Christoph Schwering Maurice Pagnucco

UNSW Sydney, Australia

Reasoning in multi-agent epistemic knowledge bases reduces to classical validity

Reasoning in multi-agent epistemic knowledge bases reduces to classical validity

► Logical framework: Levesque's logic of only-knowing $\mathbf{K}_A \alpha \quad \mathbf{O}_A \alpha$

Reasoning in multi-agent epistemic knowledge bases <u>Turing-reduces</u> to classical validity

► Logical framework: Levesque's logic of only-knowing $\mathbf{K}_A \alpha \quad \mathbf{O}_A \alpha$

Reasoning in multi-agent epistemic knowledge bases Turing-reduces to classical validity

- ► Logical framework: Levesque's logic of only-knowing $\mathbf{K}_A \alpha \quad \mathbf{O}_A \alpha$
- Could implement reasoning service with <u>off-the-shelf</u> theorem prover

KB: $\mathbf{O}_A \left(\underline{A} = 7 \land \forall x \left(\underline{B} = x \to \mathbf{O}_B \underline{B} = x \right) \right)$

A only knows that A = 7 and that if B = x, then B only knows that B = x

KB:
$$\mathbf{O}_A(A = 7 \land \forall x(B = x \to \mathbf{O}_B B = x))$$

entails

Query: $\mathbf{K}_A \exists z \left(\underline{B} = z \land \neg \mathbf{K}_A \underline{B} = z \land \mathbf{K}_B \underline{B} = z \right)$

KB:
$$\mathbf{O}_A \left(\underline{A} = 7 \land \forall x \left(\underline{B} = x \to \underline{O}_B \underline{B} = x \right) \right)$$

entails
Query: $\mathbf{K}_A \exists z \left(\underline{B} = z \land \neg \mathbf{K}_A \underline{B} = z \land \overline{\mathbf{K}_B \underline{B} = z} \right)$

KB:
$$\mathbf{O}_A \left(\mathbf{A} = 7 \land \forall x \left(\mathbf{B} = x \to \mathbf{O}_B \mathbf{B} = x \right) \right)$$

entails
Query: $\mathbf{K}_A \exists z \left(\mathbf{B} = z \land \neg \mathbf{K}_A \mathbf{B} = z \land \mathbf{K}_B \mathbf{B} = z \right)$

KB':
$$\mathbf{O}_A(\underline{A} = 7 \land \forall x(\underline{B} = x \to P(x)))$$

KB:
$$\mathbf{O}_A \left(\mathbf{A} = 7 \land \forall x \left(\mathbf{B} = x \to \mathbf{O}_B \mathbf{B} = x \right) \right)$$

entails
Query: $\mathbf{K}_A \exists z \left(\mathbf{B} = z \land \neg \mathbf{K}_A \mathbf{B} = z \land \mathbf{K}_B \mathbf{B} = z \right)$

KB':
$$\mathbf{O}_A \left(\overrightarrow{A} = 7 \land \forall x \left(\overrightarrow{B} = x \to P(x) \right) \right)$$

entails
Query': $\mathbf{K}_A \exists z \left(\overrightarrow{B} = z \land \neg \mathbf{K}_A \overrightarrow{B} = z \land \exists x (P(x) \land) \right)$
"For which x, z does $\mathbf{O}_B \overrightarrow{B} = x$ entail $\mathbf{K}_B \overrightarrow{B} = z$?"

KB:
$$\mathbf{O}_A \left(\underline{A} = 7 \land \forall x \left(\underline{B} = x \to \underline{O}_B \underline{B} = x \right) \right)$$

entails
Query: $\mathbf{K}_A \exists z \left(\underline{B} = z \land \neg \mathbf{K}_A \underline{B} = z \land \overline{\mathbf{K}_B \underline{B} = z} \right)$

KB':
$$\mathbf{O}_A \left(\overrightarrow{A} = 7 \land \forall x \left(\overrightarrow{B} = x \to P(x) \right) \right)$$

entails
Query': $\mathbf{K}_A \exists z \left(\overrightarrow{B} = z \land \neg \mathbf{K}_A \overrightarrow{B} = z \land \exists x (P(x) \land) \right)$
"For which x, z is $\overrightarrow{B} = x \to \overrightarrow{B} = z$ valid?"
Call validity oracle! [Levesque '84]

KB:
$$\mathbf{O}_A \left(\mathbf{A} = 7 \land \forall x \left(\mathbf{B} = x \to \mathbf{O}_B \mathbf{B} = x \right) \right)$$

entails
Query: $\mathbf{K}_A \exists z \left(\mathbf{B} = z \land \neg \mathbf{K}_A \mathbf{B} = z \land \mathbf{K}_B \mathbf{B} = z \right)$

KB':
$$\mathbf{O}_A \left(\mathbf{A} = 7 \land \forall x \left(\mathbf{B} = x \to P(x) \right) \right)$$

entails
Query': $\mathbf{K}_A \exists z \left(\mathbf{B} = z \land \neg \mathbf{K}_A \mathbf{B} = z \land \exists x (P(x) \land x = z) \right)$
"For which x, z is $\mathbf{B} = x \to \mathbf{B} = z$ valid?"
Call validity oracle! [Levesque '84]

Assumption: agents always only-know something about each other.

$$\begin{array}{l} \checkmark \quad \mathbf{O}_A \left(P \to \mathbf{O}_B \alpha \right) \\ \checkmark \quad \mathbf{O}_A \left(\left(P \to \mathbf{O}_B \alpha \right) \land \left(\neg P \to \mathbf{O}_B \beta \right) \right) \\ \checkmark \quad \mathbf{O}_A \left(\boxed{A} = 7 \land \forall x \left(\boxed{B} = x \to \mathbf{O}_B \boxed{B} = x \right) \right) \end{array}$$

Then:

Reasoning in multi-agent epistemic knowledge bases Turing-reduces to classical validity Appendix

O_A $\alpha = A$ only-knows α [Levesque '84]

• A considers <u>all</u> models of α possible

■ $\mathbf{O}_A \alpha = A$ only-knows α [Levesque '84] ► A considers <u>all</u> models of α possible ■ $\mathbf{O}_A \phi$ entails $\mathbf{K}_A \psi \iff \phi \rightarrow \psi$ is valid

 \blacktriangleright provided that ϕ, ψ are objective!

O_A α = A only-knows α [Levesque '84]
 A considers <u>all</u> models of α possible

■ $\mathbf{O}_A \phi$ entails $\mathbf{K}_A \psi \iff \phi \rightarrow \psi$ is valid ▶ provided that ϕ, ψ are objective!

O_A α implies O_A β ⇔ α and β are equivalent
 A can only-know at most one formula

■ $\mathbf{O}_A \alpha = A$ only-knows α [Levesque '84] ► A considers <u>all</u> models of α possible

■
$$\mathbf{O}_A \phi$$
 entails $\mathbf{K}_A \psi \iff \phi \rightarrow \psi$ is valid
▶ provided that ϕ, ψ are objective!

- **O**_{*A*} α implies **O**_{*A*} $\beta \iff \alpha$ and β are equivalent
 - A can only-know at most one formula

O_A α is a <u>multi-agent KB</u> \iff every model of α satisfies some **O**_B β

$$\begin{array}{l} \checkmark \quad \mathbf{O}_A \left(P \to \mathbf{O}_B \alpha \right) \\ \checkmark \quad \mathbf{O}_A \left((P \to \mathbf{O}_B \alpha) \land (\neg P \to \mathbf{O}_B \beta) \right) \\ \checkmark \quad \mathbf{O}_A \forall x \left(f = x \to \mathbf{O}_B \alpha(x) \right) \end{array}$$

Reduction

E Replace each $\mathbf{O}_A \alpha(\vec{x})$ with a fresh atom $P_{\alpha}(\vec{x})$

Reduction

- **E** Replace each $\mathbf{O}_A \alpha(\vec{x})$ with a fresh atom $P_{\alpha}(\vec{x})$
- **Replace each K**_A $\gamma(\vec{z})$ with a disjunction of

 $\exists \vec{x} (P_{\alpha}(\vec{x}) \land \text{"for which } \vec{x}, \vec{z} \text{ is } \alpha(\vec{x}) \rightarrow \gamma(\vec{z}) \text{ is valid?"})$

over all $\mathbf{O}_A \alpha(\vec{x})$ at the same modal nesting level

Reduction

- **E** Replace each $\mathbf{O}_A \alpha(\vec{x})$ with a fresh atom $P_{\alpha}(\vec{x})$
- Replace each $\mathbf{K}_A \gamma(\vec{z})$ with a disjunction of $\exists \vec{x} \left(P_{\alpha}(\vec{x}) \land \text{"for which } \vec{x}, \vec{z} \text{ is } \alpha(\vec{x}) \to \gamma(\vec{z}) \text{ is valid?"} \right)$ over all $\mathbf{O}_A \alpha(\vec{x})$ at the same modal nesting level
- Axiomatise that $P_{\alpha}(\vec{x}), P_{\beta}(\vec{y})$ introduced for $\mathbf{O}_{A}\alpha(\vec{x}), \mathbf{O}_{A}\beta(\vec{y})$

 $P_{\alpha}(\vec{x}) \rightarrow \left(P_{\beta}(\vec{y}) \leftrightarrow \text{"for which } \vec{x}, \vec{y} \text{ is } \alpha(\vec{x}) \rightarrow \beta(\vec{y}) \text{ is valid?"}\right)$

<u>Multi-agent KB</u>:

- Based on Levesque's logic of only-knowing
- Every model of a multi-agent KB must satisfy some $\mathbf{O}_B \beta$
- Allows for incomplete knowledge about other agent's knowledge

Multi-agent KB:

- Based on Levesque's logic of only-knowing
- Every model of a multi-agent KB must satisfy some \mathbf{O}_Beta
- Allows for incomplete knowledge about other agent's knowledge

Reduction to classical reasoning:

- Oracle for FOL validity
- Turing reduction: calls oracle many times
- Would need FO-K45 oracle if it weren't for

<u>Multi-agent KB</u>:

- Based on Levesque's logic of only-knowing
- Every model of a multi-agent KB must satisfy some $\mathbf{O}_{\!B}eta$.
- Allows for incomplete knowledge about other agent's knowledge

Reduction to classical reasoning:

- Oracle for FOL validity
- Turing reduction: calls oracle many times
- Would need FO-K45 oracle if it weren't for

Implementation options:

- FOL theorem prover (e.g., Vampire)
- Limited belief logic