatherOf(Sally $)=$ Frank \vee fatherOf $($ Sally $)=$ Fred $)$?
No! No known clause subsumes fatherOf(Sally) $=$ Frank \vee fatherOf $($ Sally $)=$ Fred .

The Semantics

$$
\text { disjunction of literals }\left[A_{1}\right] \ldots\left[A_{j}\right](\neg) t_{1}=t_{2}
$$

Model: set of clauses closed under unit propagation
■ Belief level 0: subsumption

- Belief level $k+1$: case split + level k

Example:

If we know that (a) spouseOf(Mia) $=$ Frank \vee spouseOf(Mia) $=$ Fred
and (b) motherOf(Sally) $=$ Mia
and (c) motherOf $(y) \neq z \vee \operatorname{spouseOf}(z) \neq x \vee$ fatherOf $(y)=x$
then $\mathbf{K}_{1}($ fatherOf $($ Sally $)=$ Frank \vee fatherOf $($ Sally $)=$ Fred $)$?
Yes! Branch on spouseOf(Mia):

- $\{(\mathrm{a}),(\mathrm{b}),(\mathrm{c})$, spouseOf(Mia) $=$ Frank $\} \ni$ fatherOf(Sally) $=$ Frank by UP with (b), (c)
- $\{(\mathrm{a}),(\mathrm{b}),(\mathrm{c})$, spouseOf(Mia) $=$ Fred $\} \ni$ fatherOf(Sally) $=$ Fred by UP with (b), (c)
- \{(a), (b), (c), spouseOf(Mia) $=n \quad\} \ni \perp \quad$ by UP with (a) for $n \neq$ Frank, Fred

Proper ${ }^{+}$Knowledge Bases

Let KB be a conjunction of clauses

$$
\begin{aligned}
& \forall \vec{x}\left(\ell_{1} \vee \ldots \vee \ell_{j}\right) \\
& \square \forall \vec{x}\left(\ell_{1} \vee \ldots \vee \ell_{j}\right)
\end{aligned}
$$

where ℓ_{i} is of the form $\left[A_{1}\right] \ldots\left[A_{l}\right](\neg) t_{1}=t_{2}$

Proper ${ }^{+}$Knowledge Bases

Let KB be a conjunction of clauses

$$
\begin{aligned}
& \forall \vec{x}\left(\ell_{1} \vee \ldots \vee \ell_{j}\right) \\
& \square \forall \vec{x}\left(\ell_{1} \vee \ldots \vee \ell_{j}\right)
\end{aligned}
$$

where ℓ_{i} is of the form $\left[A_{1}\right] \ldots\left[A_{l}\right](\neg) t_{1}=t_{2}$

Theorem: Soundness

KB entails query at a belief level $\Longrightarrow \mathrm{KB}$ entails query classically

Proper ${ }^{+}$Knowledge Bases

Let KB be a conjunction of clauses

$$
\begin{aligned}
& \forall \vec{x}\left(\ell_{1} \vee \ldots \vee \ell_{j}\right) \\
& \square \forall \vec{x}\left(\ell_{1} \vee \ldots \vee \ell_{j}\right)
\end{aligned}
$$

where ℓ_{i} is of the form $\left[A_{1}\right] \ldots\left[A_{l}\right](\neg) t_{1}=t_{2}$

Theorem: Soundness

KB entails query at a belief level $\Longrightarrow \mathrm{KB}$ entails query classically

Theorem: Eventual Completeness

If $K B$ and query contain no $\exists, \forall, \square$:
$K B$ entails query classically $\Longrightarrow K B$ entails query at a belief level

Basic Action Theories

Contains successor-state axioms

$$
\square\left([a] f\left(x_{1}, \ldots, x_{j}\right)=y \equiv \phi_{f}\right)
$$

And a sensed-fluent axiom

$$
\square(\operatorname{sf}(a)=y \equiv \psi)
$$

Basic Action Theories

Contains successor-state axioms

$$
\square\left([a] f\left(x_{1}, \ldots, x_{j}\right)=y \equiv \phi_{f}\right)
$$

And a sensed-fluent axiom

$$
\square(\operatorname{sf}(a)=y \equiv \psi)
$$

Example:

$$
\begin{aligned}
& \square([a] \operatorname{motherOf}(x)=y \equiv a=\operatorname{birth}(y, x) \vee \\
& a \neq \operatorname{birth}(y, x) \wedge \operatorname{motherOf}(x)=y) \\
& \square([a] \text { fatherOf }(x)=y \equiv \exists \hat{y}(a=\operatorname{birth}(\hat{y}, x) \wedge \operatorname{spouseOf}(\hat{y})=y) \vee \\
& \forall \hat{y}(a \neq \operatorname{birth}(\hat{y}, x) \wedge \text { fatherOf }(x)=y)) \\
& \square(\operatorname{sf}(a)=y \equiv \exists x \exists \hat{y}(a=\operatorname{test}(\hat{y}, x) \wedge \text { fatherOf }(x)=\hat{y}) \wedge y=\text { Yes } \vee \\
& \forall x \forall \hat{y}(a \neq \operatorname{test}(\hat{y}, x) \vee \text { fatherOf }(x) \neq \hat{y}) \wedge y=\operatorname{No}) \\
& \operatorname{spouseOf}(\text { Mia })=\text { Frank } \vee \text { spouseOf }(\text { Mia })=\text { Fred }
\end{aligned}
$$

Basic Action Theories

Contains successor-state axioms

$$
\square\left([a] f\left(x_{1}, \ldots, x_{j}\right)=y \equiv \phi_{f}\right)
$$

And a sensed-fluent axiom

$$
\square(\operatorname{sf}(a)=y \equiv \psi)
$$

Theorem: Decidability

If KB is a BAT translated into proper ${ }^{+}$form, and query is \square-free: $K B$ entails query at a belief level is decidable

Basic Action Theories

Contains successor-state axioms

$$
\square\left([a] f\left(x_{1}, \ldots, x_{j}\right)=y \equiv \phi_{f}\right)
$$

And a sensed-fluent axiom

$$
\square(\operatorname{sf}(a)=y \equiv \psi)
$$

Theorem: Decidability

If KB is a BAT translated into proper ${ }^{+}$form, and query is \square-free:
$K B$ entails query at a belief level is decidable

Theorem: Tractability

If $K B$ is a BAT translated into proper ${ }^{+}$form, and query is \square-free, and both contain no \exists, \forall :
KB entails query at a belief level is tractable

Regression

Eliminates actions:

1. Push actions $[A]$ inwards
2. Functions: axioms relate truth after and before A

$$
[A] f\left(t_{1}, \ldots, t_{j}\right)=t_{j+1} \mapsto \phi_{f}^{a x_{1} \ldots x_{j} y} \begin{aligned}
& A t_{1} \ldots t_{j} t_{j+1}
\end{aligned}
$$

3. Knowledge: theorems relate knowledge after and before A

$$
\begin{aligned}
& {[A] \mathbf{K}_{k} \alpha \mapsto \forall x\left(\operatorname{sf}(A)=x \supset \mathbf{K}_{k}(\operatorname{sf}(A)=x \supset[A] \alpha)\right)} \\
& {[A] \mathbf{M}_{k} \alpha \mapsto \exists x\left(\operatorname{sf}(A)=x \wedge \mathbf{M}_{k}(\operatorname{sf}(A)=x \wedge[A] \alpha)\right)}
\end{aligned}
$$

Regression

Eliminates actions:

1. Push actions $[A]$ inwards
2. Functions: axioms relate truth after and before A

$$
[A] f\left(t_{1}, \ldots, t_{j}\right)=t_{j+1} \mapsto \phi_{f}^{a x_{1} \ldots x_{j} y} \begin{aligned}
& A t_{1} \ldots t_{j} t_{j+1}
\end{aligned}
$$

3. Knowledge: theorems relate knowledge after and before A

$$
\begin{aligned}
& {[A] \mathbf{K}_{k} \alpha \mapsto \forall x\left(\operatorname{sf}(A)=x \supset \mathbf{K}_{k}(\operatorname{sf}(A)=x \supset[A] \alpha)\right)} \\
& {[A] \mathbf{M}_{k} \alpha \mapsto \exists x\left(\operatorname{sf}(A)=x \wedge \mathbf{M}_{k}(\operatorname{sf}(A)=x \wedge[A] \alpha)\right)}
\end{aligned}
$$

Theorem: Soundness

KB entails regressed query at a belief level \Longrightarrow KB entails query classically

Regression

Eliminates actions:

1. Push actions $[A]$ inwards
2. Functions: axioms relate truth after and before A

$$
[A] f\left(t_{1}, \ldots, t_{j}\right)=t_{j+1} \mapsto \phi_{f}^{a x_{1} \ldots x_{j} y} \begin{aligned}
& a t_{1} \ldots t_{j} t_{j+1}
\end{aligned}
$$

3. Knowledge: theorems relate knowledge after and before A

$$
\begin{aligned}
& {[A] \mathbf{K}_{k} \alpha \mapsto \forall x\left(\operatorname{sf}(A)=x \supset \mathbf{K}_{k}(\operatorname{sf}(A)=x \supset[A] \alpha)\right)} \\
& {[A] \mathbf{M}_{k} \alpha \mapsto \exists x\left(\operatorname{sf}(A)=x \wedge \mathbf{M}_{k}(\operatorname{sf}(A)=x \wedge[A] \alpha)\right)}
\end{aligned}
$$

Theorem: Soundness

KB entails regressed query at a belief level $\Longrightarrow \mathrm{KB}$ entails query classically

Theorem: Decidability

KB entails regressed query at a belief level is decidable

Summary

Limbo implements limited belief and actions
Demos: www.cse.unsw.edu.au/~cschwering/limbo
Code: www.github.com/schwering/limbo

Summary

Limbo implements limited belief and actions
Demos: www.cse.unsw.edu.au/~cschwering/limbo
Code: www.github.com/schwering/limbo

Theoretical challenges:
■ More expressivity e.g., progression
■ Clause learning

Summary

Limbo implements limited belief and actions
Demos: www.cse.unsw.edu.au/~cschwering/limbo
Code: www.github.com/schwering/limbo

Theoretical challenges:
■ More expressivity e.g., progression
■ Clause learning

Practical challenges:

- Keep up with the theory
- Improve performance
- Find applications

Appendix

Experiments:
 Sudoku
 Minesweeper

Hypothesis: good results at small belief level

Experiments:
 Sudoku
 Minesweeper

Hypothesis: good results at small belief level \checkmark

\square clues \square level $0 \square$ level $1 \square$ level $2 \square$ level $3 \square$ level $4 \square$ level 5

Experiments:
 Sudoku
 Minesweeper

Hypothesis: good results at small belief level $\checkmark \checkmark$

