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Abstract

A fundamental task in reasoning about action and change is
projection, which refers to determining what holds after a
number of actions have occurred. A powerful method for
solving the projection problem is regression, which reduces
reasoning about the future to reasoning about the initial state.
In particular, regression has played an important role in the
situation calculus and its epistemic extensions. Recently, a
modal variant of the situation calculus was proposed, which
allows an agent to revise its beliefs based on so-called belief
conditionals as part of its knowledge base. In this paper, we
show how regression can be extended to reduce beliefs about
the future to initial beliefs in the presence of belief condition-
als. Moreover, we show how any remaining belief operators
can be eliminated as well, thus reducing the belief projection
problem to ordinary first-order entailments.

1 Introduction
A fundamental task in reasoning about action and change
is projection, which refers to determining what holds after
a number of actions have occurred. A powerful method
for solving the projection problem is regression, which re-
duces reasoning about the future to reasoning about the ini-
tial state. In particular, regression has played an important
role in the situation calculus (McCarthy 1963; Reiter 2001)
and its epistemic extensions (Scherl and Levesque 2003;
Lakemeyer and Levesque 2011).

One drawback of these epistemic extensions is that beliefs
cannot be revised in the presence of conflicting information.
For example, imagine a person in a restaurant who (mistak-
enly) believes that the restaurant’s specialty is burger. She
also believes that the specialties of Italian restaurants are
pasta or pizza. If she then figures out that the restaurant
is indeed Italian, she should revise her beliefs about the spe-
cialties of this particular restaurant. In (Shapiro et al. 2011)
and, more recently, (Schwering and Lakemeyer 2014), it is
shown how such belief revision scenarios can be modelled in
the framework of the situation calculus using so-called belief
conditionals. However, it remains open how to address the
projection problem in the presence of belief conditionals.

In this paper, we provide a solution using regression. The
work is carried out within the logic ESB of (Schwering and
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Lakemeyer 2014), which is a modal variant of the situation
calculus with belief revision proposed earlier by Shapiro et
al. (2011). We further draw on a result from (Levesque and
Lakemeyer 2001) to reduce reasoning about beliefs to (non-
modal) first-order entailments.

While the situation calculus is perhaps the most thor-
oughly studied action formalism, there are others such as the
event calculus (Kowalski and Sergot 1989), the fluent calcu-
lus (Thielscher 1999), and the family of action languages A
(Gelfond and Lifschitz 1993). An alternative to projection
by regression is progression (Lin and Reiter 1997), where
a query about the future is answered by first updating the
initial knowledge base to account for the effects of actions
and then checking whether the query follows from the re-
sulting knowledge base. While progression may be prefer-
able over regression for long sequences of action, it has the
disadvantage that the resulting knowledge base is not al-
ways first-order representable. Besides (Shapiro et al. 2011;
Schwering and Lakemeyer 2014), a number of other propos-
als such as (Demolombe and Pozos Parra 2006; Delgrande
and Levesque 2012; Fang and Liu 2013) have dealt with ex-
tending action formalisms with belief revision in the spirit
of AGM (Alchourron, Gärdenfors, and Makinson 1985).
In (Pagnucco et al. 2013) a limited solution to the projection
problem in action theories derived from (Shapiro et al. 2011)
is proposed by a translation to Default Logic extended with
preferences (Baumann et al. 2010), together with an imple-
mentation using Answer Set Programming (Gelfond 2008).
The limitations include a finite domain and a restriction to
non-nested beliefs. To the best of our knowledge, there cur-
rently are no general solutions to the projection problem in
the context of belief revision.

The rest of the paper is organized as follows. The next
section presents the logic ESB. Next, we define Reiter’s ba-
sic action theories within ESB. In Section 4, we devise a re-
gression theorem for ESB. Afterwards we show how beliefs
can be reduced to first-order entailments. Then we conclude.

2 The Logic ESB
ESB is a logic for reasoning about actions and beliefs. It
is based on the modal variant of the situation calculus ES
(Lakemeyer and Levesque 2011) and the belief revision
framework by Shapiro et al. (2011). Only-believing allows
to express all the agent believes through belief conditionals



in the spirit of Lewis’ counterfactuals (Lewis 1973), and in a
way closely related to Pearl’s System Z (Pearl 1990). These
beliefs may be updated or revised by actions. Semantically,
beliefs are represented by possible worlds ranked by their
plausibility, where only the most plausible worlds determine
the current beliefs. Given new information, some possible
worlds may be dropped, thus leading to new beliefs.

The Language
The language ESB is a first-order modal language with
equality and sorts of type action and object. It comes with
a countably infinite set of standard names for both sorts,
which can be thought of as special constants that satisfy the
unique name assumptions and an infinitary version of do-
main closure.

The set of terms of sort action or object is the least set
that contains all variables and standard names of the cor-
responding sort. Function symbols are left out to ease the
presentation.

The set of formulas is the least set that contains
P (t1, . . . , tk), (t1 = t2), (α∧α′), ¬α, ∀x.α, [r]α, �α, Pα,
Kα, Bα, B(φ1⇒ ψ1), O(α, {φ1⇒ ψ1, . . . , φm⇒ ψm}),
where P is a predicate symbol, t1, . . . , tk are terms, r
is an action term, x is variable, and α, α′, φ1, . . . , φm,
ψ1, . . . , ψm are formulas. We read [r]α as “α holds after ac-
tion r,” �α as “α holds after any sequence of actions,” and
Pα as “αwas true before the last action.” We read Kα as “α
is known” and Bα as “α is believed.” The belief conditional
B(φ⇒ ψ) is read like Lewis’ counterfactuals (Lewis 1973):
“it is believed that, if φ was true, then ψ would be true.” The
only-believing operator O(α, {φ1 ⇒ ψ1, . . . , φm ⇒ ψm})
means that α is known, the counterfactuals φi ⇒ ψi are
believed, but nothing else is known or believed.

We will use ∨, ∃, ⊃, ≡, TRUE, and FALSE as the usual
abbreviations. Given natural numbers p, p1, . . . , pm and for-
mulas α1, . . . , αm, we let

∧
i:pi≥p αi stand for the conjunc-

tion of all αi for which pi ≥ p. By αxn we denote the formula
α with all free occurrences of x replaced with n. We some-
times write ~t for t1, . . . , tk.

When we omit brackets, the operator precedence is in de-
creasing order [r], ¬, ∧, ∨, ∃, ∀, ⊃, ≡, �. Free variables are
implicitly universally quantified with maximal scope unless
said otherwise. Thus �[a]D(x) ≡ a = odr ∧ S(x) ∨D(x)
means ∀a.∀x.�(([a]D(x)) ≡ (a = odr ∧ S(x)) ∨ D(x)).
We use sans-serif font for standard names like odr.

There are two distinguished predicates, Poss(a) to cap-
ture an action’s precondition and SF (a) to represent an ac-
tion’s binary sensing result.

A formula with no [r], �, or P is called static. A formula
with no K, B, or O is called objective. An objective, static
formula with no Poss or SF is called a fluent formula. A
formula with no free variable is called a sentence.

The Semantics
Truth of a formula α is defined wrt a sequence actions z,
the actual world w, and the agent’s epistemic state f . We
write f, w, z |= α. More precisely, z is a sequence of action
standard names that represent the actions executed so far and

thus denotes to the current situation. A world w is a function
that determines a truth value w[P (~n), z] ∈ {0, 1} for each
ground atom P (~n) and sequence of actions z. An epistemic
state f is a function that maps each plausibility p ∈ N to a
set of worlds f(p) considered possible at plausibility level
p. The most plausible possible worlds are only in f(0), less
plausible worlds in f(1), and so on. When z is the empty
sequence 〈〉, we often omit it. When f or w are irrelevant to
the truth of α we may leave them out as well.

We now present the objective part of the semantics:

1. f, w, z |= P (n1, . . . , nk) iff w[P (n1, . . . , nk), z] = 1;

2. f, w, z |= (n1 = n2) iff n1 and n2 are identical;

3. f, w, z |= (α1 ∧ α2) iff f, w, z |= α1 and f, w, z |= α2;

4. f, w, z |= ¬α iff f, w, z 6|= α;

5. f, w, z |= ∀x.α iff f, w, z |= αxn
for all standard names n of the corresponding sort;

6. f, w, z |= [n]α iff f, w, z · n |= α;

7. f, w, z |= �α iff f, w, z · z′ |= α for all z′;

8. f, w, z |= Pα iff f, w, z′ |= α and z = z′ · n
for some z′ and n.

To characterize what is believed after an action sequence
z, we define the relation w′ 'z w for any given w (read: w′
agrees with w on the sensing throughout z) as follows:

• w′ '〈〉 w for all worlds w′;

• w′ 'z·n w iff w′ 'z w and w′[SF (n), z] = w[SF (n), z].

To ease the presentation of the following semantic rules,
it is convenient to write f, w, z |= Kpα as shorthand for
“for all w′ 'z w, if w′ ∈ f(p), then f, w′, z |= α” for any
p ∈ N. In other words, the macro expresses knowledge at
plausibility level p. Notice that KpFALSE holds if no world
is considered possible at plausibility level p, and ¬Kp¬α
means that there is at least one world which satisfies α at
plausibility level p.

Similarly we write f, w, z |= Opα to abbreviate “for all
w′ 'z w, w′ ∈ f(p) iff f, w′, z |= α” for any p ∈ N. This
macro thus expresses that α is all that is known at plausibil-
ity level p, which corresponds to only-knowing in (Levesque
and Lakemeyer 2001).

The semantics of the epistemic operators follows:

9. f, w, z |= Kα iff for all p ∈ N, f, w, z |= Kpα;

10. f, w, z |= Bα iff for all p ∈ N,
if f, w, z |= KqFALSE for all q < p,
then f, w, z |= Kpα;

11. f, w, z |= B(φ⇒ ψ) iff for all p ∈ N,
if f, w, z |= Kq¬φ for all q < p,
then f, w, z |= Kp(φ ⊃ ψ);

12. f, w, z |= O(α, {φ1 ⇒ ψ1, . . . , φm ⇒ ψm}) iff
for some p1, . . . , pm ∈ N ∪ {∞},

(a) f, w, z |= Op(α ∧
∧
i:pi≥p(φi ⊃ ψi)) for all p ∈ N,

(b) f, w, z |= Kp¬φi for all i and for all p < pi,
(c) f, w, z 6|= Kpi¬φi for all i with pi 6=∞.



Intuitively, Bα holds if all worlds of the first non-empty
plausibility level satisfy α. B(φ ⇒ ψ) holds if all worlds
of the first plausibility level that is consistent with φ satisfies
φ ⊃ ψ. The purpose of only-believing is to determine the
agent’s epistemic state:

Theorem 1 ((Schwering and Lakemeyer 2014)) Let α,
φ1, . . . , φm, and ψ1, . . . , ψm be objective. Then there is a
unique f such that f |= O(α, {φ1 ⇒ ψ1, . . . , φm ⇒ ψm}).

A set of sentences Σ entails α (written as Σ |= α) iff for
every f , for every w, if f, w |= α′ for every α′ ∈ Σ, then
f, w |= α. A sentence is valid (written as |= α) iff {} |= α.

3 Basic Action Theories
To axiomatize a dynamic domain we use the modal variant
of Reiter’s basic action theories (Lakemeyer and Levesque
2011; Reiter 2001). A basic action theory over a finite set of
fluent predicates F consists of a static and a dynamic part.
The dynamic axioms express when an action is executable
(Σpre), how actions change the truth values of fluents (Σpost),
and how actions produce knowledge (Σsense):

• Σpre contains a single sentence �Poss(a) ≡ π where π is
a fluent formula;

• Σpost contains a sentence �[a]F (~x) ≡ γF for all F ∈ F
where γF is a fluent formula;

• Σsense contains a single sentence �SF (a) ≡ ϕ where ϕ is
a fluent formula.

The sentences in Σpost are called successor state axioms be-
cause they relate the state after an action a to the one before
a. They incorporate Reiter’s solution to the frame problem
(Reiter 2001). We refer to the dynamic axioms as Ω.

The static part of a basic action theory expresses what is
true initially in the real world (Σ0) or what the agent believes
to be true (Σbel), respectively:

• Σ0 contains finitely many fluent sentences;

• Σbel contains finitely many belief conditionals φ ⇒ ψ
where φ and ψ are fluent sentences.

In the rest of the paper, we use two basic action theo-
ries about the same set of fluents F to represent the ac-
tual world (Σ0,Ω) and the agent’s beliefs (Σ′bel,Ω

′), respec-
tively. Then the projection problem is to decide whether this
theory entails a sentence α involving actions and beliefs:
Ω ∧ Σ0 ∧O(Ω′,Σ′bel) |= α.1

Example Imagine a person at a restaurant who wants to
order the specialty. Her model of the domain’s dynamics
shall be correct, so we have one set of dynamic axioms Ω
for both the actual and the believed basic action theory.

The specialties are represented by S(x) and the ordered
dishes by D(x). The agent can order the specialty through
action odr and she can sense whether or not she is at an
Italian restaurant, indicated by I , through action loc. Hence

1We identify a finite set of sentences with their conjunction.

the dynamic axioms Ω are the union of:

Σpre = {�Poss(a) ≡ TRUE}
Σpost = {�[a]D(x) ≡ a = odr ∧ S(x) ∨D(x),

�[a]S(x) ≡ S(x), �[a]I ≡ I}
Σsense = {�SF (a) ≡ a = loc ⊃ I}

In fact, the restaurant is Italian, but the agent does not
know that and believes the specialty to be burgers. But she
also believes that if the restaurant was Italian, the specialty
would be pasta or pizza. Thus we have:

Σ0 = {I}
Σ′bel = {TRUE ⇒ S(x) ≡ x = burger,

I ⇒ S(pasta) ∨ S(pizza)}

Therefore the agent believes to get a burger after ordering
the specialty. After sensing that the restaurant is Italian, she
changes that belief to pasta or pizza. That is, she believes to
be served a specialty x, but she is unsure what x is. Hence
we have the following entailments:

Ω∧Σ0∧O(Ω,Σ′bel) |= [odr]BD(burger)

Ω∧Σ0∧O(Ω,Σ′bel) |= [odr][loc]B(∃x.(D(x) ∧ ¬BD(x)))

We will use the second entailment to illustrate the techniques
developed in the paper.

4 Projection by Regression
Regression rewrites a formula about future situations to a
formula about the current situation (Reiter 2001). The idea
is to successively replace subformulas [r]F (~t) with the right-
hand side of F ’s successor state axiom γF . As we shall see
in this section, we can similarly regress action occurrences
in front of belief modalities. More precisely, our regression
operator can handle ESB formulas with no � or O, provided
predicates are taken from F ∪ {Poss,SF}. We call such a
formula regressable.

As there is a faithful translation of ES basic action theo-
ries to Reiter’s classical situation calculus (Lakemeyer and
Levesque 2011), the regression result from this section car-
ries over to the work by Shapiro et al. (2011).

Regression of Objective Formulas
For objective regressable formulas, our regression opera-
tor closely follows the one presented by Lakemeyer and
Levesque (2011) for the logic ES, except that we add a rule
to handle Pα. We assume from now on that all basic ac-
tion theories and formulas are rectified, that is, all quantifiers
have distinct variables. Then the regression of an objective
formula α after actions z wrt a basic action theory with dy-
namic axioms Ω is defined as follows:

1. R[z, (t1 = t2)] = (t1 = t2);

2. R[z, (α1 ∧ α2)] = (R[z, α1] ∧R[z, α2]);

3. R[z,¬α] = ¬R[z, α];

4. R[z,∀x.α] = ∀x.R[z, α];

5. R[z, [r]α] = R[z · r, α];



6. R[〈〉,Pα] = FALSE;
R[z · r,Pα] = R[z, α];

7. R[z,Poss(r)] = R[z, πar ];

8. R[z,SF (r)] = R[z, ϕar ];

9. R[〈〉, F (~t)] = F (~t);

R[z · r, F (~t)] = R[z, γF
~x a
~t r

].

The most interesting rule is 9, which substitutes a fluentF (~t)
after an action r with the appropriately instantiated right-
hand side of F ’s successor state axiom γF

~x a
~t r

. Notice that
Poss and SF atoms are replaced with their corresponding
right-hand sides. It is easy to see that the regression of an
objective regressable formula is independent of Ω:

Theorem 2 Let α be an objective regressable sentence.
Then: Ω ∧ Σ0 |= α iff Σ0 |= R[〈〉, α].

Proof. The proof is by induction on z and sub-induction on
the length of α. We only do the proof for formulas of the
form Pα, for the other cases we refer to (Lakemeyer and
Levesque 2011). Suppose w1 |= Ω ∧ Σ0 and w2 |= Σ0.

For the base case let z = 〈〉. Then we have: w1, 〈〉 |= Pα
iff (by semantic rule 8) w1, 〈〉 |= FALSE iff (by defini-
tion of R) w2 |= R[〈〉, FALSE] iff (by definition of R)
w2 |= R[〈〉,Pα].

Now consider z · n for the induction step. Then we
have: w1, z · n |= Pα iff (by semantic rule 8) w1, z |= α
iff (by induction) w2 |= R[z, α] iff (by definition of R)
w2 |= R[z · n,Pα].

Example (cont.) We regress [odr][loc]∃x.D(x), which
says that the agent gets a dish after ordering the specialty and
sensing in what restaurant she is. Via ∃x.R[odr · loc, D(x)]
we get ∃x.R[odr, loc = odr∧S(x)∨D(x)], which is equiv-
alent to ∃x.R[odr, D(x)]. Then we get ∃x.R[〈〉, odr =
odr∧S(x)∨D(x)], which is equivalent to ∃x.(S(x)∨D(x)).

Regression of Subjective Formulas
Now we extend the regression operator to handle epistemic
operators for knowledge and belief. To begin with, the fol-
lowing two lemmas show that Kα and Bα can both be re-
duced to belief conditionals B(φ⇒ ψ):

Lemma 3 |= �Kα ≡ B(¬α⇒ FALSE)

Proof. For the only-if direction suppose f, w, z |= Kα.
Thus f, w, z |= Kpα for all p ∈ N, and therefore f, w, z |=
Kp(¬α ⊃ FALSE). Thus f, w, z |= B(¬α⇒ FALSE).

For the if direction suppose f, w, z |= B(¬α ⇒ FALSE).
We show that f, w, z |= Kpα for all p ∈ N by induction.
f, w, z |= B(¬α ⇒ FALSE) implies f, w, z |= K0(¬α ⊃
FALSE), which simplifies to f, w, z |= K0α. For the induc-
tion step let p ∈ N and f, w, z |= Kqα for all q < p. Thus
f, w, z |= Kq¬¬α, and since f, w, z |= B(¬α ⇒ FALSE),
f, w, z |= Kp(¬α ⊃ FALSE). Thus f, w, z |= Kpα.

Lemma 4 |= �Bα ≡ B(TRUE ⇒ α)

Proof. Follows from semantic rules 10 and 11.

Hence the really interesting epistemic operator is the be-
lief conditional B(φ ⇒ ψ). The following result can be
considered a successor state axiom for belief conditionals,
as it relates beliefs after some action to the beliefs before
that action. It thus lies the ground of regression of beliefs:
Theorem 5
|= �[a]B(φ⇒ ψ) ≡

SF (a) ∧B( SF (a) ∧ [a]φ⇒ [a]ψ) ∨
¬SF (a) ∧B(¬SF (a) ∧ [a]φ⇒ [a]ψ)

Proof. By contradiction. Let f, w, z |= SF (n); the case for
¬SF (a) is completely analogous.

For the only-if direction let f, w, z |= [n]B(φan ⇒ ψan)
but f, w, z 6|= B(SF (n) ∧ [n]φan ⇒ [n]ψan). Then there is
some p ∈ N such that for all q < p, f, w, z |= Kq¬(SF (n)∧
[n]φan) and f, w, z 6|= Kp(SF (n) ∧ [n]φan ⊃ [n]ψan). There-
fore firstly for all q < p, for all w′ ∈ f(q) with w′ 'z w,
f, w′, z |= ¬(SF (n) ∧ [n]φan) and secondly for some w′′ ∈
f(p) with w′′ 'z w, f, w′′, z 6|= SF (n) ∧ [n]φan ⊃ [n]ψan,
which means that f, w′′, z |= SF (n)∧[n]φan∧¬[n]ψan. Thus
for all q < p, for all w′ ∈ f(q) with w′ 'z w, we have
w′ 6'z·n w or f, w′, z · n |= ¬φan, but for some w′′ ∈ f(p)
with w′′ 'z·n w, we have f, w′′, z · n |= φan ∧ ¬ψan. There-
fore f, w, z · n |= Kq¬φan for all q < p and f, w, z · n 6|=
Kp(φan ⊃ ψan). Hence f, w, z · n 6|= B(φan ⇒ ψan), and this
is f, w, z 6|= [n]B(φan ⇒ ψan), which is a contradiction.

For the if direction suppose f, w, z |= B(SF (n) ∧
[n]φan ⇒ [n]ψan) but f, w, z 6|= [n]B(φan ⇒ ψan). Then there
is some p ∈ N such that for all q < p, f, w, z · n |= Kq¬φan
and f, w, z · n 6|= Kp(φan ⊃ ψan). Therefore for all q < p,
there is now′ ∈ f(q) withw′ 'z·n and f, w′, z ·n |= φan and
there is some w′′ ∈ f(p) with w′′ 'z·n such that f, w′′, z ·
n 6|= φan ⊃ ψan. Thus for all q < p, for all w′ ∈ f(q) with
w′ 'z w, f, w′, z |= ¬(SF (n) ∧ [n]φan) and for some w′′ ∈
f(p) with w′′ 'z w, f, w′′, z |= SF (n) ∧ [n]φan ∧ ¬[n]ψan.
Hence for all q < pwe have f, w, z |= Kq¬(SF (n)∧[n]φan)
and f, w, z 6|= Kp(SF (n) ∧ [n]φan ⊃ [n]ψan). Therefore
f, w, z 6|= B(SF (n) ∧ [n]φan ⇒ [n]ψan), which is a contra-
diction.

In our example, the agent believes to get pasta or pizza
after she finds out the restaurant is Italian. By Theorem 5
this is because prior to that, she had believed that if she was
at an Italian restaurant, she would get pasta or pizza.

We now extend the regression operator to deal with be-
liefs. To this end, we add to the regression operator
R[Ω′,Ω, z, α] two new arguments with the understanding
that the previous rules are retrofitted with these arguments
as well and regression is performed wrt Ω. Intuitively, Ω′

is what the agent believes to be the world’s laws of dynam-
ics, while Ω represents the actual laws of dynamics. Then
epistemic modalities are regressed as follows:

10. R[Ω′,Ω, z,Kα] = R[Ω′,Ω, z,B(¬α⇒ FALSE)];
11. R[Ω′,Ω, z,Bα] = R[Ω′,Ω, z,B(TRUE ⇒ α)];
12. R[Ω′,Ω, 〈〉,B(φ⇒ ψ)] = B(φ′ ⇒ ψ′)

where φ′ = R[Ω′,Ω′, 〈〉, φ] and ψ′ = R[Ω′,Ω′, 〈〉, ψ];
R[Ω′,Ω, z · r,B(φ⇒ ψ)] = R[Ω′,Ω, z, βar ]
where β is the right-hand side of Theorem 5.



We need some preparatory work before we can extend
Theorem 2 to the subjective case in Theorem 12:

Definition 6 For a world w, the world wΩ satisfies the fol-
lowing conditions:

• wΩ[F (~n), 〈〉] = w[F (~n), 〈〉] and
wΩ[F (~n), z · n′] = 1 iff wΩ, z |= γF

~x a
~n n′ for all F ∈ F ;

• wΩ[P (~n), z] = w[P (~n), z] for all P /∈ F ∪ {Poss,SF};
• wΩ[Poss(n), z] = 1 iff wΩ, z |= πan;
• wΩ[SF (n), z] = 1 iff wΩ, z |= ϕan.

Definition 7 For an epistemic state f , fΩ is such that
fΩ(p) = {wΩ | w ∈ f(p)} for all p ∈ N.

In other words, wΩ and fΩ comply with w and f for the
initial truth values, which in the face of actions change ac-
cording to Ω. They are uniquely determined by the basic
action theory and w or f , respectively, because successor
state axioms prevent nondeterminism. We thus have the fol-
lowing lemmas, which generalize results from (Lakemeyer
and Levesque 2011) to the case of beliefs:

Lemma 8 If w |= Ω ∧ Σ0, then wΩ = w.

Lemma 9 If w |= Σ0, then wΩ |= Ω ∧ Σ0.

Lemma 10 If f |= O(TRUE,Σbel), then fΩ |= O(Ω,Σbel).

Lemma 11 Let α be a regressable sentence.
Then: f, w |= R[Ω′,Ω, z, α] iff fΩ′ , wΩ, z |= α.

Proof. The proof is by induction on z and sub-induction on
the lengthαwhere the length B(φ⇒ ψ) is the length of φ ⊃
ψ plus 1, the length of Kα is the length of B(¬α⇒ FALSE)
plus 1, and the length Bα is the length of B(TRUE ⇒ α)
plus 1.

For the base case let z = 〈〉. For objective formulas we
refer to (Lakemeyer and Levesque 2011).

For formulas B(φ⇒ ψ) we have: fΩ′ , wΩ, 〈〉 |= B(φ⇒
ψ) iff (by semantic rule 11) for all p ∈ N, if for all
q < p, for all w′ ∈ fΩ′(q), fΩ′ , w′, 〈〉 |= ¬φ, then
for all w′ ∈ fΩ′(p), fΩ′ , w′, 〈〉 |= φ ⊃ ψ iff (by def-
inition of fΩ′ ) for all p ∈ N, if for all q < p, for all
w′ ∈ f(q), fΩ′ , w′Ω′ , 〈〉 |= ¬φ, then for all w′ ∈ f(p),
fΩ′ , w′Ω′ , 〈〉 |= φ ⊃ ψ iff (by sub-induction) for all p ∈ N,
if for all q < p, for all w′ ∈ f(q), f, w′ |= R[Ω′,Ω, 〈〉,¬φ],
then for all w′ ∈ f(p), f, w′ |= R[Ω′,Ω, 〈〉, φ ⊃ ψ] iff
(by definition of R) for all p ∈ N, if for all q < p, for all
w′ ∈ f(q), f, w′ |= ¬R[Ω′,Ω, 〈〉, φ], then for all w′ ∈ f(p),
f, w′ |= R[Ω′,Ω, 〈〉, φ] ⊃ R[Ω′,Ω, 〈〉, ψ] iff (by semantic
rule 11) f, w |= B(R[Ω′,Ω, 〈〉, φ] ⇒ R[Ω′,Ω, 〈〉, ψ]) iff
(by definition ofR) f, w |= R[Ω′,Ω, 〈〉,B(φ⇒ ψ)].

For formulas Kα we have: fΩ′ , wΩ, 〈〉 |= Kα iff (by
Lemma 3) fΩ′ , wΩ, 〈〉 |= B(¬α ⇒ FALSE) iff (by sub-
induction) f, w |= R[Ω′,Ω, 〈〉,B(¬α ⇒ FALSE)] iff (by
definition ofR) f, w |= R[Ω′,Ω, 〈〉,Kα].

For formulas Bα we have: fΩ′ , wΩ, 〈〉 |= Bα iff (by
Lemma 4) fΩ′ , wΩ, 〈〉 |= B(TRUE ⇒ α) iff (by sub-
induction) f, w |= R[Ω′,Ω, 〈〉,B(TRUE ⇒ α)] iff (by defi-
nition ofR) f, w |= R[Ω′,Ω, 〈〉,Bα].

Now consider z · n for the main induction step. For all
except for B(φ ⇒ ψ) the sub-induction is the same as in

the base case. fΩ′ , wΩ, z · n |= B(φ ⇒ ψ) iff (by Theo-
rem 5) fΩ′ , wΩ, z |= βan where β is the right-hand side of
from Theorem 5 iff (by induction) f, w |= R[Ω′,Ω, z, βan]
iff (by definition ofR) f, w |= R[Ω′,Ω, z,B(φ⇒ ψ)].

We are now ready for the regression theorem for the sit-
uation calculus with beliefs, which reduces reasoning about
future situations to reasoning about the initial situation:
Theorem 12 Let α be a regressable sentence. Then:

Ω ∧ Σ0 ∧O(Ω′,Σ′bel) |= α iff

Σ0 ∧O(TRUE,Σ′bel) |= R[Ω′,Ω, 〈〉, α]

Proof. For the only-if direction suppose the left-hand side
holds and f, w |= Σ0 ∧O(TRUE,Σ′bel). By Lemmas 9 and
10, fΩ′ , wΩ |= Ω ∧ Σ0 ∧O(Ω′,Σ′bel). Since fΩ′ , wΩ |= α
and by Lemma 11, f, w |= R[Ω′,Ω, 〈〉, α].

For the if direction suppose the right-hand side holds and
f, w |= Ω ∧ Σ0 ∧ O(Ω′,Σ′bel). Then w |= Σ0. Let f ′ |=
O(TRUE,Σ′bel). By assumption, f ′, w |= R[Ω′,Ω, 〈〉, α].
By Lemma 11, f ′Ω′ , wΩ |= α. By Lemmas 9 and 10,
f ′Ω′ , wΩ |= Ω ∧ Σ0 ∧O(Ω′,Σ′bel). By Lemma 8, wΩ = w,
and by Theorem 1, f ′Ω′ = f .

Example (cont.) Consider [odr][loc]B(∃x.(D(x) ∧
¬BD(x))), which says that after ordering a specialty and
sensing she is in an Italian restaurant, the agent believes that
she will get a dish, but is unsure which one. Regressing this
sentence leads to a disjunction for the sensing outcomes for
odr and loc. To ease the presentation, we only consider the
positive outcomes here. Since R[〈〉,SF (odr)] is vacuously
TRUE, we can simplify the intermediate regression result to

R[〈〉, [odr]SF (loc)] ∧
R[〈〉,B([odr]SF (loc)⇒ [odr][loc]∃x.(D(x)∧¬BD(x)))].

Regression then proceeds with the antecedent and conse-
quent within B, where we can reuse the objective regression
example from the previous subsection, and eventually obtain
a static sentence equivalent to

I ∧B(I ⇒ ∃x.((S(x)∨D(x))∧¬B(I ⇒ S(x)∨D(x)))).

In the next section we will see that this sentence is indeed
entailed by our example Σ0 ∧O(TRUE,Σ′bel).

5 Reducing Beliefs to Non-Modal Reasoning
In this section we reduce reasoning about beliefs to ordinary
first-order reasoning. Combined with regression, this means
that all modal operators can be eliminated from the query.

By Theorem 12, the projection problem can be reduced to
the entailment Σ0∧O(TRUE,Σ′bel) |= αwhere α is the result
of regressing some regressable formula. It is easy to see that
α is static and contains no epistemic operators other than
B(φ ⇒ ψ). We call such a formula regressed. The goal is
now to reduce entailment of B(φ⇒ ψ) by O(TRUE,Σ′bel) to
objective entailments. To this end, we first need to represent
O(TRUE,Σ′bel) by means of objective sentences:
Definition 13 Let δ = O(α, {φ1 ⇒ ψ1, . . . , φm ⇒ ψm})
and f |= δ. Then ~γ = γ0, . . . , γk is an objective represen-
tation of δ iff γp is objective, f(p) = {w | w |= γp} for all
0 ≤ p ≤ k, and f(p) = {w | w |= γk} for all p > k.



Hence, γp represents what is believed at the pth plausibil-
ity level, plus what is believed at all following levels in case
γp is the last sentence of ~γ. Fortunately, an objective repre-
sentation of O(TRUE,Σ′bel) always exists and is straightfor-
ward to generate:

Theorem 14 Let δ = O(α, {φ1 ⇒ ψ1, . . . , φm ⇒ ψm})
for objective α, φi, ψi. A representation ~γ of δ exists, is
unique (up to logical equivalence), and can be generated
using first-order entailment.

Proof. To generate ~γ, let p1 = 0, . . . , pm = 0. Then repeat
the following two steps from p = 0 to p = m:

• Let γp = α ∧
∧
i:pi≥p(φi ⊃ ψi).

• For all i, if γp |= ¬φi, let pi = p+ 1.

Now let f(p) = {w | w |= γp} for all 0 ≤ p ≤ m and
f(p) = {w | w |= γm} for all p > m. Then f satisfies
semantic rule 12. Hence ~γ is an objective representation.

For uniqueness of ~γ, let ~γ′ be another representation.
Since f |= δ is unique by Theorem 1, {w | w |= γp} = {w |
w |= γ′p} for all 0 ≤ p ≤ m and therefore |= γp ≡ γ′p.

We will now reduce testing if O(TRUE,Σ′bel) entails
B(φ ⇒ ψ) to non-modal entailments involving only γp, φ,
and ψ for an objective representation ~γ of O(TRUE,Σ′bel).
First we need to address variables that occur freely in φ or
ψ, that is, variables quantified outside of B. The idea is to
produce an objective formula RESJα, βK which is valid for
those instances of the free variables for which β ⊃ α is valid
(Levesque and Lakemeyer 2001):

Definition 15 Let α be a regressed formula and β be an
objective sentence.

• If α has no free variables:

RESJα, βK =

{
TRUE if β |= α

FALSE otherwise

• If x is a free variable in α, n1, . . . , nk are the standard
names of the same sort as x occurring in α and β, and n′
is a standard name of the same sort as x different from
n1, . . . , nk:

RESJα, βK =(
(x = n1) ∧ RESJαxn1

, βK
)
∨ . . . ∨(

(x = nk) ∧ RESJαxnk
, βK
)
∨(

(x 6= n1) ∧ . . . ∧ (x 6= nk) ∧ RESJαxn′ , βKn
′

x

)
Recall that B(φ ⇒ ψ) is true iff for all p ∈ N, if ¬φ

holds at all plausibility levels q < p, then φ ⊃ ψ holds at
plausibility level p. Provided that φ and ψ are objective, we
can reformulate whether B(φ ⇒ ψ) holds wrt an objective
representation ~γ of the epistemic state: for all 0 ≤ p ≤ m,
if RESJ¬φ, γqK is valid for all q < p, then RESJφ ⊃ ψ, γpK
is valid. We can thus define a procedure ‖α‖~γ to eliminate
all B(φ ⇒ ψ) from α. To cope with non-objective φ or ψ,
we simply apply ‖ · ‖~γ recursively:

Definition 16 Let α be a regressed formula and ~γ =
γ0, . . . , γm be objective sentences. Then ‖α‖~γ is defined
inductively:

1. ‖α‖~γ = α if α is an objective formula
2. ‖¬α‖~γ = ¬‖α‖~γ
3. ‖(α1 ∧ α2)‖~γ = (‖α1‖~γ ∧ ‖α2‖~γ)

4. ‖∀x.α‖~γ = ∀x.‖α‖~γ
5. ‖B(φ⇒ ψ)‖~γ =

∧m
p=0

((∧p−1
q=0 RESJ‖¬φ‖~γ , γqK

)
⊃

RESJ‖φ ⊃ ψ‖~γ , γpK
)

Theorem 17 Let α be a regressable sentence and ~γ be an
objective representation of O(TRUE,Σ′bel). Then:

Ω ∧ Σ0 ∧O(Ω′,Σ′bel) |= α iff

Σ0 |= ‖R[Ω′,Ω, 〈〉, α]‖~γ

Proof sketch. By Theorem 12, the left-hand side holds iff
Σ0 ∧ O(TRUE,Σ′bel) |= R[Ω′,Ω, 〈〉, α]. The remaining
equivalence can be established through results similar to
Lemmas 7.2.2 and 7.3.2 from (Levesque and Lakemeyer
2001). It needs to be shown that rule 5 of ‖ · ‖~γ mimics
the semantics of B(φ ⇒ ψ). Roughly, this is true because
~γ is sufficient to represent all plausibility levels induced by
O(TRUE,Σ′bel).

Example (cont.) In the previous section, we regressed the
query [odr][loc]B(∃x.(D(x)∧¬BD(x))) and thus obtained
I ∧B(I ⇒ ∃x.((S(x)∨D(x))∧¬B(I ⇒ S(x)∨D(x)))).
We will now eliminate the remaining belief modalities using
the results from this section.

An objective representation of O(TRUE,Σ′bel) is

γ0 = ¬I ∧ (S(x) ≡ x = burger)

γ1 = I ⊃ (S(pasta) ∨ S(pizza))

γ2 = TRUE.

Note that ¬I occurs in γ0 because S(x) ≡ x = burger is in-
consistent with the consequent of I ⇒ S(pasta)∨S(pizza).

Recall that ‖ · ‖~γ works its way from the inside to the
outside. ‖B(I ⇒ S(x) ∨D(x))‖~γ expands to the sentence

(RESJI ⊃ S(x) ∨D(x), γ0K) ∧
(RESJ¬I, γ0K ⊃ RESJI ⊃ S(x) ∨D(x), γ1K) ∧
(RESJ¬I, γ0K ∧ RESJ¬I, γ1K ⊃

RESJI ⊃ S(x) ∨D(x), γ2K).

The first and third conjuncts are equivalent to TRUE because
γ0 |= ¬I and γ1 6|= ¬I , respectively. However, the sec-
ond conjunct is equivalent to FALSE because the antecedent
RESJ¬I, γ0K is TRUE, but RESJI ⊃ S(x) ∨ D(x), γ1K is
equivalent to FALSE because γ1 6|= I ⊃ (S(x) ∨ D(x))xn
for all n ∈ {pasta, pizza, tantuni}, which are the standard
names from γ1 and the query plus one additional (tantuni).
‖B(I ⇒ ∃x.((S(x)∨D(x))∧¬FALSE))‖~γ expands to a

similar formula except that x is bound within the RESJ·, ·K
operator, and hence is equivalent to TRUE.

Therefore to answer the original query it only remains to
check Σ0 |= I ∧ TRUE, which is true.



6 Conclusion
This paper presents reduction theorems to solve the projec-
tion problem for beliefs. The work is carried out within a
modal variant of the belief revision framework for the situa-
tion calculus by Shapiro et al. (2011). Firstly, we presented a
regression mechanism that uses belief conditionals to relate
future beliefs to the initial beliefs. Secondly, we showed how
belief modalities can be eliminated from the query as well.
That way, the belief projection problem can be reduced to a
finite number of non-modal first-order entailments.

The next step is to employ these techniques within a de-
cidable fragment of the situation calculus such as (Lake-
meyer and Levesque 2014). In future, we plan to inves-
tigate whether or not similar results can be obtained for
formalisms that use Spohn-style (Spohn 1988) plausibility
rankings such as (Delgrande and Levesque 2012). Another
open problem is to address belief projection through pro-
gression (Lin and Reiter 1997).
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