A Representation Theorem for Reasoning in First-Order Multi-Agent Knowledge Bases

Christoph Schwering Maurice Pagnucco
UNSW Sydney, Australia

A Representation Theorem for Reasoning in First-Order Multi-Agent Knowledge Bases

Reasoning in multi-agent epistemic knowledge bases reduces to
classical validity

A Representation Theorem for Reasoning in First-Order Multi-Agent Knowledge Bases

Reasoning in multi-agent epistemic knowledge bases

reduces to

classical validity

- Logical framework: Levesque's logic of only-knowing $K_{A} \alpha \mathbf{O}_{A} \alpha$

A Representation Theorem for Reasoning in First-Order Multi-Agent Knowledge Bases

Reasoning in multi-agent epistemic knowledge bases
Turing-reduces to
classical validity

- Logical framework: Levesque's logic of only-knowing $K_{A} \alpha \mathbf{O}_{A} \alpha$

A Representation Theorem for Reasoning in First-Order Multi-Agent Knowledge Bases

Reasoning in multi-agent epistemic knowledge bases
Turing-reduces to
classical validity

- Logical framework: Levesque's logic of only-knowing $K_{A} \alpha \mathbf{O}_{A} \alpha$
- Could implement reasoning service with off-the-shelf theorem prover

- A knows A

■ B knows B

- A knows that
but A doesn't know B

A only knows that $A=7$ and
that if $B=x$, then B only knows that $B=x$

KB:

$$
\mathbf{O}_{A}\left(A=7 \wedge \forall x\left(B=x \rightarrow \mathbf{O}_{B} B=x\right)\right)
$$

entails
Query: $\quad \mathrm{K}_{A} \exists z(\underbrace{B=\boldsymbol{B}=\boldsymbol{z}}_{\text {de dicto }} \wedge \neg \mathbf{K}_{A} \underbrace{B=z}_{\text {de re }} \wedge \mathbf{K}_{B} \underbrace{B=z}_{\text {de re }})$
A knows that some number is equal to B, but A doesn't know what the number is, and B does know it

Reduction: Eliminate Modal Operators

$$
\begin{aligned}
& \mathrm{KB}: \quad \mathbf{O}_{A}\left(A=7 \wedge \forall x\left(B=x \rightarrow \mathbf{O}_{B} B=x\right)\right) \\
& \quad \text { entails }
\end{aligned}
$$

Query: $\quad \mathrm{K}_{A} \exists z\left(B=z \wedge \neg \mathrm{~K}_{A} B=z \wedge \mathbf{K}_{B} B=z\right)$

Reduction: Eliminate Modal Operators

Reduction: Eliminate Modal Operators

$$
\begin{array}{ll}
\text { KB: } & \mathbf{O}_{A}\left(\begin{array}{l}
A=7 \wedge \forall x(B=x \rightarrow \underbrace{\mathbf{O}_{B} B=x})
\end{array}\right) \\
& \text { entails } \\
\text { eery: } & \mathbf{K}_{A} \exists z(B=z \wedge \neg \mathbf{K}_{A} B=z \wedge \overbrace{\mathbf{K}_{B} B=z}) \\
& \\
\mathrm{KB}^{\prime}: & \mathbf{O}_{A}(\Delta=7 \wedge \forall x(B=x \rightarrow P(x)))
\end{array}
$$

Reduction: Eliminate Modal Operators

Reduction: Eliminate Modal Operators

$$
\begin{aligned}
& \mathrm{KB}^{\prime}: \quad \mathbf{O}_{A}(A=7 \wedge \forall x(B=x \rightarrow P(x))) \\
& \text { entails } \\
& \text { Query': } \quad \mathbf{K}_{A} \exists z\left(B=z \wedge \neg \mathbf{K}_{A} B=z \wedge \exists x(P(x) \wedge \quad)\right) \\
& \text { Call validity oracle! [Levesque '84] }
\end{aligned}
$$

Reduction: Eliminate Modal Operators

$$
\begin{aligned}
& \mathrm{KB}^{\prime}: \quad \mathbf{O}_{A}(A=7 \wedge \forall x(B=x \rightarrow P(x))) \\
& \text { entails } \\
& \text { Query': } \left.\begin{array}{rl}
& \mathbf{K}_{A} \exists z(B=z \wedge \neg \mathbf{K}_{A} B=z \wedge \exists x(P(x) \wedge \underbrace{x=z})
\end{array}\right) \\
& \text { Call validity oracle! [Levesque '84] }
\end{aligned}
$$

Summary

Assumption: agents always only-know something about each other.

$$
\begin{array}{ll}
\chi & \mathbf{O}_{A}\left(P \rightarrow \mathbf{O}_{B} \alpha\right) \\
\checkmark & \mathbf{O}_{A}\left(\left(P \rightarrow \mathbf{O}_{B} \alpha\right) \wedge\left(\neg P \rightarrow \mathbf{O}_{B} \beta\right)\right) \\
\checkmark & \mathbf{O}_{A}\left(A=7 \wedge \forall x\left(B=x \rightarrow \mathbf{O}_{B} B=x\right)\right)
\end{array}
$$

Then:
Reasoning in multi-agent epistemic knowledge bases
Turing-reduces to
classical validity

Appendix

Multi-Agent Knowledge Bases

■ $\mathbf{O}_{A} \alpha=A$ only-knows $\alpha \quad$ [Levesque '84]

- A considers all models of α possible

Multi-Agent Knowledge Bases

■ $\mathbf{O}_{A} \alpha=A$ only-knows $\alpha \quad$ [Levesque '84]

- A considers all models of α possible

■ $\mathbf{O}_{A} \phi$ entails $K_{A} \psi \Longleftrightarrow \phi \rightarrow \psi$ is valid

- provided that ϕ, ψ are objective!

Multi-Agent Knowledge Bases

■ $\mathbf{O}_{A} \alpha=A$ only-knows $\alpha \quad$ [Levesque '84]

- A considers all models of α possible
$\square \mathbf{O}_{A} \phi$ entails $\mathbf{K}_{A} \psi \Longleftrightarrow \phi \rightarrow \psi$ is valid
- provided that ϕ, ψ are objective!
$\square \mathbf{O}_{A} \alpha$ implies $\mathbf{O}_{A} \beta \Longleftrightarrow \alpha$ and β are equivalent
- A can only-know at most one formula

Multi-Agent Knowledge Bases

■ $\mathbf{O}_{A} \alpha=A$ only-knows $\alpha \quad$ [Levesque '84]

- A considers all models of α possible
$\square \mathbf{O}_{A} \phi$ entails $\mathbf{K}_{A} \psi \Longleftrightarrow \phi \rightarrow \psi$ is valid
- provided that ϕ, ψ are objective!
$\square \mathbf{O}_{A} \alpha$ implies $\mathbf{O}_{A} \beta \Longleftrightarrow \alpha$ and β are equivalent
- A can only-know at most one formula
$\square \mathbf{O}_{A} \alpha$ is a multi-agent $\mathrm{KB} \Longleftrightarrow$ every model of α satisfies some $\mathbf{O}_{B} \beta$
$\times \mathbf{O}_{A}\left(P \rightarrow \mathbf{O}_{B} \alpha\right)$
$\checkmark \mathbf{O}_{A}\left(\left(P \rightarrow \mathbf{O}_{B} \alpha\right) \wedge\left(\neg P \rightarrow \mathbf{O}_{B} \beta\right)\right)$
$\checkmark \mathbf{O}_{A} \forall x\left(f=x \rightarrow \mathbf{O}_{B} \alpha(x)\right)$

Reduction

- Replace each $\mathbf{O}_{A} \alpha(\vec{x})$ with a fresh atom $P_{\alpha}(\vec{x})$

Reduction

- Replace each $\mathbf{O}_{A} \alpha(\vec{x})$ with a fresh atom $P_{\alpha}(\vec{x})$
- Replace each $\mathrm{K}_{A} \gamma(\vec{z})$ with a disjunction of

$$
\exists \vec{x}\left(P_{\alpha}(\vec{x}) \wedge \text { "for which } \vec{x}, \vec{z} \text { is } \alpha(\vec{x}) \rightarrow \gamma(\vec{z})\right. \text { is valid?" }
$$

over all $\mathbf{O}_{A} \alpha(\vec{x})$ at the same modal nesting level

Reduction

- Replace each $\mathbf{O}_{A} \alpha(\vec{x})$ with a fresh atom $P_{\alpha}(\vec{x})$
- Replace each $\mathrm{K}_{A} \gamma(\overrightarrow{\boldsymbol{z}})$ with a disjunction of

$$
\exists \vec{x}\left(P_{\alpha}(\vec{x}) \wedge \text { "for which } \vec{x}, \vec{z} \text { is } \alpha(\vec{x}) \rightarrow \gamma(\vec{z})\right. \text { is valid?" }
$$

over all $\mathbf{O}_{A} \alpha(\vec{x})$ at the same modal nesting level

- Axiomatise that $P_{\alpha}(\vec{x}), P_{\beta}(\vec{y})$ introduced for $\mathbf{O}_{A} \alpha(\vec{x}), \mathbf{O}_{A} \beta(\vec{y})$

$$
P_{\alpha}(\vec{x}) \rightarrow\left(P_{\beta}(\vec{y}) \leftrightarrow \text { "for which } \vec{x}, \vec{y} \text { is } \alpha(\vec{x}) \rightarrow \beta(\vec{y}) \text { is valid?" }\right)
$$

Summary

Multi-agent KB:

- Based on Levesque's logic of only-knowing

■ Every model of a multi-agent KB must satisfy some $\mathbf{O}_{B} \beta$
■ Allows for incomplete knowledge about other agent's knowledge

Summary

Multi-agent KB:

- Based on Levesque's logic of only-knowing

■ Every model of a multi-agent KB must satisfy some $\mathbf{O}_{B} \beta$
■ Allows for incomplete knowledge about other agent's knowledge

Reduction to classical reasoning:
■ Oracle for FOL validity
■ Turing reduction: calls oracle many times
■ Would need FO-K45 oracle if it weren't for

Summary

Multi-agent KB:
■ Based on Levesque's logic of only-knowing
■ Every model of a multi-agent KB must satisfy some $\mathbf{O}_{B} \beta$
■ Allows for incomplete knowledge about other agent's knowledge

Reduction to classical reasoning:

- Oracle for FOL validity

■ Turing reduction: calls oracle many times
■ Would need FO-K45 oracle if it weren't for

Implementation options:
■ FOL theorem prover (e.g., Vampire)

- Limited belief logic

